Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Mater ; 16(6)2021 10 04.
Article in English | MEDLINE | ID: mdl-34544052

ABSTRACT

Artemether (ART) and lumefantrine (LUM) are the gold standard antimalarial drugs used for the treatment of malaria in children and pregnant women. Typically, ART and LUM are delivered orally in the form of a combined tablet, however, the appropriateness of this route of administration for these drugs is questionable due to the poor absorption and therefore bioavailability observed unless administered alongside lipid-rich foods. Transdermal drug delivery in the form of a patch-type system has been identified as a viable alternative to the conventional tablet-based therapy. A novel, surfactant-based ART-LUM formulation (S3AL), developed for transdermal delivery, may eliminate the shortcomings associated with oral delivery; namely poor drug absorption which is caused by the inherently low solubility of ART and LUM. Moreover, by successfully delivering these antimalarials transdermally, first-pass metabolism will be avoided leading to enhanced drug bioavailability in both cases. The S3AL formulation contained ART and LUM at equal concentrations (2.5% w/w of each) as well as Procetyl® AWS (30% w/w), oleic acid (10% w/w), 1-methyl-2-pyrrolidone (10% w/w), and water (45% w/w). The addition of LUM to the formulation changed the system from a striae structure to a dark field structure when visualized by a polarized light microscope. Additionally, this system possessed higher viscosity and superior skin bioadhesion, as evidenced by mechanical characterization, when compared to a similar formulation containing ART alone. S3AL was also proven to be biocompatible to human keratinocyte cells. Finally,in vitrostudies demonstrated the propensity of S3AL for successful delivery via the transdermal route, with 2279 ± 295 µg cm-2of ART and 94 ± 13 µg cm-2of LUM having permeated across dermatomed porcine skin after 24 h, highlighting its potential as a new candidate for the treatment of malaria.


Subject(s)
Antimalarials , Artemether, Lumefantrine Drug Combination , Surface-Active Agents/chemistry , Administration, Cutaneous , Animals , Antimalarials/administration & dosage , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/chemistry , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Humans , Skin/metabolism , Solubility , Swine
2.
Am J Trop Med Hyg ; 102(5): 1056-1063, 2020 05.
Article in English | MEDLINE | ID: mdl-32100686

ABSTRACT

Artemether-lumefantrine (AL) is the first-line treatment for uncomplicated Plasmodium falciparum infection in Colombia. To assess AL efficacy for uncomplicated falciparum malaria in Quibdo, Choco, Colombia, we conducted a 28-day therapeutic efficacy study (TES) following the WHO guidelines. From July 2018 to February 2019, febrile patients aged 5-65 years with microscopy-confirmed P. falciparum mono-infection and asexual parasite density of 250-100,000 parasites/µL were enrolled and treated with a supervised 3-day course of AL. The primary endpoint was adequate clinical and parasitological response (ACPR) on day 28. We attempted to use polymerase chain reaction (PCR) genotyping to differentiate reinfection and recrudescence, and conducted genetic testing for antimalarial resistance-associated genes. Eighty-eight patients consented and were enrolled; four were lost to follow-up or missed treatment doses. Therefore, 84 (95.5%) participants reached a valid endpoint: treatment failure or ACPR. No patient remained microscopy positive for malaria on day 3, evidence of delayed parasite clearance and artemisinin resistance. One patient had recurrent infection (12 parasites/µL) on day 28. Uncorrected ACPR rate was 98.8% (83/84) (95% CI: 93.5-100%). The recurrent infection sample did not amplify during molecular testing, giving a PCR-corrected ACPR of 100% (83/83) (95% CI: 95.7-100%). No P. falciparum kelch 13 polymorphisms associated with artemisinin resistance were identified. Our results support high AL efficacy for falciparum malaria in Choco. Because of the time required to conduct TESs in low-endemic settings, it is important to consider complementary alternatives to monitor antimalarial efficacy and resistance.


Subject(s)
Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/drug therapy , Adolescent , Adult , Age Factors , Aged , Antimalarials/administration & dosage , Artemether, Lumefantrine Drug Combination/administration & dosage , Child , Child, Preschool , Colombia , Drug Resistance/genetics , Female , Humans , Male , Middle Aged , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymorphism, Single Nucleotide/genetics , Treatment Outcome , Young Adult
3.
J Pharm Biomed Anal ; 165: 304-314, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30579231

ABSTRACT

Malaria is a worldwide health issue, with 216 million cases reported in 2016. Due to the widespread resistance of Plasmodium falciparum to conventional drugs, the first line treatment recommended by World Health Organization for uncomplicated malaria is artemisinin-based combined therapy (ACT), which combines two drugs with different mechanisms of action. The association of artemether and lumefantrine is the most common ACT used in the clinical practice. However, there have been reports of clinical artemisinin and derivatives partial resistance, which is defined as delayed parasite clearance. In this context, the monitoring of drug concentration in biological matrices is essential to evaluate treatment response, the need of dose adjustment and the occurrence of dose dependent adverse effects. Furthermore, it is also important for pharmacokinetic studies and in the development of generic and similar drugs. Determination of antimalarial drugs in biological matrices requires a sample pre-treatment, which involves drug extraction from the matrix and analyte concentration. The most used techniques are protein precipitation (PP), liquid-liquid extraction (LLE) and solid phase extraction (SPE). Subsequently, a liquid chromatography step is usually applied to separate interferences that could be extracted along with the analyte. Finally, the analytes are detected employing techniques that must be selective and sensitive, since the analyte might be present in trace levels. The most used approach for detection is tandem mass spectrometry (MS-MS), but ultraviolet (UV) is also employed in several studies. In this article, a review of the scientific peer-review literature dealing with validated quantitative analysis of artemether and/or lumefantrine in biological matrices, from 2000 to 2018, is presented.


Subject(s)
Antimalarials/analysis , Artemether, Lumefantrine Drug Combination/analysis , Chemistry Techniques, Analytical/methods , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/pharmacokinetics , Drug Combinations , Drug Monitoring/methods , Humans , Malaria, Falciparum/drug therapy , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL