Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Antimicrob Agents Chemother ; 68(8): e0165923, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39028193

ABSTRACT

Artemisinin-based combination therapies (ACTs) were introduced as the standard of care for uncomplicated malaria in Africa almost two decades ago. Recent studies in East Africa have reported a gradual increase in kelch13 (k13) mutant parasites associated with reduced artesunate efficacy. As part of the Community Access to Rectal Artesunate for Malaria project, we collected blood samples from 697 children with signs of severe malaria in northern Uganda between 2018 and 2020, before and after the introduction of rectal artesunate (RAS) in 2019. K13 polymorphisms were assessed, and parasite editing and phenotyping were performed to assess the impact of mutations on parasite resistance. Whole-genome sequencing was performed, and haplotype networks were constructed to determine the geographic origin of k13 mutations. Of the 697 children, 540 were positive for Plasmodium falciparum malaria by PCR and were treated with either RAS or injectable artesunate monotherapy followed in most cases by ACT. The most common k13 mutation was C469Y (6.7%), which was detected more frequently in samples collected after RAS introduction. Genome editing confirmed reduced in vitro susceptibility to artemisinin in C469Y-harboring parasites compared to wild-type controls (P < 0.001). The haplotypic network showed that flanking regions of the C469Y mutation shared the same African genetic background, suggesting a single and indigenous origin of the mutation. Our data provide evidence of selection for the artemisinin-resistant C469Y mutation. The realistic threat of multiresistant parasites emerging in Africa should encourage careful monitoring of the efficacy of artemisinin derivatives and strict adherence to ACT treatment regimens.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Uganda , Artemisinins/therapeutic use , Artemisinins/pharmacology , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drug Resistance/genetics , Protozoan Proteins/genetics , Mutation , Artesunate/therapeutic use , Artesunate/pharmacology , Child, Preschool , Child , Male , Female
2.
Cell Commun Signal ; 22(1): 378, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061097

ABSTRACT

Artesunate (ART), a natural product isolated from traditional Chinese plant Artemisia annua, has not been extensively explored for its anti-melanoma properties. In our study, we found that ART inhibited melanoma cell proliferation and induced melanoma cell ferroptosis. Mechanistic study revealed that ART directly targets Ido1, thereby suppressing Hic1-mediated transcription suppression of Hmox1, resulting in melanoma cell ferroptosis. In CD8+ T cells, ART does not cause cell ferroptosis due to the low expression of Hmox1. It also targets Ido1, elevating tryptophan levels, which inhibits NFATc1-mediated PD1 transcription, consequently activating CD8+ T cells. Our study uncovered a potent and synergistic anti-melanoma efficacy arising from ART-induced melanoma cell ferroptosis and concurrently enhancing CD8+ T cell-mediated immune response both in vivo and in vitro through directly targeting Ido1. Our study provides a novel mechanistic basis for the utilization of ART as an Ido1 inhibitor and application in clinical melanoma treatment.


Subject(s)
Artesunate , Ferroptosis , Indoleamine-Pyrrole 2,3,-Dioxygenase , Melanoma , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Ferroptosis/drug effects , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Mice , Cell Line, Tumor , Humans , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000107

ABSTRACT

Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.


Subject(s)
Artemisinins , Artesunate , Drug Repositioning , Naphthyridines , Artesunate/pharmacokinetics , Artesunate/pharmacology , Drug Repositioning/methods , Animals , Rats , Dogs , Naphthyridines/pharmacokinetics , Naphthyridines/pharmacology , Artemisinins/pharmacokinetics , Species Specificity , Humans , Models, Biological , Male , Antimalarials/pharmacokinetics , Antimalarials/pharmacology
4.
Inorg Chem ; 63(31): 14699-14711, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39047187

ABSTRACT

The selective separation and purification of artesunate (ARU) and artemisinin (ART) using zirconium-based metal-organic frameworks (MOF), especially UiO-66 MOF, are receiving increasing attention. In this study, tunable "hydrophobic" sites of thiol (-SH) were introduced to amino-functionalized MOFs (UiO-66-NH2) to fabricate a thiol-amino bifunctional UiO-66/polyvinylidene fluoride (PVDF)-blended membrane (S1-UiO/PVDF-DPIM) via the delayed-phase-inversion method for selective separation of ARU/ART. The adsorption results indicated that the modification of UiO-66-NH2 with thiol can indeed increase the ARU adsorption. The thiol-functional MOF (S1-UiO-66-NH2) was chosen as the optimal thiol-amino bifunctional MOF, as it possessed the maximum ARU adsorption capacity (111.14 mg g-1) and the highest selective-separation factor (α = 51.84). The ATR FT-IR dynamic spectrum disclosed the recognition mechanism, indicating that incorporating thiol groups into a hydrophilic MOF as hydrophobic sites can boost adsorption efficiency. Moreover, the static-selective permeation results showed that the S1-UiO/PVDF-DPIM preferentially transfers ARU when mixed with ART, even achieving complete ARU/ART separation. The most crucial aspect was the introduction of a hydrophobic core of -SH and new spontaneously formed disulfide bonds to S1-UiO/PVDF-DPIM, creating alternated hydrogen bonds and hydrophobic interactions. This work provides an alternative strategy to prepare hydrophobic-hydrophilic MOF-based membranes for the highly efficient and selective separation of complex analogue systems.


Subject(s)
Artesunate , Hydrophobic and Hydrophilic Interactions , Metal-Organic Frameworks , Sulfhydryl Compounds , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/chemical synthesis , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/isolation & purification , Artesunate/chemistry , Artesunate/pharmacology , Artesunate/isolation & purification , Adsorption , Polyvinyls/chemistry , Membranes, Artificial , Molecular Structure , Artemisinins/chemistry , Artemisinins/isolation & purification , Zirconium/chemistry , Surface Properties , Fluorocarbon Polymers , Phthalic Acids
5.
Front Biosci (Landmark Ed) ; 29(7): 266, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39082354

ABSTRACT

BACKGROUND: Artesunate (ART) has the potential to modulate the nuclear factor kappa B (NF-κB) and Notch1/Hes1 signaling pathways, which play crucial roles in the pathogenesis of osteoporosis. This study aims to explore whether ART participates in the progression of osteoporosis by regulating these signaling pathways. METHODS: In the in vitro experiments, we treated bone marrow mesenchymal stem cells (BMSCs) with different concentrations of ART (0, 3, 6, 12 µM) and evaluated osteogenic differentiation using alkaline phosphatase staining (ALP) and alizarin red S staining (ARS) staining. The expression levels of osteocalcin (OCN), RUNT-related transcription factor 2 (RUNX2), osteoprotegerin (OPG), and receptor activator of the nuclear factor kappa ligand (RANKL) were detected by real-time quantitative PCR (RT-qPCR). The effects of ART on NF-κB p65 and Notch1 protein expression were analyzed by Western blot (WB) and immunofluorescence (IF). In the in vivo experiments, a postmenopausal osteoporosis rat model was established via ovariectomy. Bone tissue pathological injury was evaluated using hematoxylin eosin (HE) staining. Serum ALP levels were measured using a kit, bone density was determined by dual-energy X-ray absorptiometry, and serum levels of bone gla protein (BGP), OPG, RANKL, tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and IL-1ß were measured by enzyme-linked immunosorbent assay (ELISA). Additionally, the expression of NF-κB p65 and Notch1 in tissues was assessed by immunohistochemistry. RESULTS: In vitro experiments revealed that compared to the control group, ART dose-dependently promoted BMSCs proliferation and enhanced their osteogenic differentiation capability. The expression of OCN, RUNX2, and OPG significantly increased in the ART-treated group, while RANKL expression decreased significantly (p < 0.05). ART significantly inhibited the expression of NF-κB p65 and Notch1/Hes1 signaling pathway proteins (p < 0.05). Compared to ART treatment alone, combined treatment with ART and phorbol myristate acetate (PMA) or valproic acid (VPA) resulted in increased expression of NF-κB p65 and Notch1 proteins and decreased osteogenic differentiation capability (p < 0.05). In vivo experiments showed that in rats treated with ART, bone damage was significantly reduced, bone density and mineral content were restored considerably, and the expression of inflammatory factors (TNF-α, IL-6, IL-1ß) decreased significantly (p < 0.05). Additionally, ART treatment significantly reduced the expression of NF-κB p65 and Notch1 proteins, increased OPG expression, and decreased BGP and RANKL levels (p < 0.05). CONCLUSION: In summary, ART facilitates the osteogenic differentiation of BMSCs by inhibiting the NF-κB and Notch1/Hes1 signaling pathways, thereby exerting significant protective effects against osteoporosis.


Subject(s)
Artesunate , NF-kappa B , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Receptor, Notch1 , Signal Transduction , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Female , Signal Transduction/drug effects , Receptor, Notch1/metabolism , NF-kappa B/metabolism , Osteoporosis/metabolism , Osteoporosis/drug therapy , Osteoporosis/etiology , Rats , Osteogenesis/drug effects , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Inflammation/metabolism , Cell Differentiation/drug effects , Transcription Factor HES-1
6.
BMC Infect Dis ; 24(1): 603, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898395

ABSTRACT

BACKGROUND: the mortality associated with severe malaria due to Plasmodiun falciparum remains high despite improvements in malaria management. Case prensentation: this case series aims to describe the efficacy and safety of the exchange transfusion combined with artesunate (ET-AS) regimen in severe P. falciparum malaria. Eight patients diagnosed with severe P. falciparum malaria were included. All patients underwent ET using the COBE Spectra system. The aimed for a post-exchange hematocrit of 30%. Half the estimated blood volume was removed and replaced using fresh frozen plasma. The regimen was well-tolerated without complications. The parasite clearance time ranged from 1 ~ 5 days. Five patients with cerebral malaria exhibited full improved consciousness within 3 days, while patient2 with hemolysis improved on day 2. Liver function improved within 1 ~ 6 days, and patient 1 and patient 6 showed improvements renal function on days 18 and 19, respectively. The length of intensive care unit stay range from 2 ~ 10 days, and all patients treated with ET-AS remained in the hospital for 3 ~ 19 days. CONCLUSIONS: these preliminary results suggest that ET-AS regimens are a safe and effective therapy for severe P. falciparum malaria and can benefit patients in clinical settings.


Subject(s)
Antimalarials , Artemisinins , Artesunate , Exchange Transfusion, Whole Blood , Malaria, Falciparum , Humans , Artesunate/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/therapy , Male , Adult , Female , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Middle Aged , Artemisinins/therapeutic use , Treatment Outcome , Young Adult , Plasmodium falciparum/drug effects , Aged , Combined Modality Therapy
7.
Parasit Vectors ; 17(1): 279, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943214

ABSTRACT

BACKGROUND: Reliance on praziquantel for the treatment and control of schistosomiasis is likely to facilitate the emergence of drug resistance. Combination therapy targeting adult and juvenile schistosome worms is urgently needed to improve praziquantel efficacy and delay the potential development of drug resistance. We assessed the efficacy and safety of single-dose praziquantel combined with single-dose artesunate plus sulfalene-pyrimethamine in the treatment of Kenyan children with schistosomiasis. METHODS: This was an open-label, randomised clinical trial involving 426 school-aged children (7-15 years old) diagnosed with Schistosoma mansoni (by Kato-Katz) or S. haematobium (by urine filtration). They were randomly assigned (1:1:1) to receive a single dose of praziquantel (40 mg/kg), a single dose of artesunate plus sulfalene-pyrimethamine (12 mg/kg artesunate) or combination therapy using a single dose of praziquantel (40 mg/kg) combined with a single dose of artesunate plus sulfalene-pyrimethamine (12 mg/kg artesunate). The primary outcome was cure and egg reduction rates at 6 weeks post-treatment in the available case population. Adverse events were assessed within 3 h after treatment. RESULTS: Of the 426 children enrolled, 135 received praziquantel, 150 received artesunate plus sulfalene-pyrimethamine, and 141 received combination therapy. Outcome data were available for 348 (81.7%) children. For S. mansoni-infected children (n = 335), the cure rates were 75.6%, 60.7%, and 77.8%, and the egg reduction rates were 80.1%, 85.0%, and 88.4% for praziquantel, artesunate plus sulfalene-pyrimethamine, and combination therapy, respectively. For S. haematobium-infected children (n = 145), the corresponding cure rates were 81.4%, 71.1%, and 82.2%, and the egg reduction rates were 95.6%, 97.1%, and 97.7%, respectively. Seventy-one (16.7%) children reported mild-intensity adverse events. The drugs were well tolerated and no serious adverse events were reported. CONCLUSIONS: A single oral dose of praziquantel combined with artesunate plus sulfalene-pyrimethamine cured a high proportion of children with S. haematobium but did not significantly improve the treatment efficacy for either urinary or intestinal schistosomiasis. Sequential administration of praziquantel and artesunate plus sulfalene-pyrimethamine may enhance the efficacy and safety outcomes.


Subject(s)
Anthelmintics , Artemisinins , Artesunate , Drug Therapy, Combination , Praziquantel , Pyrimethamine , Schistosoma haematobium , Schistosoma mansoni , Schistosomiasis haematobia , Schistosomiasis mansoni , Humans , Child , Praziquantel/administration & dosage , Praziquantel/adverse effects , Praziquantel/therapeutic use , Pyrimethamine/administration & dosage , Pyrimethamine/therapeutic use , Pyrimethamine/adverse effects , Animals , Adolescent , Artesunate/administration & dosage , Artesunate/therapeutic use , Female , Male , Schistosomiasis mansoni/drug therapy , Schistosoma haematobium/drug effects , Schistosomiasis haematobia/drug therapy , Schistosoma mansoni/drug effects , Kenya , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Artemisinins/adverse effects , Treatment Outcome , Anthelmintics/administration & dosage , Anthelmintics/adverse effects , Anthelmintics/therapeutic use , Sulfalene/administration & dosage , Sulfalene/therapeutic use , Sulfalene/adverse effects , Drug Combinations , Parasite Egg Count
8.
Eur J Pharmacol ; 977: 176709, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38843948

ABSTRACT

Cardiac Hypertrophy is an adaptive response of the body to physiological and pathological stimuli, which increases cardiomyocyte size, thickening of cardiac muscles and progresses to heart failure. Downregulation of SIRT1 in cardiomyocytes has been linked with the pathogenesis of cardiac hypertrophy. The present study aimed to investigate the effect of Artesunate against isoprenaline induced cardiac hypertrophy in rats via SIRT1 inhibiting NF-κB activation. Experimental cardiac hypertrophy was induced in rats by subcutaneous administration of isoprenaline (5 mg/kg) for 14 days. Artesunate was administered simultaneously for 14 days at a dose of 25 mg/kg and 50 mg/kg. Artesunate administration showed significant dose dependent attenuation in mean arterial pressure, electrocardiogram, hypertrophy index and left ventricular wall thickness compared to the disease control group. It also alleviated cardiac injury biomarkers and oxidative stress. Histological observation showed amelioration of tissue injury in the artesunate treated groups compared to the disease control group. Further, artesunate treatment increased SIRT1 expression and decreased NF-kB expression in the heart. The results of the study show the cardioprotective effect of artesunate via SIRT1 inhibiting NF-κB activation in cardiomyocytes.


Subject(s)
Artesunate , Cardiomegaly , Isoproterenol , NF-kappa B , Sirtuin 1 , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Sirtuin 1/metabolism , Isoproterenol/toxicity , NF-kappa B/metabolism , Male , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Rats , Oxidative Stress/drug effects , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Rats, Sprague-Dawley
9.
EMBO Mol Med ; 16(7): 1515-1532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862600

ABSTRACT

Parasites, such as the malaria parasite P. falciparum, are critically dependent on host nutrients. Interference with nutrient uptake can lead to parasite death and, therefore, serve as a successful treatment strategy. P. falciparum parasites cannot synthesise cholesterol, and instead source this lipid from the host. Here, we tested whether cholesterol uptake pathways could be 'hijacked' for optimal drug delivery to the intracellular parasite. We found that fluorescent cholesterol analogues were delivered from the extracellular environment to the intracellular parasite. We investigated the uptake and inhibitory effects of conjugate compounds, where proven antimalarial drugs (primaquine and artesunate) were attached to steroids that mimic the structure of cholesterol. These conjugated antimalarial drugs improved the inhibitory effects against multiple parasite lifecycle stages, multiple parasite species, and drug-resistant parasites, whilst also lowering the toxicity to human host cells. Steroids with introduced peroxides also displayed antimalarial activity. These results provide a proof-of-concept that cholesterol mimics can be developed as a drug delivery system against apicomplexan parasites with the potential to improve drug efficacy, increase therapeutic index, and defeat drug resistance.


Subject(s)
Antimalarials , Artesunate , Cholesterol , Plasmodium falciparum , Cholesterol/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Humans , Artesunate/pharmacology , Artesunate/therapeutic use , Primaquine/pharmacology , Primaquine/therapeutic use , Drug Resistance/drug effects , Animals , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
10.
Int J Biol Macromol ; 273(Pt 2): 133220, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38897506

ABSTRACT

Artemisinin and its derivatives have been commonly used to treat malaria. However, the emergence of resistance against artemisinin derivatives has posed a critical challenge in malaria management. In the present study, we have proposed a combinatorial approach, utilizing pH-responsive acetal-dextran nanoparticles (Ac-Dex NPs) as carriers for the delivery of withaferin-A (WS-3) and artesunate (Art) to improve treatment efficacy of malaria. The optimized WS-3 and Art Ac-Dex NPs demonstrated enhanced pH-responsive release profiles under parasitophorous mimetic conditions (pH 5.5). Computational molecular modeling reveals that Ac-Dex's polymeric backbone strongly interacts with merozoite surface protein-1 (MSP-1), preventing erythrocyte invasion. In-vitro antimalarial activity of drug-loaded Ac-Dex NPs reveals a 1-1.5-fold reduction in IC50 values compared to pure drug against the 3D7 strain of Plasmodium falciparum. Treatment with WS-3 Ac-Dex NPs (100 mg/kg) and Art Ac-Dex NPs (30 mg/kg) to Plasmodium berghei-infected mice resulted in 78.11 % and 100 % inhibition of parasitemia. Notably, the combination therapy comprised of Art and WS-3 Ac-Dex NPs achieved complete inhibition of parasitemia even at a half dose of Art, indicating the synergistic potential of the combinations. However, further investigations are necessary to confirm the safety and effectiveness of WS-3 and Art Ac-Dex NPs for their successful clinical implications.


Subject(s)
Antimalarials , Artesunate , Dextrans , Malaria , Nanoparticles , Withanolides , Artesunate/chemistry , Artesunate/pharmacology , Artesunate/therapeutic use , Nanoparticles/chemistry , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/therapeutic use , Hydrogen-Ion Concentration , Mice , Dextrans/chemistry , Malaria/drug therapy , Withanolides/chemistry , Withanolides/pharmacology , Drug Carriers/chemistry , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Artemisinins/pharmacology , Artemisinins/chemistry , Drug Liberation , Polymers/chemistry
11.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38837364

ABSTRACT

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Subject(s)
Antimalarials , Artemisinins , Disease Models, Animal , Animals , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Artemisinins/therapeutic use , Artemisinins/pharmacology , Humans , Panama , Aotidae , Plasmodium falciparum/drug effects , Malaria/drug therapy , Plasmodium vivax/drug effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artesunate/therapeutic use , Artesunate/pharmacology , Artesunate/pharmacokinetics , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , History, 20th Century , Aminoquinolines
12.
J Korean Med Sci ; 39(22): e186, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859743

ABSTRACT

Herein, we report a case of uncomplicated falciparum malaria with late parasitological failure in a 45-year-old businessman returning from Ghana. The patient visited the emergency department with high fever, headache, and dizziness. He traveled without antimalarial chemoprophylaxis. Laboratory tests led to the diagnosis of uncomplicated falciparum malaria with an initial density of 37,669 parasites per µL of blood (p/µL). The patient was treated with intravenous artesunate followed by atovaquone/proguanil. He was discharged with improved condition and decreased parasite density of 887 p/µL. However, at follow-up, parasite density increased to 7,630 p/µL despite the absence of any symptoms. Suspecting treatment failure, the patient was administered intravenous artesunate and doxycycline for seven days and then artemether/lumefantrine for three days. Blood smear was negative for asexual parasitemia after re-treatment but positive for gametocytemia until day 101 from the initial diagnosis. Overall, this case highlights the risk of late parasitological failure in patients with imported uncomplicated falciparum malaria.


Subject(s)
Antimalarials , Atovaquone , Malaria, Falciparum , Plasmodium falciparum , Proguanil , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/diagnosis , Ghana , Antimalarials/therapeutic use , Middle Aged , Male , Plasmodium falciparum/isolation & purification , Proguanil/therapeutic use , Atovaquone/therapeutic use , Travel , Artemisinins/therapeutic use , Artesunate/therapeutic use , Parasitemia/drug therapy , Parasitemia/diagnosis , Doxycycline/therapeutic use , Drug Combinations , Treatment Failure , Artemether, Lumefantrine Drug Combination/therapeutic use
13.
Diagn Microbiol Infect Dis ; 110(1): 116383, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889486

ABSTRACT

BACKGROUND: The present study aimed to explore the regulatory effects of artesunate on macrophage polarization in sepsis. METHODS: Cell models and mice models were established using lipopolysaccharide (LPS), followed by treatment with various concentrations of artesunate. The phenotype of the macrophages was determined by flow cytometry. RNA immunoprecipitation was used to confirm the binding between MALAT1 and polypyrimidine tract-binding protein 1 (PTBP1), as well as between PTBP1 and interferon-induced helicase C domain-containing protein 1 (IFIH1). RESULTS: Treatment with artesunate inhibited M1 macrophage polarization in Kupffer cells subjected to LPS stimulation by downregulating MALAT1. Furthermore, MALAT1 abolished the inhibitory effect of artesunate on M1 macrophage polarization by recruiting PTBP1 to promote IFIH. In vivo experiments confirmed that artesunate alleviated septic liver injury by affecting macrophage polarization via MALAT1. CONCLUSION: The present study showed that artesunate alleviates LPS-induced sepsis in Kupffer cells by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis.


Subject(s)
Artesunate , Kupffer Cells , Lipopolysaccharides , Macrophages , RNA, Long Noncoding , Sepsis , Artesunate/pharmacology , Artesunate/therapeutic use , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Sepsis/drug therapy , Sepsis/complications , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Macrophages/drug effects , Macrophages/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Disease Models, Animal , Male , Mice, Inbred C57BL , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics
14.
Z Gastroenterol ; 62(8): 1216-1219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917830

ABSTRACT

Diagnostic routine and knowledge about the therapy regimes of infectious diseases like malaria gain in importance due to globalization, global warming, and increasing numbers of refugees. We report a case of a 66-year-old patient who presented with severe abdominal pain, most prominent in the left upper abdomen. He was recently hospitalized with severe falciparum malaria, diagnosed after returning from a trip around the world. Upon readmission, laboratory results showed post-artesunate delayed hemolysis. The ultrasound examination was highly suspicious of splenic rupture, confirmed by the immediately performed CT scan. In this case, the prompt diagnosis allowed the initiation of adequate conservative therapy including intensive care monitoring and hemodynamic stabilization.


Subject(s)
Splenic Rupture , Humans , Aged , Splenic Rupture/etiology , Splenic Rupture/diagnostic imaging , Splenic Rupture/therapy , Male , Malaria, Falciparum/diagnosis , Malaria, Falciparum/complications , Diagnosis, Differential , Artesunate/therapeutic use , Tomography, X-Ray Computed , Ultrasonography , Travel , Treatment Outcome , Antimalarials/therapeutic use , Rupture, Spontaneous
15.
J Nutr Biochem ; 131: 109687, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38866191

ABSTRACT

Glucose metabolic disorders, prevalent in numerous metabolic diseases, have become a pressing global public health concern. Artemisinin (ART) and its derivatives, including artesunate (ARTs) and artemether (ARTe), have shown potential as metabolic regulators. However, the specific effects of ART and its derivatives on glucose metabolism under varying nutritional conditions and the associated molecular mechanisms remain largely unexplored. In this study, we examined the impact of ART, ARTs, and ARTe on glucose homeostasis using a mouse model subjected to different dietary regimens. Our findings revealed that ART, ARTs, and ARTe increased blood glucose levels in mice on a normal-chow diet (ND) while mitigating glucose imbalances in high-fat diet (HFD) mice. Notably, treatment with ART, ARTs, and ARTe had contrasting effects on in vivo insulin signaling, impairing it in ND mice and enhancing it in HFD mice. Moreover, the composition of gut microbiota underwent significant alterations following administration of ART and its derivatives. In ND mice, these treatments reduced the populations of bacteria beneficial for improving glucose homeostasis, including Parasutterella, Alloprevotella, Bifidobacterium, Ileibacterium, and Alistipes. In HFD mice, there was an increase in the abundance of beneficial bacteria (Alistipes, Akkermanisia) and a decrease in bacteria known to negatively impact glucose metabolism (Coprobacillus, Helicobacter, Mucispirillum, Enterorhabdus). Altogether, ART, ARTs, and ARTe exhibited distinct effects on the regulation of glucose metabolism, depending on the nutritional context, and these effects were closely associated with modifications in gut microbiota composition.


Subject(s)
Artemisinins , Diet, High-Fat , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Homeostasis/drug effects , Artemisinins/pharmacology , Male , Diet, High-Fat/adverse effects , Mice , Blood Glucose/metabolism , Blood Glucose/drug effects , Glucose/metabolism , Artesunate/pharmacology , Artemether/pharmacology
16.
Malar J ; 23(1): 178, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840266

ABSTRACT

BACKGROUND: Neonatal malaria is defined as the detection of asexual stages of Plasmodium species in the cord blood within the first 28 days of life. It can be congenital or acquired through mosquito bites or blood transfusions. Neonates are generally considered to be relatively protected due to the multiple innate and acquired physiological protective effects present in neonates. However, in areas where malaria is endemic, the prevalence of malaria in neonates is high. The predominant clinical feature of malaria in neonates is fever. Other clinical manifestations of neonatal malaria include respiratory distress, pallor and anaemia, hepatomegaly, refusal to feed, jaundice and diarrhoea. Atypical presentations without fever can lead to inaccurate diagnosis and contribute to neonatal morbidity and mortality. Neonates from endemic areas with any of the above symptoms should be screened for malaria. CASE PRESENTATION: We present a series of three cases of neonatal Plasmodium falciparum malaria that presented atypically without febrile episodes and were diagnosed and managed at Mizan-Tepi University Teaching Hospital between July and September 2023. The first patient presented with vomiting, refusal to feed, pallor, severe anaemia, and splenomegaly. The second patient presented with an inconsolable cry, failure to pass feces, abdominal distention, and anaemia. The third patient presented with vomiting and anaemia. All patients received a 7-day course of intravenous artesunate; the first patient also received a blood transfusion. All patients recovered and were discharged. CONCLUSIONS: Partial immunity resulting from repeated malaria infections in endemic regions may result in the transfer of high levels of maternal Immunoglobulin G (IgG) antibodies through the placenta and can produce different atypical clinical presentations. In malaria-endemic areas, neonates presenting with any of the presenting signs and symptoms of malaria, including afebrile presentation, require malaria screening to avoid delays in diagnosis.


Subject(s)
Malaria, Falciparum , Female , Humans , Infant, Newborn , Male , Antimalarials/therapeutic use , Artesunate/therapeutic use , Ethiopia , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification
17.
Biomed Pharmacother ; 177: 116885, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878633

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disease in which the salivary glands (SGs) and the lacrimal glands (LGs) are affected by lymphocytic infiltration and inflammation. It has been reported that interferon-α (IFN-α) released by plasmacytoid dendritic cells (pDCs) contribute to the pathology of SS, and ART has been shown to effectively ameliorates SS. Despite the current research endeavors, the mechanism of how ART works in the treatment of SS remains to be fully elucidated. Whether ART can treat SS by inhibiting IFN-α remains unclear. This hypothesis was tested both in vivo and in vitro settings during the study. The SS model mice, which were treated with ART, showed amelioration in symptoms related to dryness. RNA-seq analysis revealed strong anti-IFN-α signaling response upon ART treatment. Additional in vitro studies provided further confirmation that the application of ART inhibits the MyD88 protein expression and the nuclear translocation of IRF7. This suggests that the intervention of ART in the TLR-MyD88-IRF7 pathway plays a role in the therapeutic approach for SS. In summary, this study highlighted the therapeutic potential of ART in SS and ART inhibited the IFN-α signaling in pDCs via the TLR-MyD88-IRF7 pathway.


Subject(s)
Artesunate , Dendritic Cells , Interferon Regulatory Factor-7 , Interferon-alpha , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Signal Transduction , Sjogren's Syndrome , Animals , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Myeloid Differentiation Factor 88/metabolism , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Signal Transduction/drug effects , Interferon Regulatory Factor-7/metabolism , Mice , Artesunate/pharmacology , Artesunate/therapeutic use , Toll-Like Receptors/metabolism , Female , Disease Models, Animal
18.
Int Immunopharmacol ; 136: 112264, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810308

ABSTRACT

BACKGROUND: Chemotaxis and trafficking of dendritic cells (DCs) induced by cytokine receptors are crucial steps in rheumatoid arthritis (RA) pathogenesis. C-C chemokine receptor type 5 (CCR5) plays a key role in DC movement and has been implicated in multitudinous inflammatory and immunology diseases. Thus, targeting CCR5 to suppress DC chemotaxis is considered as a potential strategy for the management of RA. METHODS: Herein, we first synthesized a new hybrid named CT3-1 which based on artesunate and isatin. Besides, we studied the regulating effectiveness of CT3-1 on bone marrow-derived DCs (BMDCs) and on collagen-induced arthritis (CIA) through RNA-seq analysis, cell function experiments in vitro and mice model in vivo. RESULTS: The results shown that CT3-1 mainly reduced CCR5 expression of immature BMDCs and importantly inhibited immature BMDC migration induced by CCR5 in vitro, with no or minor influence on other functions of DCs, such as phagocytosis and maturation. In the mouse model, CT3-1 relieved arthritis severity and inhibited CIA development. Furthermore, CT3-1 intervention decreased the expression of CCR5 in DCs and reduced the proportion of DCs in the peripheral blood of CIA mice. CONCLUSIONS: Our findings suggest that CCR5-induced chemotaxis and trafficking of immature DCs are important in RA. Targeting CCR5 and inhibiting immature DC chemotaxis may provide a novel choice for the treatment of RA and other similar autoimmune diseases. Moreover, we synthesized a new hybrid compound CT3-1 that could inhibit immature DC trafficking and effectively relieve RA by directly reducing the CCR5 expression of immature DCs.


Subject(s)
Artesunate , Arthritis, Experimental , Arthritis, Rheumatoid , Chemotaxis , Dendritic Cells , Receptors, CCR5 , Animals , Dendritic Cells/drug effects , Dendritic Cells/immunology , Receptors, CCR5/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Chemotaxis/drug effects , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Mice, Inbred DBA , Male , Cells, Cultured , Humans
19.
Eur J Med Res ; 29(1): 293, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773551

ABSTRACT

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.


Subject(s)
Apoptosis , Artesunate , Cell Cycle Checkpoints , Cell Proliferation , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Artesunate/pharmacology , Artesunate/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Animals , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Mice , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice, Nude , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , DNA Damage/drug effects , Xenograft Model Antitumor Assays , Artemisinins/pharmacology , Artemisinins/therapeutic use , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology
20.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745240

ABSTRACT

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Artesunate , Disease Models, Animal , Neuroprotective Agents , Protein Kinases , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Female , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/pathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Protein Kinases/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Microscopy, Electron, Transmission , Mitophagy/drug effects , Apoptosis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Hippocampus/pathology , Hippocampus/drug effects , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL