Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.083
Filter
1.
Physiol Rep ; 12(18): e70062, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39317676

ABSTRACT

Inadequate blood supply to the expanding adipose tissue (AT) is involved in the unhealthy AT remodeling and cardiometabolic consequences of obesity. Because of the pathophysiological role of upregulated mineralocorticoid receptor (MR) signaling in the complications of obesity, this study tested the vasoactive properties of finerenone, a nonsteroidal MR antagonist, in arteries of human AT. Arteries isolated from the visceral AT of obese subjects were studied in a wire myograph. Finerenone resulted in a concentration-dependent relaxation of arteries precontracted with either the thromboxane-A2 analog U46619, ET-1, or high-K+ solution; the steroidal MR antagonist potassium canrenoate, by contrast, did not relax arteries contracted with either U46619 or high-K+ solution. Finerenone-induced relaxation after precontraction with U46619 was greater in the arteries of obese versus nonobese subjects. Mechanistically, the vasorelaxing response to finerenone was not influenced by preincubation with the nitric oxide synthase inhibitor L-NAME or by endothelium removal. Interestingly, finerenone, like the dihydropyridine Ca2+-channel blocker nifedipine, relaxed arteries contracted with the L-type Ca2+-channel agonist Bay K8644. In conclusion, finerenone relaxes arteries of human visceral AT, likely through antagonism of L-type Ca2+ channels. This finding identifies a novel mechanism by which finerenone may improve AT perfusion, hence protecting against the cardiometabolic complications of obesity.


Subject(s)
Calcium Channels, L-Type , Intra-Abdominal Fat , Mineralocorticoid Receptor Antagonists , Naphthyridines , Vasodilation , Humans , Calcium Channels, L-Type/metabolism , Male , Naphthyridines/pharmacology , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/blood supply , Intra-Abdominal Fat/drug effects , Female , Middle Aged , Vasodilation/drug effects , Mineralocorticoid Receptor Antagonists/pharmacology , Obesity/metabolism , Arteries/metabolism , Arteries/drug effects , Adult , Calcium Channel Blockers/pharmacology
3.
Am J Physiol Heart Circ Physiol ; 327(4): H896-H907, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39150393

ABSTRACT

Excess sodium consumption contributes to arterial dysfunction in humans. The C57BL/6 strain of mice has been used to identify mechanisms by which arterial dysfunction occurs after excess sodium consumption. However, there are concerns that C57BL/6 mice have strain-specific resistance to high-sodium (HS) diet-induced hypertension. To address this concern, we performed a meta-analysis to determine if excess sodium consumption in C57BL/6 mice induces arterial dysfunction. Databases were searched for HS versus standard diet studies that measured arterial function [i.e., systolic blood pressure (BP), endothelium-dependent dilation (EDD), and central arterial stiffness] in C57BL/6 mice. A total of 39 studies were included, demonstrating that the HS condition resulted in higher systolic BP than control mice with a mean difference of 9.8 mmHg (95% confidence interval [CI] = [5.6, 14], P < 0.001). Subgroup analysis indicated that the systolic BP was higher in HS compared with the control condition when measured during night compared with daytime with telemetry (P < 0.001). We also identified that the difference in systolic BP between HS and control was ∼2.5-fold higher when administered through drinking water than through food (P < 0.001). A total of 12 studies were included, demonstrating that the HS condition resulted in lower EDD than control with a weighted mean difference of -12.0% (95% CI = [-20.0, -4.1], P = 0.003). It should be noted that there was considerable variability across studies with more than half of the studies showing no effect of the HS condition on systolic BP or EDD. In summary, excess sodium consumption elevates systolic BP and impairs EDD in C57BL/6 mice.NEW & NOTEWORTHY C57BL/6 mice are perceived as resistant to high-sodium diet-induced arterial dysfunction. This meta-analysis demonstrates that excess sodium consumption elevates blood pressure and impairs endothelium-dependent dilation in C57BL/6 mice. Nighttime measurements show more pronounced blood pressure elevation. In addition, sodium administration via drinking water, compared with food, induces a greater blood pressure elevation. These findings may be influenced by outlier studies, as the majority of studies showed no adverse effect of excess sodium consumption on arterial function.


Subject(s)
Mice, Inbred C57BL , Vascular Stiffness , Animals , Vascular Stiffness/drug effects , Hypertension/physiopathology , Hypertension/chemically induced , Sodium, Dietary , Blood Pressure/drug effects , Arteries/drug effects , Arteries/physiopathology , Arteries/metabolism , Vasodilation/drug effects , Mice , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Male , Disease Models, Animal
4.
Atherosclerosis ; 397: 118552, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39180958

ABSTRACT

The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.


Subject(s)
Arteries , Atherosclerosis , Glycosaminoglycans , Lipoproteins , Proteoglycans , Humans , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Animals , Arteries/metabolism , Arteries/pathology , Arteries/drug effects , Glycosaminoglycans/metabolism , Proteoglycans/metabolism , Lipoproteins/metabolism , Plaque, Atherosclerotic , Extracellular Matrix Proteins/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000253

ABSTRACT

It has been reported that, in the spontaneously hypertensive rat (SHR) model of hypertension, different components of the G-protein/adenylate cyclase (AC)/Calcium-activated potassium channel of high conductance (BK) channel signaling pathway are altered differently. In the upstream part of the pathway (G-protein/AC), a comparatively low efficacy has been established, whereas downstream BK currents seem to be increased. Thus, the overall performance of this signaling pathway in SHR is elusive. For a better understanding, we focused on one aspect, the direct targeting of the BK channel by the G-protein/AC pathway and tested the hypothesis that the comparatively low AC pathway efficacy in SHR results in a reduced agonist-induced stimulation of BK currents. This hypothesis was investigated using freshly isolated smooth muscle cells from WKY and SHR rat tail artery and the patch-clamp technique. It was observed that: (1) single BK channels have similar current-voltage relationships, voltage-dependence and calcium sensitivity; (2) BK currents in cells with a strong buffering of the BK channel activator calcium have similar current-voltage relationships; (3) the iloprost-induced concentration-dependent increase of the BK current is larger in WKY compared to SHR; (4) the effects of activators of the PKA pathway, the catalytic subunit of PKA and the potent and selective cAMP-analogue Sp-5,6-DCl-cBIMPS on BK currents are similar. Thus, our data suggest that the lower iloprost-induced stimulation of the BK current in freshly isolated rat tail artery smooth muscle cells from SHR compared with WKY is due to the lower efficacy of upstream elements of the G-Protein/AC/BK channel pathway.


Subject(s)
Calcium , Hypertension , Iloprost , Large-Conductance Calcium-Activated Potassium Channels , Muscle, Smooth, Vascular , Rats, Inbred SHR , Rats, Inbred WKY , Vasodilator Agents , Animals , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Rats , Calcium/metabolism , Iloprost/pharmacology , Hypertension/metabolism , Hypertension/drug therapy , Vasodilator Agents/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Male , Arteries/drug effects , Arteries/metabolism , Tail/blood supply , Signal Transduction/drug effects
6.
Hypertension ; 81(9): 1883-1894, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39016006

ABSTRACT

BACKGROUND: Preeclampsia is a serious condition of pregnancy, complicated by aberrant maternal vascular dysfunction. CNP (C-type natriuretic peptide) contributes to vascular homeostasis, acting through NPR-B (natriuretic peptide receptor-B) and NPR-C (natriuretic peptide receptor-C). CNP mitigates vascular dysfunction of arteries in nonpregnant cohorts; this study investigates whether CNP can dilate maternal arteries in ex vivo preeclampsia models. METHODS: Human omental arteries were dissected from fat biopsies collected during cesarean section. CNP, NPR-B, and NPR-C mRNA expression was assessed in arteries collected from pregnancies complicated by preeclampsia (n=6) and normotensive controls (n=11). Using wire myography, we investigated the effects of CNP on dilation of arteries from normotensive pregnancies. Arteries were preconstricted with either serum from patients with preeclampsia (n=6) or recombinant ET-1 (endothelin-1; vasoconstrictor elevated in preeclampsia; n=6) to model vasoconstriction associated with preeclampsia. Preconstricted arteries were treated with recombinant CNP (0.001-100 µmol/L) or vehicle and vascular relaxation assessed. In further studies, arteries were preincubated with NPR-B (5 µmol/L) and NPR-C (10 µmol/L) antagonists before serum-induced constriction (n=4-5) to explore mechanistic signaling. RESULTS: CNP, NPR-B, and NPR-C mRNAs were not differentially expressed in omental arteries from preeclamptic pregnancies. CNP potently stimulated maternal artery vasorelaxation in our model of preeclampsia (using preeclamptic serum). Its vasodilatory actions were driven through the activation of NPR-B predominantly; antagonism of this receptor alone dampened CNP vasorelaxation. Interestingly, CNP did not reduce ET-1-driven omental artery constriction. CONCLUSIONS: Collectively, these data suggest that enhancing CNP signaling through NPR-B offers a potential therapeutic strategy to reduce systemic vascular constriction in preeclampsia.


Subject(s)
Natriuretic Peptide, C-Type , Pre-Eclampsia , Receptors, Atrial Natriuretic Factor , Vasodilation , Female , Pre-Eclampsia/physiopathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/drug therapy , Humans , Pregnancy , Natriuretic Peptide, C-Type/pharmacology , Adult , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/metabolism , Vasodilation/drug effects , Vasodilation/physiology , Omentum/blood supply , Vasoconstriction/drug effects , Arteries/drug effects , Arteries/metabolism , Arteries/physiopathology
7.
J Physiol ; 602(14): 3505-3518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743485

ABSTRACT

NaV1.7 plays a crucial role in inducing and conducting action potentials in pain-transducing sensory nociceptor fibres, suggesting that NaV1.7 blockers could be effective non-opioid analgesics. While SCN9A is expressed in both sensory and autonomic neurons, its functional role in the autonomic system remains less established. Our single neuron rt-PCR analysis revealed that 82% of sympathetic neurons isolated from guinea-pig stellate ganglia expressed NaV1.7 mRNA, with NaV1.3 being the only other tetrodotoxin-sensitive channel expressed in approximately 50% of neurons. We investigated the role of NaV1.7 in conducting action potentials in postganglionic sympathetic nerves and in the sympathetic adrenergic contractions of blood vessels using selective NaV1.7 inhibitors. Two highly selective NaV1.7 blockers, GNE8493 and PF 05089771, significantly inhibited postganglionic compound action potentials by approximately 70% (P < 0.01), with residual activity being blocked by the NaV1.3 inhibitor, ICA 121431. Electrical field stimulation (EFS) induced rapid contractions in guinea-pig isolated aorta, pulmonary arteries, and human isolated pulmonary arteries via stimulation of intrinsic nerves, which were inhibited by prazosin or the NaV1 blocker tetrodotoxin. Our results demonstrated that blocking NaV1.7 with GNE8493, PF 05089771, or ST2262 abolished or strongly inhibited sympathetic adrenergic responses in guinea-pigs and human vascular smooth muscle. These findings support the hypothesis that pharmacologically inhibiting NaV1.7 could potentially reduce sympathetic and parasympathetic function in specific vascular beds and airways. KEY POINTS: 82% of sympathetic neurons isolated from the stellate ganglion predominantly express NaV1.7 mRNA. NaV1.7 blockers inhibit action potential conduction in postganglionic sympathetic nerves. NaV1.7 blockade substantially inhibits sympathetic nerve-mediated adrenergic contractions in human and guinea-pig blood vessels. Pharmacologically blocking NaV1.7 profoundly affects sympathetic and parasympathetic responses in addition to sensory fibres, prompting exploration into the broader physiological consequences of NaV1.7 mutations on autonomic nerve activity.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Animals , Guinea Pigs , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/physiology , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Humans , Male , Action Potentials/drug effects , Action Potentials/physiology , Sympathetic Fibers, Postganglionic/physiology , Sympathetic Fibers, Postganglionic/drug effects , Female , Arteries/physiology , Arteries/drug effects , Arteries/innervation , Sodium Channel Blockers/pharmacology , Stellate Ganglion/physiology , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects
8.
Adv Healthc Mater ; 13(21): e2302682, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38575148

ABSTRACT

Diabetes mellitus (DM) has substantial global implications and contributes to vascular inflammation and the onset of atherosclerotic cardiovascular diseases. However, translating the findings from animal models to humans has inherent limitations, necessitating a novel platform. Therefore, herein, an arterial model is established using a microphysiological system. This model successfully replicates the stratified characteristics of human arteries by integrating collagen, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). Perfusion via a peristaltic pump shows dynamic characteristics distinct from those of static culture models. High glucose, advanced glycation end products (AGEs), and interleukin-1 beta are employed to stimulate diabetic conditions, resulting in notable cellular changes and different levels of cytokines and nitric oxide. Additionally, the interactions between the disease models and oxidized low-density lipoproteins (LDL) are examined. Finally, the potential therapeutic effects of metformin, atorvastatin, and diphenyleneiodonium are investigated. Metformin and diphenyleneiodonium mitigate high-glucose- and AGE-associated pathological changes, whereas atorvastatin affects only the morphology of ECs. Altogether, the arterial model represents a pivotal advancement, offering a robust and insightful platform for investigating cardiovascular diseases and their corresponding drug development.


Subject(s)
Glucose , Glycation End Products, Advanced , Interleukin-1beta , Glycation End Products, Advanced/metabolism , Humans , Glucose/metabolism , Interleukin-1beta/metabolism , Arteries/drug effects , Arteries/metabolism , Arteries/pathology , Metformin/pharmacology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Lipoproteins, LDL/metabolism , Atorvastatin/pharmacology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Onium Compounds
9.
Pediatr Res ; 95(7): 1758-1763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38310195

ABSTRACT

BACKGROUND: Perinatal hypoxia affects a lot of neonates worldwide every year, however its effects on the functioning of systemic circulation are not clear yet. We aimed at investigation the effects of perinatal hypoxia on the second day of life on the functioning of the rat systemic vasculature in early postnatal period. METHODS: 2-day-old male rat pups were exposed to normobaric hypoxia (8% O2, 92% N2) for 2 hours. At the 11-14 days cutaneous (saphenous) arteries were isolated and studied by wire myography and Western blotting. RESULTS: Hypoxia weakened the contribution of anticontractile influence of NO, but did not affect the contribution of Rho-kinase or Kv7 channels to the contraction to α1-adrenergic agonist methoxamine. The content of eNOS and protein kinase G were not altered by hypoxic conditions. CONCLUSION: Perinatal hypoxia in rats at the second day of life leads to the decrease of anticontractile effect of NO in the systemic arteries in early postnatal ontogenesis (at the age of 11-14 days). Decreased anticontractile effect of NO can be the reason for insufficient blood supply and represent a risk factor for the development of cardiovascular disorders. IMPACT: The mechanisms of perinatal hypoxia influences on systemic circulation are almost unknown. We have shown that perinatal hypoxia weakens anticontractile influence of nitric oxide in early postnatal period. The influence of perinatal hypoxia on systemic circulation should be taken into account during treatment of newborns suffered from the lack of oxygen.


Subject(s)
Animals, Newborn , Arteries , Hypoxia , Nitric Oxide , Animals , Nitric Oxide/metabolism , Male , Rats , Arteries/drug effects , Arteries/growth & development , Nitric Oxide Synthase Type III/metabolism , Vasoconstriction/drug effects , Rats, Wistar , Methoxamine/pharmacology , rho-Associated Kinases/metabolism
10.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163382

ABSTRACT

Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.


Subject(s)
Calcium Signaling , TRPM Cation Channels/metabolism , Vasoconstriction , Administration, Intravenous , Animals , Arteries/drug effects , Blood Pressure/drug effects , Calcimycin/pharmacology , Calcium/metabolism , Calcium Signaling/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Heart Rate/drug effects , Ionophores/pharmacology , Male , Muscle Development/drug effects , Muscle, Skeletal/blood supply , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Norepinephrine/pharmacology , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacology , Potassium Chloride/pharmacology , Rats, Wistar , TRPM Cation Channels/agonists , Vasoconstriction/drug effects
11.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216422

ABSTRACT

Arterial calcification is a common feature of pseudoxanthoma elasticum (PXE), a disease characterized by ABCC6 mutations, inducing a deficiency in pyrophosphate, a key inhibitor of calcium phosphate crystallization in arteries. METHODS: we analyzed whether long-term exposure of Abcc6-/- mice (a murine model of PXE) to a mild vitamin D supplementation, with or without calcium, would impact the development of vascular calcification. Eight groups of mice (including Abcc6-/- and wild-type) received vitamin D supplementation every 2 weeks, a calcium-enriched diet alone (calcium in drinking water), both vitamin D supplementation and calcium-enriched diet, or a standard diet (controls) for 6 months. Aorta and kidney artery calcification was assessed by 3D-micro-computed tomography, Optical PhotoThermal IR (OPTIR) spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and Yasue staining. RESULTS: at 6 months, although vitamin D and/or calcium did not significantly increase serum calcium levels, vitamin D and calcium supplementation significantly worsened aorta and renal artery calcification in Abcc6-/- mice. CONCLUSIONS: vitamin D and/or calcium supplementation accelerate vascular calcification in a murine model of PXE. These results sound a warning regarding the use of these supplementations in PXE patients and, to a larger extent, patients with low systemic pyrophosphate levels.


Subject(s)
Calcification, Physiologic/drug effects , Calcium, Dietary/pharmacology , Calcium/pharmacology , Pseudoxanthoma Elasticum/drug therapy , Vascular Calcification/drug therapy , Vitamin D/pharmacology , Animals , Arteries/drug effects , Arteries/metabolism , Dietary Supplements , Disease Models, Animal , Female , Mice , Multidrug Resistance-Associated Proteins/metabolism , Pseudoxanthoma Elasticum/metabolism , Vascular Calcification/metabolism
12.
Eur J Pharmacol ; 918: 174778, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35093322

ABSTRACT

Quercetin, a flavonoid abundantly present in the Mediterranean diet, is considered a vasodilator despite its recognized capability to stimulate vascular CaV1.2 channel current (ICa1.2). The present study was undertaken to assess its possible vasocontractile activity. Functional and electrophysiology experiments were performed in vitro on rat aorta rings and tail artery myocytes along with an in-depth molecular modelling analysis. The CaV1.2 channel stimulator (S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate (Bay K 8644) was used as reference compound. Quercetin and Bay K 8644 caused a significant leftward shift of KCl concentration-response curve. Neither agent affected basal muscle tone, though in rings pre-treated with thapsigargin or 15 mM KCl they caused a strong, concentration-dependent contraction. Both quercetin and Bay K 8644 potentiated the response to Ca2+ in weakly depolarised rings. At high KCl concentrations, however, quercetin caused vasorelaxation. While Bay K 8644 stimulated ICa1.2, this effect being sustained with time, quercetin-induced stimulation was transient, although the molecule in solution underwent only marginal oxidation. Quercetin transient stimulation was not affected by pre-treatment with isoprenaline, sodium nitroprusside, or dephostatin; however, it converted to a sustained one in myocytes pre-incubated with Gö6976. Classical molecular dynamics simulations revealed that quercetin and Bay K 8644 formed hydrogen bonds with target sensing residues of CaV1.2 channel favouring the inactivated conformation. In conclusion, quercetin-induced stimulation of ICa1.2 promoted vasocontraction when Ca2+ buffering function of sarcoplasmic reticulum was impaired and/or smooth muscle cell membrane was moderately depolarised, as it may occur under certain pathological conditions.


Subject(s)
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Arteries , Calcium Channels, L-Type/metabolism , Muscle Contraction/drug effects , Muscle, Smooth, Vascular , Quercetin/pharmacology , Vasodilation/drug effects , Animals , Antioxidants/pharmacology , Arteries/drug effects , Arteries/pathology , Arteries/physiology , Calcium Channel Agonists/pharmacology , Electrophysiological Phenomena/drug effects , Molecular Dynamics Simulation , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Rats , Vasodilator Agents/pharmacology
13.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33070177

ABSTRACT

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Subject(s)
Alkaline Phosphatase/metabolism , Arteries/metabolism , Vascular Calcification/metabolism , Alkaline Phosphatase/antagonists & inhibitors , Animals , Arteries/drug effects , Arteries/pathology , Arteries/physiopathology , Cardiovascular Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Humans , Phosphorylation , Signal Transduction , Substrate Specificity , Vascular Calcification/drug therapy , Vascular Calcification/pathology , Vascular Calcification/physiopathology
14.
Prostate ; 82(1): 13-25, 2022 01.
Article in English | MEDLINE | ID: mdl-34570375

ABSTRACT

INTRODUCTION: Androgen deprivation therapy (ADT) is a key treatment modality in the management of prostate cancer (PCa), especially for patients with metastatic disease. Increasing evidences suggest that patients who received ADT have increased incidence of diabetes, myocardial infarction, stroke, and even mortality. It is important to understand the pathophysiological mechanisms on how ADT increases cardiovascular risk and induces cardiovascular events, which would provide important information for potential implementation of preventive measures. METHODS: Twenty-six 12-week-old male SD rats were divided into four groups for different types of ADTs including: the bilateral orchidectomy group (Orx), LHRH agonist group (leuprolide), LHRH antagonist group (degarelix), and control group. After treated with drug or adjuvant injection every 3 weeks for 24 weeks, all rats were sacrificed and total blood were collected. Aorta, renal arteries, and kidney were preserved for functional assay, immunohistochemistry, western blot, and quantitative reverse-transcription polymerase chain reaction. RESULTS: In vascular reactivity assays, aorta, intrarenal, and coronary arteries of all three ADT groups showed endothelial dysfunction. AT1R and related molecules at protein and messenger RNA (mRNA) level were tested, and AT1R pathway was shown to be activated and played a role in endothelial dysfunction. Both ACE and AT1R mRNA levels were doubled in the aorta in the leuprolide group while Orx and degarelix groups showed upregulation of AT1R in the kidney tissues. By immunohistochemistry, our result showed higher expression of AT1R in the intrarenal arteries of leuprolide and degarelix groups. The role of reactive oxygen species in endothelial dysfunction was confirmed by DHE fluorescence, nitrotyrosine overexpression, and upregulation of NOX2 in the different ADT treatment groups. CONCLUSION: ADT causes endothelial dysfunction in male rats. GnRH receptor agonist compared to GnRH receptor antagonist, showed more impairment of endothelial function in the aorta and intrarenal arteries. Such change might be associated with upregulation and activation of AngII-AT1R-NOX2 induced oxidative stress in the vasculature. These results help to explain the different cardiovascular risks and outcomes related to different modalities of ADT treatment.


Subject(s)
Androgen Antagonists , Arteries , Endothelium, Vascular , Leuprolide , Oligopeptides , Orchiectomy/methods , Androgen Antagonists/adverse effects , Androgen Antagonists/analysis , Androgen Antagonists/metabolism , Animals , Arteries/drug effects , Arteries/metabolism , Arteries/pathology , Correlation of Data , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Heart Disease Risk Factors , Immunohistochemistry , Leuprolide/administration & dosage , Leuprolide/adverse effects , Oligopeptides/administration & dosage , Oligopeptides/adverse effects , Rats , Reactive Oxygen Species/analysis , Receptor, Angiotensin, Type 1/analysis , Receptor, Angiotensin, Type 1/metabolism
15.
Am J Physiol Endocrinol Metab ; 322(2): E173-E180, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34957859

ABSTRACT

Microvascular insulin resistance is present in metabolic syndrome and may contribute to increased cardiovascular disease risk and the impaired metabolic response to insulin observed. Metformin improves metabolic insulin resistance in humans. Its effects on macro and microvascular insulin resistance have not been defined. Eleven subjects with nondiabetic metabolic syndrome were studied four times (before and after 12 wk of treatment with placebo or metformin) using a crossover design, with an 8-wk washout interval between treatments. On each occasion, we measured three indices of large artery function [pulse wave velocity (PWV), radial pulse wave separation analysis (PWSA), brachial artery endothelial function (flow-mediated dilation-FMD)] as well as muscle microvascular perfusion [contrast-enhanced ultrasound (CEU)] before and at 120 min into a 150 min, 1 mU/min/kg euglycemic insulin clamp. Metformin decreased body mass index (BMI), fat weight, and % body fat (P < 0.05, each), however, placebo had no effect. Metformin (not placebo) improved metabolic insulin sensitivity, (clamp glucose infusion rate, P < 0.01), PWV, and FMD after insulin were unaffected by metformin treatment. PWSA improved with insulin only after metformin P < 0.01). Insulin decreased muscle microvascular blood volume measured by contrast ultrasound both before and after placebo and before metformin (P < 0.02 for each) but not after metformin. Short-term metformin treatment improves both metabolic and muscle microvascular response to insulin. Metformin's effect on microvascular insulin responsiveness may contribute to its beneficial metabolic effects. Metformin did not improve aortic stiffness or brachial artery endothelial function, but enhanced radial pulse wave properties consistent with relaxation of smaller arterioles.NEW & NOTEWORTHY Metformin, a first-line treatment for type 2 diabetes, is often used in patients with insulin resistance and metabolic syndrome. Here, we provide the first evidence for metformin improving muscle microvascular insulin sensitivity in insulin-resistant humans. Simultaneously, metformin improved muscle glucose disposal, supporting a close relationship between insulin's microvascular and its metabolic actions in muscle. Whether enhanced microvascular insulin sensitivity contributes to metformin's ability to decrease microvascular complications in diabetes remains to be resolved.


Subject(s)
Hypoglycemic Agents/administration & dosage , Insulin Resistance , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metformin/administration & dosage , Microcirculation/drug effects , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Arteries/drug effects , Arteries/metabolism , Blood Flow Velocity/drug effects , Blood Glucose/metabolism , Body Mass Index , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Glucose Clamp Technique , Humans , Insulin/administration & dosage , Insulin/metabolism , Male , Middle Aged , Pulse Wave Analysis , Random Allocation , Treatment Outcome , Vascular Stiffness/drug effects
16.
Cardiovasc Res ; 118(2): 372-385, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33483732

ABSTRACT

Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1ß and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study trial demonstrated that IL-1ß-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.


Subject(s)
Arteries/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Vascular Diseases/metabolism , Vasculitis/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Arteries/drug effects , Arteries/immunology , Arteries/pathology , Humans , Inflammasomes/antagonists & inhibitors , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Molecular Targeted Therapy , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Signal Transduction , Vascular Diseases/drug therapy , Vascular Diseases/immunology , Vascular Diseases/pathology , Vasculitis/drug therapy , Vasculitis/immunology , Vasculitis/pathology
17.
Anesthesiology ; 135(6): 1027-1041, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34731241

ABSTRACT

BACKGROUND: Previous studies have established the role of various tissue compartments in the kinetics of inhaled anesthetic uptake and elimination. The role of normal lungs in inhaled anesthetic kinetics is less understood. In juvenile pigs with normal lungs, the authors measured desflurane and sevoflurane washin and washout kinetics at three different ratios of alveolar minute ventilation to cardiac output value. The main hypothesis was that the ventilation/perfusion ratio (VA/Q) of normal lungs influences the kinetics of inhaled anesthetics. METHODS: Seven healthy pigs were anesthetized with intravenous anesthetics and mechanically ventilated. Each animal was studied under three different VA/Q conditions: normal, low, and high. For each VA/Q condition, desflurane and sevoflurane were administered at a constant, subanesthetic inspired partial pressure (0.15 volume% for sevoflurane and 0.5 volume% for desflurane) for 45 min. Pulmonary arterial and systemic arterial blood samples were collected at eight time points during uptake, and then at these same times during elimination, for measurement of desflurane and sevoflurane partial pressures. The authors also assessed the effect of VA/Q on paired differences in arterial and mixed venous partial pressures. RESULTS: For desflurane washin, the scaled arterial partial pressure differences between 5 and 0 min were 0.70 ± 0.10, 0.93 ± 0.08, and 0.82 ± 0.07 for the low, normal, and high VA/Q conditions (means, 95% CI). Equivalent measurements for sevoflurane were 0.55 ± 0.06, 0.77 ± 0.04, and 0.75 ± 0.08. For desflurane washout, the scaled arterial partial pressure differences between 0 and 5 min were 0.76 ± 0.04, 0.88 ± 0.02, and 0.92 ± 0.01 for the low, normal, and high VA/Q conditions. Equivalent measurements for sevoflurane were 0.79 ± 0.05, 0.85 ± 0.03, and 0.90 ± 0.03. CONCLUSIONS: Kinetics of inhaled anesthetic washin and washout are substantially altered by changes in the global VA/Q ratio for normal lungs.


Subject(s)
Desflurane/administration & dosage , Desflurane/blood , Sevoflurane/administration & dosage , Sevoflurane/blood , Ventilation-Perfusion Ratio/physiology , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/blood , Animals , Animals, Newborn , Arteries/drug effects , Drug Combinations , Female , Kinetics , Male , Swine , Veins/drug effects , Veins/physiology , Ventilation-Perfusion Ratio/drug effects
18.
ACS Appl Mater Interfaces ; 13(48): 56988-56999, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34806359

ABSTRACT

Vascular embolization provides an effective approach for the treatment of hemorrhage, aneurysms, and other vascular abnormalities. However, current embolic materials, such as metallic coils and liquid embolic agents, are limited by their inability to provide safe, consistent, and controlled embolization. Here, we report an injectable hydrogel that can remain at the injection site and subsequently undergo in situ covalent crosslinking, leading to the formation of a dual-crosslinking network (DCN) hydrogel for endovascular embolization. The DCN hydrogel is simple to prepare, easy to deploy via needles and catheters, and mechanically stable at the target injection site, thereby avoiding embolization of nontarget vessels. It possesses efficient hemostatic activity and good biocompatibility. The DCN hydrogel is also clearly visible under X-ray imaging, thereby allowing for targeted embolization. In vivo tests in a rabbit artery model demonstrates that the DCN hydrogel is effective in achieving immediate embolization of the target artery with long-term occlusion by inducing luminal fibrosis. Collectively, the DCN hydrogel provides a viable, biocompatible, and cost-effective alternative to existing embolic materials with clinical translation potential for endovascular embolization.


Subject(s)
Arteries/drug effects , Biomimetic Materials/pharmacology , Cross-Linking Reagents/pharmacology , Embolization, Therapeutic , Fibrosis/drug therapy , Hydrogels/pharmacology , Animals , Biomimetic Materials/administration & dosage , Biomimetic Materials/chemistry , Cells, Cultured , Cross-Linking Reagents/administration & dosage , Cross-Linking Reagents/chemistry , Humans , Hydrogels/administration & dosage , Hydrogels/chemistry , Materials Testing , Mice , Molecular Structure
19.
Mech Ageing Dev ; 200: 111590, 2021 12.
Article in English | MEDLINE | ID: mdl-34699858

ABSTRACT

The role of STIM/Orai calcium entry system on vascular ageing has not been elucidated. We aimed to evaluate the influence of ageing on STIM/Orai signalling and its role on ageing-induced alterations of contractile function in rat corpus cavernosum (RCC) and human penile resistance arteries (HPRA) and corpus cavernosum (HCC). RCC was obtained from 3 months-old and 20 months-old animals. HPRA and HCC were obtained from organ donors of varied ages without history of erectile dysfunction. Aging was associated with enhanced norepinephrine (NE)- and thromboxane analogue (U46619)-induced contractions in RCC which were significantly inhibited by the STIM/Orai inhibitor, YM-58483 (20 µM). Other STIM/Orai inhibitor, 2-aminoethyldiphenylborate also reduced NE-induced contractions in RCC from aged rats. YM-58483 significantly reduced neurogenic contractions and potentiated neurogenic relaxations in RCC from aged rats. In HCC and HPRA, NE-induced contractions were significantly enhanced in older subjects (>65 years-old) but YM-58483 completely reversed ageing-related hypercontractility. Ageing did not modify STIM-1 and Orai1 protein expressions but Orai3 was significantly overexpressed in cavernosal tissue from old rats and older subjects. Contribution of STIM/Orai to cavernosal contraction increases with ageing together with increased expression of Orai3. Orai inhibition could be a potential therapeutic strategy to reduce ageing-related impact on vascular/erectile function.


Subject(s)
Arteries , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Calcium Signaling , Penile Erection , Penis , Stromal Interaction Molecule 1/metabolism , Aged , Animals , Arteries/drug effects , Arteries/metabolism , Arteries/physiopathology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Erectile Dysfunction/physiopathology , Humans , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Penile Erection/drug effects , Penile Erection/physiology , Penis/blood supply , Penis/drug effects , Penis/metabolism , Penis/physiopathology , Rats , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
20.
Cardiovasc Res ; 117(13): 2563-2574, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34609505

ABSTRACT

The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.


Subject(s)
Arteries/immunology , Atherosclerosis/immunology , Immune System/immunology , Inflammation Mediators/immunology , Inflammation/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , Arteries/drug effects , Arteries/metabolism , Arteries/pathology , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cardiovascular Agents/therapeutic use , Humans , Immune System/drug effects , Immune System/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Plaque, Atherosclerotic , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL