Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.064
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 187-191, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836661

ABSTRACT

In this study, we investigated the role of LINC00520 in colorectal cancer (CRC) progression. We analyzed LINC00520 expression in 15 pairs of CRC tissues and adjacent tissues using qRT-PCR, revealing significantly elevated levels in CRC tissues and cell lines. Lentivirus-mediated up/down-regulation of LINC00520 in CRC cell lines demonstrated that increased LINC00520 expression enhanced cell invasiveness, as confirmed by transwell and wound healing assays. Bioinformatics analysis identified a regulatory axis involving LINC00520, microRNA-195-3p, and NAT2. Luciferase assays confirmed direct binding between LINC00520 and microRNA-195-3p, as well as microRNA-195-3p and NAT2. Overexpression of NAT2 reversed the inhibitory effects on invasion and migration induced by LINC00520 silencing. This suggests that LINC00520, highly expressed in CRC tissues, may modulate tumor biological functions through the microRNA-195-3p/NAT2 axis. Our findings provide insights into the mechanism underlying CRC progression, highlighting the potential of LINC00520 as a therapeutic target.


Subject(s)
Arylamine N-Acetyltransferase , Cell Movement , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Cell Movement/genetics , Neoplasm Invasiveness/genetics , Cell Proliferation/genetics
2.
Aging (Albany NY) ; 16(12): 10546-10562, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38916406

ABSTRACT

Metastasis is the primary cause of cancer-related deaths, and colorectal cancer (CRC) liver metastasis is a major poor prognostic factor in CRC. NAT1 (N-acetyltransferase 1) plays a crucial role in the invasive and metastatic processes of colorectal cancer. The role and molecular mechanism of NAT1 on tumor cells were verified by establishing a cell model of overexpression and knockdown of NAT1, and further verified by establishing a liver metastasis model of colorectal cancer for animal experiments. In vivo and in vitro experiments have demonstrated that overexpression of NAT1 reduces the ability of metastasis and invasion of colorectal cancer cells. NAT1 overexpression inhibits the PI3K/AKT/mTOR signaling pathway, thereby suppressing the EMT (epithelial-mesenchymal transition) process and glycolytic ability of tumor cells. Additionally, decreased glycolytic ability results in reduced VEGF (Vascular endothelial growth factor) expression in colorectal cancer cells. The decreased VEGF expression leads to decreased angiogenesis and vascular permeability in liver metastases, ultimately reducing the occurrence of liver metastasis. Our findings highlight that overexpression of NAT1 significantly inhibits the PI3K/AKT/mTOR signaling pathway, thereby suppressing EMT, glycolytic ability, and VEGF expression in colorectal cancer cells, collectively preventing the development of liver metastasis.


Subject(s)
Arylamine N-Acetyltransferase , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Glycolysis , Liver Neoplasms , Signal Transduction , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Animals , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Cell Line, Tumor , Mice , TOR Serine-Threonine Kinases/metabolism , Isoenzymes/metabolism , Isoenzymes/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Proto-Oncogene Proteins c-akt/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude
3.
Sci Rep ; 14(1): 14905, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942826

ABSTRACT

Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.


Subject(s)
Bacteria , Multigene Family , Secondary Metabolism , Secondary Metabolism/genetics , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Phylogeny , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Fungi/genetics , Genomics/methods , Gene Transfer, Horizontal
4.
Int J Mycobacteriol ; 13(2): 206-212, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38916393

ABSTRACT

BACKGROUND: Pharmacogenetic research has led to significant progress in understanding how genetic factors influence drug response in tuberculosis (TB) treatment. One ongoing challenge is the variable occurrence of adverse drug reactions in some TB patients. Previous studies have indicated that genetic variations in the N-acetyltransferase 2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) genes can impact the blood concentrations of the first-line anti-TB drugs isoniazid (INH) and rifampicin (RIF), respectively. This study aimed to investigate the influence of pharmacogenetic markers in the NAT2 and SLCO1B1 genes on TB treatment outcomes using whole-exome sequencing (WES) analysis. METHODS: DNA samples were collected from 30 healthy Iranian adults aged 18-40 years. The allelic frequencies of single-nucleotide polymorphisms (SNPs) in the NAT2 and SLCO1B1 genes were determined through WES. RESULTS: Seven frequent SNPs were identified in the NAT2 gene (rs1041983, rs1801280, rs1799929, rs1799930, rs1208, rs1799931, rs2552), along with 16 frequent SNPs in the SLCO1B1 gene (rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs2291075, rs201722521, rs11045852, rs11045854, rs756393362, rs11045859, rs74064211, rs201556175, rs34671512, rs71581985, rs4149085). CONCLUSION: Genetic variations in NAT2 and SLCO1B1 can affect the metabolism of INH and RIF, respectively. A better understanding of the pharmacogenetic profile in the study population may facilitate the design of more personalized and effective TB treatment strategies. Further research is needed to directly correlate these genetic markers with clinical outcomes in TB patients.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Isoniazid , Liver-Specific Organic Anion Transporter 1 , Mycobacterium tuberculosis , Polymorphism, Single Nucleotide , Rifampin , Humans , Arylamine N-Acetyltransferase/genetics , Liver-Specific Organic Anion Transporter 1/genetics , Adult , Male , Young Adult , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Adolescent , Female , Iran , Tuberculosis/drug therapy , Tuberculosis/genetics , Tuberculosis/microbiology , Gene Frequency , Exome Sequencing , Pharmacogenomic Testing , Pharmacogenetics
5.
Clin Transl Sci ; 17(4): e13795, 2024 04.
Article in English | MEDLINE | ID: mdl-38629592

ABSTRACT

N-acetyltransferase 2 (NAT2) genetic polymorphisms might alter isoniazid metabolism leading to toxicity. We reviewed the impact of NAT2 genotype status on the pharmacokinetics, efficacy, and safety of isoniazid, a treatment for tuberculosis (TB). A systematic search for research articles published in Scopus, PubMed, and Embase until August 31, 2023, was conducted without filters or limits on the following search terms and Boolean operators: "isoniazid" AND "NAT2." Studies were selected if NAT2 phenotypes with pharmacokinetics or efficacy or safety of isoniazid in patients with TB were reported. Patient characteristics, NAT2 status, isoniazid pharmacokinetic parameters, early treatment failure, and the prevalence of drug-induced liver injury were extracted. If the data were given as a median, these values were standardized to the mean. Forty-one pharmacokinetics and 53 safety studies were included, but only one efficacy study was identified. The average maximum concentrations of isoniazid were expressed as supratherapeutic concentrations in adults (7.16 ± 4.85 µg/mL) and children (6.43 ± 3.87 µg/mL) in slow acetylators. The mean prevalence of drug-induced liver injury was 36.23 ± 19.84 in slow acetylators, which was significantly different from the intermediate (19.49 ± 18.20) and rapid (20.47 ± 20.68) acetylators. Subgroup analysis by continent showed that the highest mean drug-induced liver injury prevalence was in Asian slow acetylators (42.83 ± 27.61). The incidence of early treatment failure was decreased by genotype-guided isoniazid dosing in one study. Traditional weight-based dosing of isoniazid in most children and adults yielded therapeutic isoniazid levels (except for slow acetylators). Drug-induced liver injury was more commonly observed in slow acetylators. Genotype-guided dosing may prevent early treatment failure.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Isoniazid , Tuberculosis , Adult , Child , Humans , Antitubercular Agents/adverse effects , Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Genotype , Isoniazid/adverse effects , Isoniazid/pharmacokinetics , Polymorphism, Genetic , Tuberculosis/drug therapy , Tuberculosis/genetics
6.
Mol Nutr Food Res ; 68(8): e2400087, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581346

ABSTRACT

SCOPE: Dietary isothiocyanate (ITC) exposure from cruciferous vegetable (CV) intake may improve non-muscle invasive bladder cancer (NMIBC) prognosis. This study aims to investigate whether genetic variations in key ITC-metabolizing/functioning genes modify the associations between dietary ITC exposure and NMIBC prognosis outcomes. METHODS AND RESULTS: In the Bladder Cancer Epidemiology, Wellness, and Lifestyle Study (Be-Well Study), a prospective cohort of 1472 incident NMIBC patients, dietary ITC exposure is assessed by self-reported CV intake and measured in plasma ITC-albumin adducts. Using Cox proportional hazards regression models, stratified by single nucleotide polymorphisms (SNPs) in nine key ITC-metabolizing/functioning genes, it is calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and progression. The rs15561 in N-acetyltransferase 1 (NAT1) is alter the association between CV intake and progression risk. Multiple SNPs in nuclear factor E2-related factor 2 (NRF2) and nuclear factor kappa B (NFκB) are modify the associations between plasma ITC-albumin adduct level and progression risk (pint < 0.05). No significant association is observed with recurrence risk. Overall, >80% study participants are present with at least one protective genotype per gene, showing an average 65% reduction in progression risk with high dietary ITC exposure. CONCLUSION: Despite that genetic variations in ITC-metabolizing/functioning genes may modify the effect of dietary ITCs on NMIBC prognosis, dietary recommendation of CV consumption may help improve NMIBC survivorship.


Subject(s)
Diet , Isothiocyanates , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Male , Female , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Middle Aged , Prognosis , Aged , Prospective Studies , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arylamine N-Acetyltransferase/genetics , Non-Muscle Invasive Bladder Neoplasms
7.
Anal Chem ; 96(18): 7005-7013, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38657082

ABSTRACT

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Subject(s)
Arylamine N-Acetyltransferase , Carcinoma, Hepatocellular , Fluorescent Dyes , Hydrogen Sulfide , Liver Neoplasms , Photons , Hydrogen Sulfide/analysis , Hydrogen Sulfide/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Arylamine N-Acetyltransferase/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Animals , Mice , Hep G2 Cells , Optical Imaging
8.
Pharmacol Res Perspect ; 12(3): e1179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666760

ABSTRACT

In Peru, 29 292 people were diagnosed with tuberculosis in 2022. Although tuberculosis treatments are effective, 3.4%-13% are associated with significant adverse drug reactions, with drug-induced liver injury (DILI) considered the most predominant. Among the first-line antituberculosis drugs, isoniazid is the main drug responsible for the appearance of DILI. In liver, isoniazid (INH) is metabolized by N-acetyltransferase-2 (NAT2) and cytochrome P450 2E1 (CYP2E1). Limited information exists on genetic risk factors associated with the presence of DILI to antituberculosis drugs in Latin America, and even less is known about these factors in the native and mestizo Peruvian population. The aim of this study was to determine the prevalence of NAT2 and CYP2E1 genotypes in native and mestizo population. An analytical cross-sectional analysis was performed using genetic data from mestizo population in Lima and native participants from south of Peru. NAT2 metabolizer was determined as fast, intermediate and slow, and CYP2E1 genotypes were classified as c1/c1, c1/c2 and c2/c2, from molecular tests and bioinformatic analyses. Of the 472 participants, 36 and 6 NAT2 haplotypes were identified in the mestizo and native population, respectively. In mestizo population, the most frequent NAT2*5B and NAT2*7B haplotypes were associated with DILI risk; while in natives, NAT2*5G and NAT2*13A haplotypes were associated with decreased risk of DILI. For CYP2E1, c1/c1 and c1/c2 genotypes are the most frequent in natives and mestizos, respectively. The linkage disequilibrium of NAT2 single nucleotide polymorphisms (SNPs) was estimated, detecting a block between all SNPs natives. In addition, a block between rs1801280 and rs1799929 for NAT2 was detected in mestizos. Despite the limitations of a secondary study, it was possible to report associations between NAT2 and CYP2E alleles with Peruvian native and mestizo by prevalence ratios. The results of this study will help the development of new therapeutic strategies for a Tuberculosis efficient control between populations.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP2E1 , Isoniazid , Tuberculosis , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antitubercular Agents/therapeutic use , Antitubercular Agents/adverse effects , Arylamine N-Acetyltransferase/genetics , Biomarkers , Chemical and Drug Induced Liver Injury/genetics , Cross-Sectional Studies , Cytochrome P-450 CYP2E1/genetics , Genotype , Indians, South American/ethnology , Indians, South American/genetics , Isoniazid/adverse effects , Isoniazid/therapeutic use , Peru , Pharmacogenetics , Tuberculosis/genetics , Tuberculosis/drug therapy , Racial Groups
9.
J Antimicrob Chemother ; 79(6): 1270-1278, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38661209

ABSTRACT

OBJECTIVES: Twelve weekly doses of rifapentine and isoniazid (3HP regimen) are recommended for TB preventive therapy in children with TB infection. However, they present with variability in the pharmacokinetic profiles. The current study aimed to develop a pharmacokinetic model of rifapentine and isoniazid in 12 children with TB infection using NONMEM. METHODS: Ninety plasma and 41 urine samples were collected at Week 4 of treatment. Drug concentrations were measured using a validated HPLC-UV method. MassARRAY® SNP genotyping was used to investigate genetic factors, including P-glycoprotein (ABCB1), solute carrier organic anion transporter B1 (SLCO1B1), arylacetamide deacetylase (AADAC) and N-acetyl transferase (NAT2). Clinically relevant covariates were also analysed. RESULTS: A two-compartment model for isoniazid and a one-compartment model for rifapentine with transit compartment absorption and first-order elimination were the best models for describing plasma and urine data. The estimated (relative standard error, RSE) of isoniazid non-renal clearance was 3.52 L·h-1 (23.1%), 2.91 L·h-1 (19.6%), and 2.58 L·h-1 (20.0%) in NAT2 rapid, intermediate and slow acetylators. A significant proportion of the unchanged isoniazid was cleared renally (2.7 L·h-1; 8.0%), while the unchanged rifapentine was cleared primarily through non-renal routes (0.681 L·h-1; 3.6%). Participants with the ABCB1 mutant allele had lower bioavailability of rifapentine, while food prolonged the mean transit time of isoniazid. CONCLUSIONS: ABCB1 mutant allele carriers may require higher rifapentine doses; however, this must be confirmed in larger trials. Food did not affect overall exposure to isoniazid and only delayed absorption time.


Subject(s)
Antitubercular Agents , Arylamine N-Acetyltransferase , Isoniazid , Rifampin , Tuberculosis , Humans , Rifampin/pharmacokinetics , Rifampin/analogs & derivatives , Rifampin/administration & dosage , Rifampin/therapeutic use , Isoniazid/pharmacokinetics , Isoniazid/urine , Isoniazid/administration & dosage , Isoniazid/therapeutic use , Male , Female , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/administration & dosage , Antitubercular Agents/therapeutic use , Child , Child, Preschool , Arylamine N-Acetyltransferase/genetics , Tuberculosis/drug therapy , Liver-Specific Organic Anion Transporter 1/genetics , Genotype , Polymorphism, Single Nucleotide , ATP Binding Cassette Transporter, Subfamily B/genetics , Adolescent , Infant
10.
AAPS J ; 26(3): 54, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658473

ABSTRACT

This work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types. Additionally, a novel equation was proposed to calculate the luminal drug degradation related to the presence of reducing sugars, using individual sugar molar concentrations in the meal. By incorporating luminal degradation into the model, adjusting bile salt concentrations and gastric emptying according to food type and quantity, the PBBM was able to accurately predict the negative effect of carbohydrate-rich diets on the PK of INH.


Subject(s)
Antitubercular Agents , Food-Drug Interactions , Isoniazid , Models, Biological , Isoniazid/pharmacokinetics , Isoniazid/administration & dosage , Humans , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/administration & dosage , Arylamine N-Acetyltransferase/metabolism , Biopharmaceutics/methods
11.
Drug Des Devel Ther ; 18: 801-818, 2024.
Article in English | MEDLINE | ID: mdl-38500691

ABSTRACT

Introduction: Isoniazid (INH) is a crucial first-line anti tuberculosis (TB) drug used in adults and children. However, various factors can alter its pharmacokinetics (PK). This article aims to establish a population pharmacokinetic (popPK) models repository of INH to facilitate clinical use. Methods: A literature search was conducted until August 23, 2022, using PubMed, Embase, and Web of Science databases. We excluded published popPK studies that did not provide full model parameters or used a non-parametric method. Monte Carlo simulation works was based on RxODE. The popPK models repository was established using R. Non-compartment analysis was based on IQnca. Results: Fourteen studies included in the repository, with eleven studies conducted in adults, three studies in children, one in pregnant women. Two-compartment with allometric scaling models were commonly used as structural models. NAT2 acetylator phenotype significantly affecting the apparent clearance (CL). Moreover, postmenstrual age (PMA) influenced the CL in pediatric patients. Monte Carlo simulation results showed that the geometric mean ratio (95% Confidence Interval, CI) of PK parameters in most studies were within the acceptable range (50.00-200.00%), pregnant patients showed a lower exposure. After a standard treatment strategy, there was a notable exposure reduction in the patients with the NAT2 RA or nonSA (IA/RA) phenotype, resulting in a 59.5% decrease in AUC0-24 and 83.2% decrease in Cmax (Infants), and a 49.3% reduction in AUC0-24 and 73.5% reduction in Cmax (Adults). Discussion: Body weight and NAT2 acetylator phenotype are the most significant factors affecting the exposure of INH. PMA is a crucial factor in the pediatric population. Clinicians should consider these factors when implementing model-informed precision dosing of INH. The popPK model repository for INH will aid in optimizing treatment and enhancing patient outcomes.


Subject(s)
Arylamine N-Acetyltransferase , Isoniazid , Pregnancy , Adult , Infant , Humans , Child , Female , Isoniazid/pharmacokinetics , Isoniazid/therapeutic use , Arylamine N-Acetyltransferase/genetics , Antitubercular Agents , Phenotype , Computer Simulation
12.
Gene ; 907: 148252, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38350514

ABSTRACT

Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.


Subject(s)
Arylamine N-Acetyltransferase , Urinary Bladder Neoplasms , Humans , Glutathione Transferase/genetics , Polymorphism, Genetic , Cytochrome P-450 CYP1A1/genetics , Urinary Bladder Neoplasms/genetics , Cytochrome P-450 CYP2D6/genetics , Genetic Predisposition to Disease , Genotype , Case-Control Studies , Risk Factors , Arylamine N-Acetyltransferase/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics
13.
Am J Case Rep ; 25: e942242, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38311849

ABSTRACT

BACKGROUND Reye syndrome is a rare, yet potentially life-threatening disease characterized by acute encephalopathy and hepatic failure. This report presents the case of an 8-year-old girl with Reye syndrome and seizures after the use of naproxen. CASE REPORT An 8-year-old girl experienced a 3-day episode of fever and abdominal pain. After receiving naproxen (375 mg twice daily) starting from day -3, she exhibited hypotension, tonic seizure, and loss of consciousness (day 1). Physical examination and laboratory test results revealed acute kidney injury, metabolic acidosis, and elevated levels of lactate dehydrogenase (LDH), liver enzymes, and ferritin. On day 2, the maximum values of aspartate aminotransferase, alanine aminotransferase, LDH, creatinine, and ferritin were 955 U/L, 132 U/L, 8040 U/L, 2 mg/dL, and >40000 ug/L, respectively. She was given supportive care and recovered after 11 days (day 12), with normalization of kidney function and metabolic abnormalities. To identify possible genetic polymorphisms associated with the patient's symptoms, genotypes were tested using a drug metabolizing enzymes and transporters (DMET) gene chip. Among genes involved in the metabolism of naproxen, UGT1A6 (*1/*2) and UGT2B7 (*1/*2) resulted in possibly decreased function. Other results which may have had clinical significance included homozygote results for NAT2*6/*6 (rs1799930). CONCLUSIONS A rare case of Reye syndrome after administration of naproxen was presented in this case. A DMET gene chip was used to screen for possible genetic polymorphisms associated with Reye syndrome, but the result was inconclusive.


Subject(s)
Arylamine N-Acetyltransferase , Reye Syndrome , Female , Humans , Child , Reye Syndrome/chemically induced , Reye Syndrome/genetics , Naproxen/adverse effects , Pharmacogenomic Testing , Fever , Seizures , Ferritins
14.
Exp Mol Med ; 56(3): 570-582, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424191

ABSTRACT

Anti-tuberculosis (AT) medications, including isoniazid (INH), can cause drug-induced liver injury (DILI), but the underlying mechanism remains unclear. In this study, we aimed to identify genetic factors that may increase the susceptibility of individuals to AT-DILI and to examine genetic interactions that may lead to isoniazid (INH)-induced hepatotoxicity. We performed a targeted sequencing analysis of 380 pharmacogenes in a discovery cohort of 112 patients (35 AT-DILI patients and 77 controls) receiving AT treatment for active tuberculosis. Pharmacogenome-wide association analysis was also conducted using 1048 population controls (Korea1K). NAT2 and ATP7B genotypes were analyzed in a replication cohort of 165 patients (37 AT-DILI patients and 128 controls) to validate the effects of both risk genotypes. NAT2 ultraslow acetylators (UAs) were found to have a greater risk of AT-DILI than other genotypes (odds ratio [OR] 5.6 [95% confidence interval; 2.5-13.2], P = 7.2 × 10-6). The presence of ATP7B gene 832R/R homozygosity (rs1061472) was found to co-occur with NAT2 UA in AT-DILI patients (P = 0.017) and to amplify the risk in NAT2 UA (OR 32.5 [4.5-1423], P = 7.5 × 10-6). In vitro experiments using human liver-derived cell lines (HepG2 and SNU387 cells) revealed toxic synergism between INH and Cu, which were strongly augmented in cells with defective NAT2 and ATP7B activity, leading to increased mitochondrial reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and apoptosis. These findings link the co-occurrence of ATP7B and NAT2 genotypes to the risk of INH-induced hepatotoxicity, providing novel mechanistic insight into individual AT-DILI susceptibility. Yoon et al. showed that individuals who carry NAT2 UAs and ATP7B 832R/R genotypes are at increased risk of developing isoniazid hepatotoxicity, primarily due to the increased synergistic toxicity between isoniazid and copper, which exacerbates mitochondrial dysfunction-related apoptosis.


Subject(s)
Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Mitochondrial Diseases , Tuberculosis , Humans , Antitubercular Agents/adverse effects , Antitubercular Agents/toxicity , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Chemical and Drug Induced Liver Injury/genetics , Copper/toxicity , Genotype , Isoniazid/toxicity , Tuberculosis/drug therapy , Tuberculosis/genetics
15.
Pharmacol Rev ; 76(2): 300-320, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351074

ABSTRACT

In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.


Subject(s)
Arylamine N-Acetyltransferase , Metabolic Diseases , Mitochondrial Diseases , Humans , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Substrate Specificity , Metabolic Diseases/drug therapy , Mitochondrial Diseases/drug therapy
16.
J Infect Dis ; 229(3): 813-823, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38262629

ABSTRACT

BACKGROUND: Tuberculosis (TB) treatment-related adverse drug reactions (TB-ADRs) can negatively affect adherence and treatment success rates. METHODS: We developed prediction models for TB-ADRs, considering participants with drug-susceptible pulmonary TB who initiated standard TB therapy. TB-ADRs were determined by the physician attending the participant, assessing causality to TB drugs, the affected organ system, and grade. Potential baseline predictors of TB-ADR included concomitant medication (CM) use, human immunodeficiency virus (HIV) status, glycated hemoglobin (HbA1c), age, body mass index (BMI), sex, substance use, and TB drug metabolism variables (NAT2 acetylator profiles). The models were developed through bootstrapped backward selection. Cox regression was used to evaluate TB-ADR risk. RESULTS: There were 156 TB-ADRs among 102 of the 945 (11%) participants included. Most TB-ADRs were hepatic (n = 82 [53%]), of moderate severity (grade 2; n = 121 [78%]), and occurred in NAT2 slow acetylators (n = 62 [61%]). The main prediction model included CM use, HbA1c, alcohol use, HIV seropositivity, BMI, and age, with robust performance (c-statistic = 0.79 [95% confidence interval {CI}, .74-.83) and fit (optimism-corrected slope and intercept of -0.09 and 0.94, respectively). An alternative model replacing BMI with NAT2 had similar performance. HIV seropositivity (hazard ratio [HR], 2.68 [95% CI, 1.75-4.09]) and CM use (HR, 5.26 [95% CI, 2.63-10.52]) increased TB-ADR risk. CONCLUSIONS: The models, with clinical variables and with NAT2, were highly predictive of TB-ADRs.


Subject(s)
Arylamine N-Acetyltransferase , Drug-Related Side Effects and Adverse Reactions , HIV Seropositivity , Tuberculosis, Pulmonary , Humans , Antitubercular Agents/adverse effects , Brazil/epidemiology , Glycated Hemoglobin , HIV Seropositivity/drug therapy , Tuberculosis, Pulmonary/drug therapy , Arylamine N-Acetyltransferase/metabolism
17.
BMC Med Genomics ; 17(1): 14, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184575

ABSTRACT

BACKGROUND: Though persons of African descent have one of the widest genetic variability, genetic polymorphisms of drug-metabolising enzymes such as N-Acetyltransferase-2 (NAT2) are understudied. This study aimed to identify prevalent NAT2 single nucleotide polymorphisms (SNPs) and infer their potential effects on enzyme function among Kenyan volunteers with tuberculosis (TB) infection. Genotypic distribution at each SNP and non-random association of alleles were evaluated by testing for Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD). METHODS: We isolated genomic DNA from cryopreserved Peripheral Blood Mononuclear Cells of 79 volunteers. We amplified the protein-coding region of the NAT2 gene by polymerase chain reaction (PCR) and sequenced PCR products using the Sanger sequencing method. Sequencing reads were mapped and aligned to the NAT2 reference using the Geneious software (Auckland, New Zealand). Statistical analyses were performed using RStudio version 4.3.2 (2023.09.1 + 494). RESULTS: The most frequent haplotype was the wild type NAT2*4 (37%). Five genetic variants: 282C > T (NAT2*13), 341 T > C (NAT2*5), 803A > G (NAT2*12), 590G > A (NAT2*6) and 481C > T (NAT2*11) were observed with allele frequencies of 29%, 18%, 6%, 6%, and 4% respectively. According to the bimodal distribution of acetylation activity, the predicted phenotype was 76% rapid (mainly consisting of the wildtype NAT2*4 and the NAT2*13A variant). A higher proportion of rapid acetylators were female, 72% vs 28% male (p = 0.022, odds ratio [OR] 3.48, 95% confidence interval [CI] 1.21 to 10.48). All variants were in HWE. NAT2 341 T > C was in strong complete LD with the 590G > A variant (D' = 1.0, r2 = - 0.39) but not complete LD with the 282C > T variant (D' = 0.94, r2 = - 0.54). CONCLUSION: The rapid acetylation haplotypes predominated. Despite the LD observed, none of the SNPs could be termed tag SNP. This study adds to the genetic characterisation data of African populations at NAT2, which may be useful for developing relevant pharmacogenomic tools for TB therapy. To support optimised, pharmacogenomics-guided TB therapy, we recommend genotype-phenotype studies, including studies designed to explore gender-associated differences.


Subject(s)
Arylamine N-Acetyltransferase , Ethnicity , Female , Male , Humans , Kenya , Leukocytes, Mononuclear , Pharmacogenetics , Genotype , Acetyltransferases , Arylamine N-Acetyltransferase/genetics
18.
Expert Rev Clin Pharmacol ; 17(3): 263-274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287694

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms (SNPs) in the N-acetyltransferase 2 (NAT2) gene as well as several other clinical factors can contribute to the elevation of liver function test values in tuberculosis (TB) patients receiving antitubercular therapy (ATT). RESEARCH DESIGN AND METHODS: A prospective study involving dynamic monitoring of the liver function tests among 130 TB patients from baseline to 98 days post ATT initiation was undertaken to assess the influence of pharmacogenomic and clinical variables on the elevation of liver function test values. Genomic DNA was extracted from serum samples for the assessment of NAT2 SNPs. Further, within this study population, we conducted a case control study to identify the odds of developing ATT-induced drug-induced liver injury (DILI) based on NAT2 SNPs, genotype and phenotype, and clinical variables. RESULTS: NAT2 slow acetylators had higher mean [90%CI] liver function test values for 8-28 days post ATT and higher odds of developing DILI (OR: 2.73, 90%CI: 1.05-7.09) than intermediate acetylators/rapid acetylators. CONCLUSION: The current study findings provide evidence for closer monitoring among TB patients with specific NAT2 SNPs, genotype and phenotype, and clinical variables, particularly between the period of more than a week to one-month post ATT initiation for better treatment outcomes.


Subject(s)
Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Tuberculosis , Humans , Case-Control Studies , Prospective Studies , Arylamine N-Acetyltransferase/genetics , Tuberculosis/drug therapy , Tuberculosis/genetics , Tuberculosis/epidemiology , Antitubercular Agents/adverse effects , Genotype , Chemical and Drug Induced Liver Injury/genetics , Polymorphism, Single Nucleotide , Acetyltransferases/genetics , Acetyltransferases/therapeutic use
19.
Int J Cancer ; 154(2): 210-216, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37728483

ABSTRACT

Tobacco smoking is the most important risk factor for bladder cancer. Previous studies have identified the N-acetyltransferase (NAT2) gene in association with bladder cancer risk. The NAT2 gene encodes an enzyme that metabolizes aromatic amines, carcinogens commonly found in tobacco smoke. In our study, we evaluated potential interactions of tobacco smoking with NAT2 genotypes and polygenic risk score (PRS) for bladder cancer, using data from the UK Biobank, a large prospective cohort study. We used Cox proportional hazards models to measure the strength of the association. The PRS was derived using genetic risk variants identified by genome-wide association studies for bladder cancer. With an average of 10.1 years of follow-up of 390 678 eligible participants of European descent, 769 incident bladder cancer cases were identified. Current smokers with a PRS in the highest tertile had a higher risk of developing bladder cancer (HR: 6.45, 95% CI: 4.51-9.24) than current smokers with a PRS in the lowest tertile (HR: 2.41, 95% CI: 1.52-3.84; P for additive interaction = <.001). A similar interaction was found for genetically predicted metabolizing NAT2 phenotype and tobacco smoking where current smokers with the slow NAT2 phenotype had an increased risk of developing bladder cancer (HR: 5.70, 95% CI: 2.64-12.30) than current smokers with the fast NAT2 phenotype (HR: 3.61, 95% CI: 1.14-11.37; P for additive interaction = .100). Our study provides support for considering both genetic and lifestyle risk factors in developing prevention measures for bladder cancer.


Subject(s)
Arylamine N-Acetyltransferase , Urinary Bladder Neoplasms , Humans , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Case-Control Studies , Genome-Wide Association Study , Genotype , Prospective Studies , Risk Factors , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking/adverse effects , Tobacco Smoking/genetics , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/genetics
20.
Pharmacogenomics ; 25(1): 21-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38131213

ABSTRACT

The study analyzes the risk factors associated with antituberculosis drug-induced liver injury (ATB-DILI), and the relationship between ATB-DILI and NAT2 gene polymorphisms. Out of the 324 included patients, 57 (17.59%) developed ATB-DILI. Age, history of liver disease, alcohol consumption and timing of antituberculosis (ATB) treatment were independent risk factors for ATB-DILI in the patients with tuberculosis (TB; p < 0.05). There was a significant difference in the distribution of NAT2 metabolic phenotypes between the study group and the control group (p < 0.05). The ATB drug treatment for pulmonary TB can cause a high incidence of ATB-DILI. Age, history of liver disease, alcohol consumption and timing of ATB treatment are independent risk factors for ATB-DILI in patients with TB.


Subject(s)
Arylamine N-Acetyltransferase , Chemical and Drug Induced Liver Injury , Tuberculosis , Humans , Antitubercular Agents/adverse effects , Arylamine N-Acetyltransferase/genetics , Chemical and Drug Induced Liver Injury/epidemiology , Chemical and Drug Induced Liver Injury/genetics , Tuberculosis/drug therapy , Tuberculosis/genetics , Tuberculosis/complications , Genotype , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...