Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.114
1.
J Appl Microbiol ; 135(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38710582

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Aquaculture , Artemia , Bacteriophages , Vibrio alginolyticus , Vibrio alginolyticus/virology , Animals , Artemia/microbiology , Artemia/virology , Animal Feed , Seawater/microbiology , Larva/microbiology
2.
Sci Rep ; 14(1): 10484, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714767

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Metal Nanoparticles , Silver Compounds , Metal Nanoparticles/chemistry , Animals , Humans , Silver Compounds/chemistry , Silver Compounds/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Artemia/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Green Chemistry Technology/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Vero Cells , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Silver/chemistry , Silver/pharmacology , Oxides
3.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 48-58, 2024 May 27.
Article En | MEDLINE | ID: mdl-38814235

Probiotics have been used successfully in aquaculture to enhance disease resistance, nutrition, and/or growth of cultured organisms. Six strains of Bacillus were isolated from the intestinal tracts of fish and recognised by conventional biochemical traits. The six isolated strains were Bacillus cereus and Bacillus subtilis using MALDI-TOF-MS technique. The probiotic properties of these Bacillus strains were studied. The tested bacillus strains exhibit antibacterial activity against the different pathogens. The strain S5 gave the important inhibition zones against most pathogens (20.5, 20.33, 23, and 21 mm against Vibrio alginolyticus, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella typhimurium, respectively). According to our results, all Bacillus strains have extracellular components that can stop pathogenic bacteria from growing. The enzymatic characterization showed that the tested strains can produce several biotechnological enzymes such as α-glucosidase, naphtol-AS-BI-Phosphohydrolase, esterase lipase, acid phosphatase, alkaline phosphatase, amylase, lipase, caseinase, and lecithinase. All Bacillus strains were adhesive to polystyrene. The adding Bacillus strains to the Artemia culture exerted significantly greater effects on the survival of Artemia. The challenge test on Artemia culture showed that the protection against pathogenic Vibrio was improved. These findings allow us to recommend the examined strains as prospective probiotic options for the Artemia culture, which will be used as food additives to improve the culture conditions of crustacean larvae and marine fish.


Artemia , Bacillus , Fishes , Gastrointestinal Tract , Probiotics , Animals , Probiotics/pharmacology , Artemia/microbiology , Bacillus/enzymology , Bacillus/isolation & purification , Gastrointestinal Tract/microbiology , Fishes/microbiology , Vibrio/pathogenicity , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Antibiosis
4.
Toxins (Basel) ; 16(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38787061

Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.


Peptides , Animals , Antarctic Regions , Peptides/toxicity , Peptides/chemistry , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/analysis , Mucus/metabolism , Mucus/chemistry , Artemia
5.
PeerJ ; 12: e17092, 2024.
Article En | MEDLINE | ID: mdl-38563012

Live foods such as phytoplankton and zooplankton are essential food sources in aquaculture. Due to their small size, they are suitable for newly hatched larvae. Artemia and rotifer are commonly used live feeds in aquaculture; each feed has a limited dietary value, which is unsuitable for all cultured species. Whereas, copepod and cladocerans species exhibit favorable characteristics that make them viable candidates as sources of essential nutrients for hatchery operations. Due to their jerking movements, it stimulates the feeding response of fish larvae, and their various sizes make them suitable for any fish and crustacean. Even though Artemia is the best live feed due to its proficient nutritional quality, the cost is very expensive, which is about half of the production cost. A recent study suggests the use of amphipods and mysids as alternative live feeds in aquaculture. High nutritional value is present in amphipods and mysids, especially proteins, lipids, and essential fatty acids that are required by fish larvae during early development. Amphipods and mysids are considered abundant in the aquatic ecosystem and have been used by researchers in water toxicity studies. However, the culture of amphipods and mysids has been poorly studied. There is only a small-scale culture under laboratory conditions for scientific research that has been performed. Thus, further research is required to find a way to improve the mass culture of amphipods and mysids that can benefit the aquaculture industry. This review article is intended to provide the available information on amphipods and mysids, including reproductive biology, culture method, nutritional value, feed enhancement, and the importance of them as potential live feed in aquaculture. This article is useful as a guideline for researchers, hatchery operators, and farmers.


Amphipoda , Rotifera , Animals , Ecosystem , Aquaculture/methods , Fishes , Larva , Artemia
6.
J Hazard Mater ; 470: 134179, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565011

Microplastics (MPs) and fluoxetine are ubiquitous emerging pollutants in aquatic environments that may interact with each other due to the carrier effects of MPs, posing unpredictable risks to non-target organisms. However, limited studies have focused on the carrier effects of MPs in the aquatic food chain. This study evaluated the influences of polystyrene MPs on the trophic transfer and biotoxicity of fluoxetine in a simple food chain composed of brine shrimp (Artemia nauplii) and zebrafish (Danio rerio). The finding reveals that carrier effects of MPs enhanced the accumulation of waterborne fluoxetine in brine shrimp, but suppressed that in zebrafish due to the distinct retention times. The accumulated fluoxetine in shrimp was further transferred to fish through the food chain, which was alleviated by MPs due to their cleaning effects. In addition, the specific neurotransmission biotoxicity in fish induced by fluoxetine was mitigated by MPs, whilst the oxidative damage, apoptosis, and immune responses in zebrafish were reversely enhanced by MPs due to the stimulating effect. These findings highlight the alleviating effects of MPs on the trophic transfer and specific biotoxicity of fluoxetine in the food chain, providing new insights into the carrier effects of MPs in aquatic environments in the context of increasing global MP pollution.


Artemia , Fluoxetine , Food Chain , Microplastics , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Fluoxetine/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Artemia/drug effects
7.
J Ethnopharmacol ; 330: 118238, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38663780

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous medicinal plants have been used traditionally in South Africa for gastric ulcer treatment. Helicobacter pylori is known for causing inflammation and the onset of gastric ulcers. While several studies explored medicinal plants against H. pylori, investigation of medicinal plants used for gastric ulcers has been neglected, as well as the effects these plants would have on bacteria occurring naturally in the gut microbiome. AIM OF THE STUDY: This study aimed to investigate Southern African medicinal plants used traditionally for treating gastric ulcers against H. pylori , as well as the effects that these plants have when combined with Lactobacillus species and tested against H. pylori. METHODOLOGY: Based on evidence from the ethnobotanical literature, 21 plants were collected. Their antimicrobial activity was assessed against five clinical H. pylori strains, and in combination with each of three Lactobacillus species, using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) broth microdilution assays. Toxicity was assessed using the brine shrimp lethality assay. RESULTS: Noteworthy activity was observed against at least one H. pylori strain for 12 plant species. The lowest mean MICs were from organic extracts of Carissa edulis Vahl (0.18 mg/mL) and Chironia baccifera L. (0.20 mg/mL), and aqueous extracts of Sansevieria hyacinthoides (L.) Druce (0.26 mg/mL) and Dodonaea viscosa Jacq. (0.30 mg/mL). Aqueous extracts of the investigated plants were combined with Lactobacillus species, and the majority of combinations showed increased antimicrobial activity compared with the extracts alone. Combinations of Lactobacillus rhamnosus with 18 of the 21 aqueous plant extracts showed at least a two-fold decrease in the mean MBC against all H. pylori strains tested. Lactobacillus acidophilus combined with either Protea repens L., Carpobrotus edulis (L.) L. Bolus or Warburgia salutaris (Bertol.f.) Chiov. aqueous extracts had the best anti-H. pylori activity (mean MBCs of 0.10 mg/mL for each combination). Only four organic and one aqueous extract(s) were considered toxic. CONCLUSION: These results highlight the potential of medicinal plants to inhibit H. pylori growth and their role in traditional treatments for the management of ulcers. The results also indicate that aqueous extracts of these plants do not hinder the growth of bacteria that occur naturally in the gut microbiome and play a role in maintaining gut health, as well as show the potential benefit of including Lactobacillus species as potentiators of H. pylori activity.


Anti-Bacterial Agents , Helicobacter pylori , Lactobacillus , Microbial Sensitivity Tests , Plant Extracts , Plants, Medicinal , Helicobacter pylori/drug effects , Plant Extracts/pharmacology , Lactobacillus/drug effects , Anti-Bacterial Agents/pharmacology , Animals , South Africa , Artemia/drug effects , Medicine, African Traditional
8.
Chemosphere ; 357: 142092, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653396

Climate change further the world's human population increase is a mainstream political issue, and it's critical to search for solutions to produce enough food to feed everyone. Pesticides and fertilizers have been used as an easy solution to prevent pests and increase food production. Nevertheless, their overuse has dangerous effects on the ecosystems and communities. Oxyfluorfen (Oxy) and copper (Cu) based formulations are used as pesticides and widely applied on agricultural fields for crop protection. However, they have shown negative effects on non-target species. So, this work proposes to: a)determine the lethal concentration of Oxy and Cu to the zooplankton, Artemia franciscana, at different temperatures (15 °C, 20 °C and 25 °C); b)understand the biochemical impacts of these chemicals at the different temperatures scenarios, on A. franciscana and c)evaluate the impact of the climate changes, particularly the temperature increase, on this species sensitivity to the tested pesticides. Acute and sub-lethal bioassays with Oxy and Cu were performed at different temperatures to determine the lethal concentration of each chemical and to understand the effects of the compounds at different temperatures on the biochemical profiles of A. franciscana. Results showed an increase in chemicals toxicity with the temperature, and Oxy was revealed to be more noxious to A. franciscana than Cu; at a biochemical level, significant differences were observed among temperatures, with the biggest differences between the organisms exposed to 15 °C and 25 °C. Overall, a decrease in fatty acids (FA) and sugars was observed with the increase in Cu and oxyfluorfen concentrations. Different trends were observed with temperature increase, with FA increase in the organisms exposed to Cu and the opposite was observed in the ones exposed to oxyfluorfen. Sugar content decreases in the organisms exposed to oxyfluorfen with temperature increase and showed a non-linear behaviour in the ones exposed to Control and Cu treatments.


Artemia , Copper , Halogenated Diphenyl Ethers , Pesticides , Temperature , Animals , Copper/toxicity , Halogenated Diphenyl Ethers/toxicity , Artemia/drug effects , Pesticides/toxicity , Pesticides/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Climate Change
9.
Altern Lab Anim ; 52(3): 142-148, 2024 May.
Article En | MEDLINE | ID: mdl-38578132

The use of the brine shrimp Artemia salina (Leach) in acute toxicity assays has great potential due to its simplicity, low cost and reproducibility. In the current study, some of the variables that can influence the reliability of the assay in terms of test organism survival, were evaluated as part of its implementation in our laboratory. The quality and type of water used, the buffer components and other parameters (salinity, pH and dissolved oxygen level), were all evaluated for optimisation purposes. DMSO (dimethyl sulphoxide) was used as the test substance in the toxicity assay, to evaluate the concentration limits as a solvent in sample preparation. Regarding the buffer salinity, pH and dissolved oxygen level, we found that a 25% to 30% deviation from the standard values did not affect the survival of the nauplii (the first-instar larval stage) under assay conditions. In summary, we corroborate the potential use of this model for the prediction of the toxic potential of substances, to inform future testing strategies.


Artemia , Toxicity Tests, Acute , Animals , Artemia/drug effects , Toxicity Tests, Acute/methods , Hydrogen-Ion Concentration , Salinity , Dimethyl Sulfoxide/toxicity
10.
Mycologia ; 116(3): 355-369, 2024.
Article En | MEDLINE | ID: mdl-38573188

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Anti-Bacterial Agents , Artemia , Aspergillus flavus , Penicillium , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Artemia/drug effects , Aspergillus flavus/drug effects , Penicillium/chemistry , Penicillium/drug effects , Animals , Microbial Sensitivity Tests , Bacteria/drug effects , Rhizosphere , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
11.
Sci Total Environ ; 933: 172824, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38688370

A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 µM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was conducted in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 µM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.


Biofouling , Biofouling/prevention & control , Animals , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Xanthones/toxicity , Mytilus/drug effects , Mytilus/physiology , Diatoms/drug effects , Humans , Daphnia/drug effects , Daphnia/physiology , Artemia/drug effects
12.
Mol Biol Rep ; 51(1): 418, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483678

BACKGROUND: The present work demonstrated the green synthesis and characterization of silver nanoparticles (AgNPs) utilizing Elaeocarpus serratus fruit extract. The study examined the effectiveness of phytocompounds in fruit extract in reducing Ag+ to Ag° ions. METHODS: The water-soluble biobased substance production from silver ions to AgNPs in 45 min at room temperature. Surface plasmon resonance (SPR) peak was seen in the UV-visible absorption spectrum of the biologically altered response mixture. Examination with X-ray diffraction (XRD) showed that AgNPs are strong and have a face-centered cubic shape. Scanning electron microscope (SEM) investigation proved the production of AgNPs in a cuboidal shape. RESULTS: The AgNPs demonstrated remarkable antibacterial activity and a potent capacity to neutralize DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals. The highest growth inhibition was found for E. serratus against S. dysenteriae (18.5 ± 1.0 mm) and S. aureus (18 ± 1.2 mm). These nanoparticles exhibited robust antiradical efficacy even at low concentrations. The AgNPs additionally exhibited cytotoxic effects on (HT-29) human colon adenocarcinoma cancer cells. The MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) indicated an inhibitory concentration (IC50) value of 49.1 ± 2.33 µg/mL for AgNPs, contrasting with the untreated cells of the negative control. The biotoxicity assessment using A. salina displayed mortality rates ranging from 8 to 69.33%, attributable to the E. serratus synthesized AgNPs. CONCLUSIONS: In our results concluded that simply first-hand information on that E. serattus fruit extract synthesized AgNPs were efficiently synthesized without the addition of any hazardous substances, and that they may be a strong antibacterial, antioxidant, and potential cytotoxic effects for the treatment of colon carcinoma cell lines.


Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Metal Nanoparticles , Animals , Humans , Silver/chemistry , Antioxidants/chemistry , Artemia , Metal Nanoparticles/chemistry , Fruit/chemistry , Staphylococcus aureus , Colonic Neoplasms/drug therapy , Anti-Bacterial Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HT29 Cells , Ions , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428516

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Artemia , Cysts , Animals , Female , Artemia/metabolism , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Embryonic Development , Embryo, Nonmammalian/metabolism , Cysts/metabolism , Adenosine Triphosphate/metabolism
14.
J Ethnopharmacol ; 328: 118112, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38554852

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the Morus mesozygia tree leaf has been used to manage maladies such as peptic ulcer, hyperglycemia, dermatitis, rheumatism, stomach-ache, arthritis, cough, malignancies, and malaria in parts of Africa. AIM OF THE STUDY: The study aimed to evaluate the potential of ethanol leaf extract of Morus mesozygia (EEMm) to induce toxicity by employing both acute and sub-acute oral toxicity experimental models. MATERIAL AND METHODS: The extract's cytotoxicity was studied using brine shrimps (Artemia salina) lethality assay (BSLA), while in the acute toxicity test, male and female mice were administered a single oral dose of EEMm (2000 mg/kg). Male and female Wistar rats received repeated doses of 100 or 500 mg/kg EEMm orally for 28 days in the sub-acute toxicity experiment. The phytochemical analysis of EEMm was done using the HPLC. RESULTS: The BSLA revealed a moderate cytotoxic potential of the extract, with an LC50 of 567.13 ± 0.27 µg/mL. All the animals survived the acute toxicity test, with no significant changes in the relative organ weights, suggesting that LD50 is greater than 2000 mg/kg. The animal weights did not vary significantly in the sub-acute toxicity test neither were the alterations in biochemical and hematological tests pronounced, although the histoarchitectures of the kidney, liver and spleen indicated slight anomalies in the evaluated animals. The HPLC analysis revealed the presence of quercetin, ferulic acid, rutin, caffeic acid, morin and gallic acid. CONCLUSIONS: Ethanol leaf extract of Morus mesozygia demonstrated a safe toxicity profile in rodents, supporting its broad folkloric use in African ethnomedicine.


Moraceae , Morus , Rats , Mice , Animals , Ethanol , Rats, Wistar , Rodentia , Plant Extracts/toxicity , Plant Extracts/analysis , Toxicity Tests, Acute , Artemia , Toxicity Tests, Subacute
15.
BMC Complement Med Ther ; 24(1): 110, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448883

BACKGROUND: Phytochemicals have become a growing source of alternative medicine in developing countries due to the poor prognosis, high cost of conventional pharmaceuticals, and undesirable effects associated with mainstream cancer treatment. OBJECTIVE: This study was aimed at investigating the anticancer effect of some selected Nigerian medicinal plants used in cancer treatment. These include ethanol extracts of Dialium guineense root (DGR), Dialium guineense leaves (DGL), Jateorhiza macrantha leaves (JML), Musanga cecropioides leaves (MCL), Musanga cecropioides stembark (MCSB), Piptadeniastrum africanum stembark (PASB), Piptadeniastrum africanum root (PAR), Pupalia lappacea flower tops (PLF), Raphiostylis beninensis root (RBR), Raphiostylis beninensis leaves (RBL), Ritchiea capparoides leaves (RCL), Ritchiea capparoides stembark (RCSB), and Triplochiton scleroxylon stembark (TSB). METHODS: The cytotoxic activity of the extracts was examined using a brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against three cancer cell lines, including MCF-7, HUH-7, and HeLa. The selectivity of all extracts towards cancer cells was investigated using normal lung fibroblasts (MRC-5). Cell migration and colony-forming assays of active extracts against MCF-7 cells were also performed. Additionally, the total polyphenolic contents of the active extracts were estimated using standard methods. RESULTS: The extract of PASB had the highest cytotoxicity (LC50 = 1.58 µg/mL) on the brine shrimps compared to vincristine sulphate (LC50 = 2.24 µg/mL). In the cell viability assay, all the extracts produced significant (p < 0.05) growth inhibitory effects against all cell lines tested in a dose-dependent manner. All extracts were selective to cancer cells at varying degrees. Worth mentioning are the extracts of MCL, DGR, RBR, and PASB, which exhibited 14-, 7-, 6- and 2-fold selectivity toward MCF-7 cancer cells relative to normal lung fibroblast (MRC-5), respectively. These four extracts also significantly inhibited cell migration and colony formation in MCF-7-treated cells in dose-dependent manners. Considerable amounts of phenolics, flavonoids, and proanthocyanidins were detected in all extracts evaluated. CONCLUSION: These findings advocate the continued development of MCL, DGR, RBR, and PASB as potential chemotherapeutic agents.


Fabaceae , Plants, Medicinal , Uterine Cervical Neoplasms , Female , Humans , Animals , Uterine Cervical Neoplasms/drug therapy , Liver , Cell Movement , Fibroblasts , Artemia
16.
Environ Pollut ; 348: 123822, 2024 May 01.
Article En | MEDLINE | ID: mdl-38522609

Environmental pollution poses a significant and pressing threat to the overall well-being of aquatic ecosystems in modern society. This study showed that pollutants like dusts from AC filter, fan wings and Traffic dust PM 2.5 were exposed to Artemia salina in pristine form and in combination. The findings indicated that exposure to multi-pollutants had a detrimental effect on the hatching rates of A. salina cysts. Compared to untreated A. salina, the morphology of adult (7th day old) A. salina changed noticeably after each incubation period (24-120 h). Oxidative stress increased considerably as the exposure duration increased from 24 to 120 h compared to the control group. There was a time-dependent decline in antioxidant enzyme activity and total protein concentration. When all particles were used all together, the total protein content in A. salina decreased significantly. All particles showed a considerable decline in survival rate. Those exposed to traffic dust particles showed significantly higher levels of oxidative stress and antioxidant activity than those exposed to other particles.


Environmental Pollutants , Water Pollutants, Chemical , Animals , Acetaminophen , Antioxidants/metabolism , Artemia/metabolism , Ecosystem , Environmental Pollutants/metabolism , Microplastics/metabolism , Plastics/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
17.
Ecotoxicol Environ Saf ; 273: 116120, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38401200

The ability to employ waste products, such as vegetable scraps, as raw materials for the synthesis of new promising adsorbing materials is at the base of the circular economy and end of waste concepts. Dextrin-based nanosponges (D_NS), both cyclodextrin (CD) and maltodextrin (MD), have shown remarkable adsorption abilities in the removal of toxic compounds from water and wastewater, thus representing a bio-based low-cost solution which is establishing itself in the market. Nevertheless, their environmental safety for either aquatic or terrestrial organisms has been overlooked, raising concern in terms of potential hazards to natural ecosystems. Here, the environmental safety (ecosafety) of six newly synthesized batches of D_NS was determined along with their full characterization by means of dynamic light scattering (DLS), thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy with attenuated total reflection (FTIR-ATR) and transmission electron microscopy (SEM). Ecotoxicity evaluation was performed using a battery of model organisms and ecotoxicity assays, such as the microalgae growth inhibition test using the freshwater Raphidocelis subcapitata and the marine diatom Dunaliella tertiolecta, regeneration assay using the freshwater cnidarian Hydra vulgaris and immobilization assay with the marine brine shrimp Artemia franciscana. Impact on seedling germination of a terrestrial plant of commercial interest, Cucurbita pepo was also investigated. Ecotoxicity data showed mild to low toxicity of the six batches, up to 1 mg/mL, in the following order: R. subcapitata > H. vulgaris > D. tertiolecta > A. franciscana > C. pepo. The only exception was represented by one batch (NS-Q+_BDE_(GLU2) which resulted highly toxic for both freshwater species, R. subcapitata and H. vulgaris. Those criticalities were solved with the synthesis of a fresh new batch and were hence attributed to the single synthesis and not to the specific D_NS formulation. No effect on germination of pumpkin but rather more a stimulative effect was observed. To our knowledge this is the first evaluation of the environmental safety of D_ NS. As such we emphasize that current formulations and exposure levels in the range of mg/mL do not harm aquatic and terrestrial species thus representing an ecosafe solution also for environmental applications.


Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Dextrins , Ecosystem , Plants , Wastewater/toxicity , Artemia
18.
Braz J Biol ; 83: e276127, 2024.
Article En | MEDLINE | ID: mdl-38422265

The study aimed to evaluate the insecticidal activity of extracts of edible mushrooms Pleurotus ostreatus and Lentinula edodes against Rhyssomatus nigerrimus. Methanol:water extracts (70:30) of P. ostreatus and L. edodes were made and evaluated in two in vitro tests (exposure and immersion toxic effect) against R. nigerrimus. Subsequently, the toxicity test of the extracts against Artemia salina was evaluated. These extracts were subjected to colorimetric tests and gas chromatography-mass spectrometry. The results showed a mortality effect against R. nigerrimus of 50% for the P. ostreatus 2 extracts at a concentration of 20% in the immersion test. Likewise, in the toxic effect test, 90% mortality was observed after five days of exposure to a concentration of 10%. On the other hand, for the toxicity test, the extract that showed the values with the highest mortality against A. salina was P. ostreatus, starting with 80% mortality at 100µg/mL. The functional groups present in the extracts were saponins, coumarins, and alkaloids. Furthermore, the presence of more than 7 compounds in the mushroom extracts evaluated is reported. This study demonstrates the insecticidal activity of P. ostreatus and L. edodes fungal extracts and indicates the importance of using different in vitro tests to elucidate the mechanism of action for future studies.


Arthropods , Insecticides , Pleurotus , Shiitake Mushrooms , Weevils , Animals , Methanol , Artemia
19.
Microsc Res Tech ; 87(7): 1479-1493, 2024 Jul.
Article En | MEDLINE | ID: mdl-38407375

For many years, the synthesis of graphene oxide (GO) had involved exfoliating graphite flakes, and the methods applied were expensive and time-consuming. Thus, an attempt had been made to create an inventive, less expensive method for the synthesis of GO using unrefined, raw carbon-containing material. Modified Hummer's method was used to prepare GO from banana peel. In addition, the metallic silver nanocomposite was also synthesized along with laoding of drug Rocephin where they interact with each other through electrostatic hydrogen bond interaction. The degree of crystallinity and the crystallite size were through x-ray diffraction (XRD) analysis and the crystallite size of AgNPs was found to be 40.40 nm. The scanning electron microscopy (SEM) analysis shows that the morphology of the GO gradually changes with the addition of AgNPs and Rocephin. A blue shift was seen in the absorbance maxima of the raw carbon upon the conjugation of Rocephin in UV analysis. The Fourier-transform infrared spectroscopy, and energy dispersive X-ray (EDX) spectroscopy were used to determine the chemical composition of the samples. Furthermore, a broad biological screening of the synthesized samples had been carried out following the total reducing power (TRP), total antioxidant capacity (TAC), antibacterial, antifungal, MTT (Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells) cell viability, brine shrimp lethality, and hemolytic protocols. Significant results were obtained, and the Rocephin-GO-AgNPs had depicted promising activity as compared with their counterparts. RESEARCH HIGHLIGHTS: The GO was prepared from the raw carbon extracted from banana peels and was used as a substrate for the synthesis Graphene oxide silver nanoparticles (GO-AgNPs) and Rocephin-loaded graphene oxide silver nanoparticles (Rocephin-GO-AgNPs) The structural and compositional analysis of the nanomaterial was carried out, and they were screened for several biomedical applications. The Rocephin-GO-AgNPs exhibit the highest activity as compared with their counterparts.


Graphite , Metal Nanoparticles , Nanocomposites , Silver , Graphite/chemistry , Silver/chemistry , Silver/pharmacology , Nanocomposites/chemistry , Animals , Metal Nanoparticles/chemistry , Humans , Artemia/drug effects , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning , Musa/chemistry , Anti-Infective Agents/pharmacology
20.
New Microbiol ; 46(4): 332-339, 2024 Jan.
Article En | MEDLINE | ID: mdl-38252043

Vibrio species represent the predominant and significant pathogen in global marine fish and shellfish aquaculture. Vibrio species are ubiquitously presented in Artemia cyst hatcheries, and their notable colonization in live prey, particularly Artemia nauplii, leads to the transmission of these pathogens into the digestive system of larval organisms, causing serious problems in Vibriosis in marine aquaculture. To eliminate the Vibriospecies in Artemia nauplii, trichloroisocyanuric acid (TCCA) was used for sterilization of the nauplii. In this study, 3 different concentrations, including 0.5 ppm (FA group), 1.0 ppm (FB group) and 1.5 ppm (FC group) of TCCA were used to treat nauplii for 25 min, and then genomic DNA of the different groups were extracted followed by metagenomic next-generation sequencing (NGS). Bioinformatics analysis was applied and the results indicated that Proteobacter constituted the predominant component within each group at the phylum level, albeit accounting for only 58.68% in the FB group, which was significantly lower than in other groups (>86%). The relative abundance of Vibrio species at genus level showed that when compared with the control group, the FB group (15.8%) was reduced by 25.5%. Beta diversity showed differences between the FB group and the other groups, suggesting that treatment with 1.0ppm TCCA for 25 min would obviously reduce the Vibrio in Artemia nauplii. In conclusion, the Vibrio species were significantly reduced after treatment with TCCA, indicating that TCCA might be an alternative to antibiotics used for live food sterilization in marine aquaculture.


Artemia , High-Throughput Nucleotide Sequencing , Animals , Anti-Bacterial Agents , Computational Biology , Metagenomics
...