Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.329
Filter
1.
Cochrane Database Syst Rev ; 5: CD015158, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38695617

ABSTRACT

BACKGROUND: Asbestos exposure can lead to asbestos-related diseases. The European Union (EU) has adopted regulations for workplaces where asbestos is present. The EU occupational exposure limit (OEL) for asbestos is 0.1 fibres per cubic centimetre of air (f/cm3) as an eight-hour average. Different types of personal protective equipment (PPE) are available to provide protection and minimise exposure; however, their effectiveness is unclear. OBJECTIVES: To assess the effects of personal protective equipment (PPE), including donning and doffing procedures and individual hygienic behaviour, compared to no availability and use of such equipment or alternative equipment, on asbestos exposure in workers in asbestos demolition and repair work. SEARCH METHODS: We searched MEDLINE, Embase, CENTRAL, and Scopus (September 2022), and we checked the reference lists of included studies. SELECTION CRITERIA: We included studies that measured asbestos concentration outside and inside PPE (considering outside concentration a surrogate for no PPE), exposure to asbestos after doffing PPE, donning and doffing errors, nonadherence to regulations, and adverse effects of PPE. DATA COLLECTION AND ANALYSIS: Two review authors selected studies, extracted data, and assessed risk of bias using ROBINS-I. We categorised PPE as full-face filtering masks, supplied air respirators (SARs), and powered air-purifying respirators (PAPRs). Values for asbestos outside and inside PPE were transformed to logarithmic values for random-effects meta-analysis. Pooled logarithmic mean differences (MDs) were exponentiated to obtain the ratio of means (RoM) and 95% confidence interval (95% CI). The RoM shows the degree of protection provided by the respirators (workplace protection factor). Since the RoM is likely to be much higher at higher outside concentrations, we presented separate results according to the outside asbestos concentration, as follows. • Below 0.01 f/cm3 (band 1) • 0.01 f/cm3 to below 0.1 f/cm3 (band 2) • 0.1 f/cm3 to below 1 f/cm3 (band 3) • 1 f/cm3 to below 10 f/cm3 (band 4) • 10 f/cm3 to below 100 f/cm3 (band 5) • 100 f/cm3 to below 1000 f/cm3 (band 6) Additionally, we determined whether the inside concentrations per respirator and concentration band complied with the current EU OEL (0.1 f/cm3) and proposed EU OEL (0.01 f/cm3). MAIN RESULTS: We identified six studies that measured asbestos concentrations outside and inside respiratory protective equipment (RPE) and one cross-over study that compared the effect of two different coveralls on body temperature. No studies evaluated the remaining predefined outcomes. Most studies were at overall moderate risk of bias due to insufficient reporting. The cross-over study was at high risk of bias. Full-face filtering masks Two studies evaluated full-face filtering masks. They provided insufficient data for band 1 and band 6. The results for the remaining bands were as follows. • Band 2: RoM 19 (95% CI 17.6 to 20.1; 1 study, 3 measurements; moderate certainty) • Band 3: RoM 69 (95% CI 26.6 to 175.9; 2 studies, 17 measurements; very low certainty) • Band 4: RoM 455 (95% CI 270.4 to 765.1; 1 study, 16 measurements; low certainty) • Band 5: RoM 2752 (95% CI 1236.5 to 6063.2;1 study, 3 measurements; low certainty) The inside measurements in band 5 did not comply with the EU OEL of 0.1 f/cm3, and no inside measurements complied with the proposed EU OEL of 0.01 f/cm3. Supplied air respirators Two studies evaluated supplied air respirators. They provided no data for band 6. The results for the remaining bands were as follows. • Band 1: RoM 11 (95% CI 7.6 to 14.9; 1 study, 134 measurements; moderate certainty) • Band 2: RoM 63 (95% CI 43.8 to 90.9; 1 study, 17 measurements; moderate certainty) • Band 3: RoM 528 (95% CI 368.7 to 757.5; 1 study, 38 measurements; moderate certainty) • Band 4: RoM 4638 (95% CI 3071.7 to 7044.5; 1 study, 49 measurements; moderate certainty) • Band 5: RoM 26,134 (16,647.2 to 41,357.1; 1 study, 22 measurements; moderate certainty) All inside measurements complied with the current OEL of 0.1 f/cm3 and the proposed OEL of 0.01 f/cm3. Powered air-purifying respirators Three studies evaluated PAPRs. The results per band were as follows. • Band 1: RoM 8 (95% CI 3.7 to 19.1; 1 study, 23 measurements; moderate certainty) • Band 2: RoM 90 (95% CI 64.7 to 126.5; 1 study, 17 measurements; moderate certainty) • Band 3: RoM 104 (95% CI 23.1 to 464.1; 3 studies, 14 measurements; very low certainty) • Band 4: RoM 706 (95% CI 219.2 to 2253.0; 2 studies, 43 measurements; very low certainty) • Band 5: RoM 1366 (544.6 to 3428.9; 2 studies, 8 measurements; low certainty) • Band 6: RoM 18,958 (95% CI 4023.9 to 90,219.4; 2 studies, 13 measurements; very low certainty) All inside measurements complied with the 0.1 f/cm3 OEL when the outside concentration was below 10 f/cm3 (band 1 to band 4). From band 3, no measurements complied with the proposed OEL of 0.01 f/cm3. Different types of coveralls One study reported the adverse effects of coveralls. A polyethylene suit may increase the body temperature more than a ventilated impermeable polyvinyl (PVC) coverall, but the evidence is very uncertain (MD 0.17 °C, 95% CI -0.08 to 0.42; 1 study, 11 participants; very low certainty). AUTHORS' CONCLUSIONS: Where the outside asbestos concentration is below 0.1 f/cm3, SARS and PAPRs likely reduce exposure to below the proposed OEL of 0.01 f/cm3. For outside concentrations up to 10 f/cm3, all respirators may reduce exposure below the current OEL, but only SAR also below the proposed OEL. In band 5 (10 to < 100 f/cm3), full-face filtering masks may not reduce asbestos exposure below either OEL, SARs likely reduce exposure below both OELs, and there were no data for PAPRs. In band 6 (100 f/cm3 to < 1000 f/cm3), PAPRs may not reduce exposure below either OEL, and there were no data for full-face filtering masks or SARs. Some coveralls may increase body temperature more than others. Randomised studies are needed to directly compare PAPRs and SARs at higher asbestos concentrations and to assess adverse effects. Future studies should assess the effects of doffing procedures.


Subject(s)
Asbestos , Occupational Exposure , Personal Protective Equipment , Humans , Asbestos/analysis , Asbestos/adverse effects , Bias , Masks , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Respiratory Protective Devices
2.
Environ Geochem Health ; 46(6): 201, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696114

ABSTRACT

The study's objective was to determine the air quality in an asbestos-related industry and its impact on current workers' respiratory health. Seventy-seven air and 65 dust samples were collected at 5-day intervals in an asbestos roofing sheets production factory in Sri Lanka having two production facilities. Sampling was performed in ten sites: Defective sheets-storage, Production-plant, Pulverizer, Cement-silo, and Loading-area. A detailed questionnaire and medical screening were conducted on 264 workers, including Lung Function Tests (LFT) and chest X-rays. Asbestos fibres were observed in deposited dust samples collected from seven sites. Free chrysotile fibres were absent in the breathing air samples. Scanning Electron Microscopy confirmed the presence of asbestos fibres, and the Energy Dispersive X-ray analysis revealed Mg, O, and Si in depositions. The average concentrations of trace metals were Cd-2.74, Pb-17.18, Ni-46.68, Cr-81.01, As-7.12, Co-6.77, and Cu-43.04 mg/kg. The average Zn, Al, Mg, and Fe concentrations were within 0.2-163 g/kg. The highest concentrations of PM2.52.5 and PM1010, 258 and 387 µg/m3, respectively, were observed in the Pulverizer site. Forty-four workers had respiratory symptoms, 64 presented LFT abnormalities, 5 indicated chest irregularities, 35.98% were smokers, and 37.5% of workers with abnormal LFT results were smokers. The correlation coefficients between LFT results and work duration with respiratory symptoms and work duration and chest X-ray results were 0.022 and 0.011, respectively. In conclusion, most pulmonary disorders observed cannot directly correlate to Asbestos exposure due to negligible fibres in breathing air, but fibres in the depositions and dust can influence the pulmonary health of the employees.


Subject(s)
Asbestos , Occupational Exposure , Humans , Sri Lanka , Occupational Exposure/analysis , Asbestos/analysis , Male , Middle Aged , Adult , Air Pollutants, Occupational/analysis , Dust/analysis , Respiratory Function Tests , Environmental Monitoring/methods , Female , Manufacturing Industry
3.
Toxicol Ind Health ; 40(7): 366-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38706164

ABSTRACT

This paper summarizes historical asbestos exposure data collected during the handling of short-fiber chrysotile asbestos that was used as an additive to drilling fluid in oil and gas exploration. A total of 1171 industrial hygiene (IH) personal and area air samples were collected and analyzed from more than 20 drilling rigs between 1972 and 1985. The dataset consists of 1097 short-term samples (<240 min) with more than 80% having sample durations less than 30 min. Average airborne fiber concentrations measured during asbestos handling activities ranged from 0.62 f/cc to 3.39 f/cc using phase-contrast microscopy (PCM). An additional 14 samples were considered long-term samples (>240 min) and there were 60 samples with no reported sample duration. Eight-hour time-weighted average (8-h TWA) results, calculated using short-term samples, along with long-term samples greater than 240 min, did not exceed contemporaneous Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs). This analysis fills a data gap in the evaluation of asbestos exposures from the use of drilling mud additives (DMAs) that contained chrysotile asbestos.


Subject(s)
Air Pollutants, Occupational , Asbestos, Serpentine , Occupational Exposure , Occupational Exposure/analysis , Occupational Exposure/adverse effects , Humans , Air Pollutants, Occupational/analysis , Asbestos, Serpentine/analysis , Asbestos/analysis , Environmental Monitoring/methods , Oil and Gas Industry
4.
J Occup Environ Hyg ; 21(6): 439-449, 2024.
Article in English | MEDLINE | ID: mdl-38608274

ABSTRACT

The American Iron and Steel Institute (AISI) gathered data between 1989 and 1997 to build an "objective database" to further understand the occupational exposures generated by the few asbestos-containing materials remaining at various steelmaking companies at this time. This paper analyzed the 520 samples from this campaign which occurred at five different steel manufacturers: Georgetown Steel Company, Inland Steel Company, Ling-Temco-Vought (LTV) Corporation, United States Steel Corporation, and Weirton Steel Corporation. This database is believed to have never previously been systematically organized. Samples were grouped based on sampling times to determine whether they should most appropriately be compared to the OSHA short-term excursion limit (EL) or the 8-hr time-weighted average (TWA) permissible exposure limit (PEL). Sampling times of 30 min or less were considered short-term samples, and samples of 180 min or greater were considered representative workday samples. Samples that did not fit into either category, with sampling times between 31 and 179 min, were considered task samples. Overall, the data indicated that the airborne concentrations were quite low in 1989 and they continued to be low through the study period which ended in 1997. Only seven out of 286 (approximately 2.5%) short-term or representative workday samples were in exceedance of the current OSHA OELs that were implemented in 1994 (short-term samples being compared to the 1 f/cc EL and representative workday samples being compared to the 0.1 f/cc 8-hr TWA PEL). Consistent with prior data, analysis of this dataset supports the view that materials containing asbestos were not used in many applications in the steel industry, and measured airborne concentrations of asbestos were almost always below the occupational exposure limits (OELs) in the post-OSHA era (1972-2000).


Subject(s)
Air Pollutants, Occupational , Environmental Monitoring , Metallurgy , Occupational Exposure , Steel , Occupational Exposure/analysis , United States , Air Pollutants, Occupational/analysis , Environmental Monitoring/methods , Humans , United States Occupational Safety and Health Administration , Asbestos/analysis
5.
Waste Manag ; 182: 225-236, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677140

ABSTRACT

This article explores the impact of thermally treated asbestos-cement waste (ACWT) on metakaolin-based geopolymers, using liquid sodium silicate (LSS) and liquid potassium silicate (LKS) as alkali activators. Through statistical mixture design, various formulations were tested for rheological parameters, mineralogical composition, efflorescence mass, electrical conductivity, compressive strength, and CO2 emissions. Formulations with sodium silicate exhibited higher yield stress compared to those with potassium silicate, while flash setting occurred in LKS-activated mixtures with high ACWT content. Alkali activator content significantly affected mechanical strength and leachate electrical conductivity. CO2 emissions were higher for LKS-activated formulations but lower for those with more ACWT. Finally, by incorporating ACWT, it was possible to optimize the formulations, resulting in high compressive strength, reduced free ions, and reduced negative environmental impact.


Subject(s)
Asbestos , Carbon Dioxide , Construction Materials , Silicates , Carbon Dioxide/analysis , Silicates/chemistry , Construction Materials/analysis , Asbestos/analysis , Compressive Strength , Industrial Waste/analysis , Electric Conductivity , Hot Temperature
6.
Ann Work Expo Health ; 68(5): 476-485, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38532179

ABSTRACT

OBJECTIVES: In Italy, the highest pleural cancer mortality and incidence have been observed among Italian regions where the 2 largest Italian shipyards were (and are) located. The objective of this study was to assess the exposure-response relationship for mesothelioma among male workers employed in the Monfalcone, Italy, shipyard. METHODS: We conducted a necropsy-based case-control study. Cases (N = 102) were mesothelioma decedents and controls were those with lung cancer (N = 84). Complete job histories were available; the lung fibre content was measured using a scanning electron microscope with X-ray fluorescence, after sample preparation according to the European Respiratory Society guidelines. Odds ratios and 95% confidence intervals of mesothelioma by fibre type and lung fibre burden, as a categorical or continuous variable, were assessed by unconditional logistic regression, adjusted for age and time since exposure cessation. Analyses for the amphibole and chrysotile lung fibre burden were mutually adjusted. We calculated a cumulative exposure index by applying a job-exposure matrix to the job histories of study cases and assessed its correlation with the lung fibre burden. RESULTS: We found an odds ratio of 22.0 (confidence intervals 5.66-85.7) for the highest lung fibre burden category (mean 43.8 million total asbestos fibres per gram of dry tissue) compared with the reference (mean 0.48). Using log10-transformed lung fibre burden, we found that the odds ratio was 3.71 (confidence intervals 2.03-6.79) for a 10-fold lung fibre burden increase. Results for the amphibole lung fibre burden were similar. Odds ratios increased over chrysotile lung fibre burden categories (P-trend = 0.025), and the odds ratio for a 10-fold increase was 4.73 (confidence intervals 0.32-70.4). CONCLUSIONS: The cumulative exposure index was correlated with total and amphibole lung fibre burden, but not with chrysotile lung fibre burden. Mesothelioma risk was proportional to total, amphibole, and chrysotile lung fibre burden in shipyard workers.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Occupational Exposure , Ships , Humans , Male , Case-Control Studies , Occupational Exposure/adverse effects , Mesothelioma/pathology , Mesothelioma/etiology , Mesothelioma/epidemiology , Italy/epidemiology , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/etiology , Lung Neoplasms/epidemiology , Aged , Mineral Fibers/analysis , Mineral Fibers/adverse effects , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Lung/pathology , Pleural Neoplasms/etiology , Pleural Neoplasms/pathology , Pleural Neoplasms/epidemiology , Adult , Odds Ratio , Autopsy , Asbestos/analysis , Asbestos/adverse effects , Asbestos, Amphibole/analysis , Asbestos, Amphibole/adverse effects , Asbestos, Serpentine/analysis , Asbestos, Serpentine/adverse effects , Risk Factors
7.
Ann Work Expo Health ; 68(4): 420-426, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38438299

ABSTRACT

Since the manufacture, import, and use of asbestos products have been completely abolished in Japan, the main cause of asbestos emissions into the atmosphere is the demolition and removal of buildings built with asbestos-containing materials. To detect and correct asbestos emissions from inappropriate demolition and removal operations at an early stage, a rapid method to measure atmospheric asbestos fibers is required. The current rapid measurement method is a combination of short-term atmospheric sampling and phase-contrast microscopy counting. However, visual counting takes a considerable amount of time and is not sufficiently fast. Using artificial intelligence (AI) to analyze microscope images to detect fibers may greatly reduce the time required for counting. Therefore, in this study, we investigated the use of AI image analysis for detecting fibers in phase-contrast microscope images. A series of simulated atmospheric samples prepared from standard samples of amosite and chrysotile were observed using a phase-contrast microscope. Images were captured, and training datasets were created from the counting results of expert analysts. We adopted 2 types of AI models-an instance segmentation model, namely the mask region-based convolutional neural network (Mask R-CNN), and a semantic segmentation model, namely the multi-level aggregation network (MA-Net)-that were trained to detect asbestos fibers. The accuracy of fiber detection achieved with the Mask R-CNN model was 57% for recall and 46% for precision, whereas the accuracy achieved with the MA-Net model was 95% for recall and 91% for precision. Therefore, satisfactory results were obtained with the MA-Net model. The time required for fiber detection was less than 1 s per image in both AI models, which was faster than the time required for counting by an expert analyst.


Subject(s)
Artificial Intelligence , Asbestos , Microscopy, Phase-Contrast , Microscopy, Phase-Contrast/methods , Asbestos/analysis , Environmental Monitoring/methods , Humans , Japan , Atmosphere/chemistry , Neural Networks, Computer , Asbestos, Serpentine/analysis
8.
Environ Sci Pollut Res Int ; 31(6): 9857-9866, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38198092

ABSTRACT

Asbestos has been used extensively in the construction industry for its superior insulation properties before its health hazards were discovered and its use eventually banned. It is likely that many residential buildings built before the 2000s in Turkey contain asbestos. Therefore, it is important to raise awareness of the potential danger of asbestos exposure during demolition work and to identify asbestos-containing materials and ensure their safe removal and disposal. This study is executed to determine the residential dwellings containing asbestos in Izmir, Turkey. The research included field studies to determine asbestos presence in the buildings that were damaged during the 2020 earthquake. Air measurements and bulk samples were taken from 50 buildings that would go through the demolition process. Eleven buildings were found to contain asbestos which corresponds to 22%. The detected asbestos type was 60% chrysotile (white asbestos). Results could be helpful for future demolition work, which are conducted in the same region that includes buildings with similar properties. Also, it is expected that the database created for this study could be useful in other studies in Turkey, where accurate statistical data related with asbestos measurements is essentially non-existent.


Subject(s)
Asbestos , Construction Industry , Turkey , Construction Materials , Asbestos/analysis , Asbestos, Serpentine
9.
Carcinogenesis ; 45(3): 131-139, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38069464

ABSTRACT

The causal attribution of asbestos-related diseases to past asbestos exposures is of crucial importance in clinical and legal contexts. Often this evaluation is made based on the history of exposure, but this method presents important limitations. To assess past asbestos exposure, pleural plaques (PP), lung fibrosis and histological evidence of ferruginous bodies (FB) can be used in combination with anamnestic data. However, such markers have never been associated with a threshold value of inhaled asbestos. With this study we attempted to shed light on the dose-response relationship of PP, lung fibrosis and FBs, investigating if their prevalence in exposed individuals who died from malignant mesothelioma (MM) is related to the concentration of asbestos in lungs assessed using scanning electron microscopy equipped with energy dispersive spectroscopy. Moreover, we estimated the values of asbestos concentration in lungs associated with PP, lung fibrosis and FB. Lung fibrosis showed a significant positive relationship with asbestos lung content, whereas PP and FB did not. We identified, for the first time, critical lung concentrations of asbestos related to the presence of PP, lung fibrosis and FB at histology (respectively, 19 800, 26 400 and 27 400 fibers per gram of dry weight), that were all well-below the background levels of asbestos identified in our laboratory. Such data suggest that PP, lung fibrosis and FB at histology should be used with caution in the causal attribution of MM to past asbestos exposures, while evaluation of amphibole lung content using analytical electron microscopy should be preferred.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Occupational Exposure , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/pathology , Mesothelioma, Malignant/complications , Mesothelioma, Malignant/pathology , Asbestos/toxicity , Asbestos/analysis , Mesothelioma/chemically induced , Lung/pathology , Lung Neoplasms/etiology , Lung Neoplasms/pathology
10.
Med Lav ; 114(6): e2023048, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060208

ABSTRACT

BACKGROUND: Quantification of asbestos fibers has been mainly performed in the lung but rarely in other organs. However, this may be relevant to understanding better translocation pathways and the oncogenic effects of asbestos on the human body. Electron microscopy is the best technology available to assess the type of fiber, dimensions, and distribution of asbestos fibers in different tissues and as a biomarker of cumulative dose. OBJECTIVES: This scoping review aims to summarize the findings of the studies in which asbestos fibers have been quantified by electron microscopy, occasionally associated with X-ray microanalysis, in normal and pathological tissue of ten abdominal organs. METHODS: A scoping review has been performed by searching articles that quantified asbestos fibers in abdominal organs by electron microscopy (Scanning- SEM or Transmission- TEM). RESULTS: The 12 selected studies included 204 cases, and 325 samples were analyzed. The colon and rectum, kidney, bladder, and abdominal lymph nodes were the organs with at least ten samples available with quantification of asbestos fibers. Asbestos fibers were detected in all the abdominal organs considered: the highest value (152,32 million fibers per gram of dry tissue) was found in the colon and was identified using STEM with EDS. CONCLUSION: The studies included were heterogeneous in terms of exposure and cases, type of samples, as well as analytical techniques, therefore we cannot confirm a specific pattern of distribution in any organ, based on the low homogeneity of the exposure status. The colon is the organ in which the number of fibers is the highest, probably because of exposure arising from both internal distribution of inhaled fibers and ingestion. Additional studies of the number of asbestos fibers in abdominal organs should be made to achieve better representativity.


Subject(s)
Asbestos , Humans , Asbestos/adverse effects , Asbestos/analysis , Lung/chemistry , Lung/pathology
11.
Environ Monit Assess ; 196(1): 39, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097815

ABSTRACT

Talc is used in cosmetic products to confer desirable properties, such as moisture absorption and smooth texture, to the finished products. Concerns have been raised about the potential presence of asbestos in products containing cosmetic talc. Reconstruction of potential asbestos exposure from the use of cosmetic talc products (assuming a trace level of asbestos) requires consideration of consumer use patterns. Although application generally only lasts seconds, exposure theoretically may continue if the consumer remains in the immediate vicinity. Most published exposure measurements have not adequately characterized the potential for continued exposure. In this analysis, estimates and measurements of airborne asbestos fiber concentrations associated with cosmetic talc use from 10 published studies were used as inputs to an exponential decay model to estimate "worst-case" exposure during and following application. The resulting geometric mean 30-min time-weighted average (TWA) concentrations were 0.006 f/cc for both puff and shaker application, for diapering, 0.0001 f/cc (adult applying baby powder) and 0.0002 f/cc (infant), and for makeup application, 0.0005 f/cc. Application of an exponential decay model to measured or estimated asbestos concentrations associated with the use of cosmetic talc products yields a conservative means to comprehensively reconstruct such exposures. Moreover, our results support that, if a cosmetic talc powder product contained a trace level of asbestos fibers, the "worst-case" airborne asbestos exposure associated with its application is low.


Subject(s)
Asbestos , Occupational Exposure , Humans , Talc/analysis , Powders , Environmental Monitoring , Asbestos/analysis , Occupational Exposure/analysis
12.
Crit Rev Toxicol ; 53(10): 611-657, 2023 11.
Article in English | MEDLINE | ID: mdl-38126124

ABSTRACT

This analysis updates two previous analyses that evaluated the exposure-response relationships for lung cancer and mesothelioma in chrysotile-exposed cohorts. We reviewed recently published studies, as well as updated information from previous studies. Based on the 16 studies considered for chrysotile (<10% amphibole), we identified the "no-observed adverse effect level" (NOAEL) for lung cancer and/or mesothelioma; it should be noted that smoking or previous or concurrent occupational exposure to amphiboles (if it existed) was not controlled for. NOAEL values ranged from 2.3-<11.5 f/cc-years to 1600-3200 f/cc-years for lung cancer and from 100-<400 f/cc-years to 800-1599 f/cc-years for mesothelioma. The range of best-estimate NOAELs was estimated to be 97-175 f/cc-years for lung cancer and 250-379 f/cc-years for mesothelioma. None of the six cohorts of cement or friction product manufacturing workers exhibited an increased risk at any exposure level, while all but one of the six studies of textile workers reported an increased risk at one or more exposure levels. This is likely because friction and cement workers were exposed to much shorter chrysotile fibers. Only eight cases of peritoneal mesothelioma were reported in all studies on predominantly chrysotile-exposed cohorts combined. This analysis also proposed best-estimate amosite and crocidolite NOAELs for mesothelioma derived by the application of relative potency estimates to the best-estimate chrysotile NOAELs for mesothelioma and validated by epidemiology studies with exposure-response information. The best-estimate amosite and crocidolite NOAELs for mesothelioma were 2-5 f/cc-years and 0.6-1 f/cc-years, respectively. The rate of peritoneal mesothelioma in amosite- and crocidolite-exposed cohorts was between approximately 70- to 100-fold and several-hundred-fold higher than in chrysotile-exposed cohorts, respectively. These findings will help characterize potential worker and consumer health risks associated with historical and current chrysotile, amosite, and crocidolite exposures.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Humans , Asbestos, Crocidolite/toxicity , Asbestos, Crocidolite/analysis , Asbestos, Serpentine/toxicity , Asbestos, Amosite/analysis , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , No-Observed-Adverse-Effect Level , Mesothelioma/chemically induced , Mesothelioma/epidemiology , Mesothelioma, Malignant/chemically induced , Mesothelioma, Malignant/complications , Asbestos, Amphibole/toxicity , Asbestos, Amphibole/analysis , Asbestos/toxicity , Asbestos/analysis
14.
Inhal Toxicol ; 35(11-12): 300-307, 2023.
Article in English | MEDLINE | ID: mdl-37995092

ABSTRACT

OBJECTIVES: The work shows the effect of counting rules, such as analysis magnification and asbestos fiber dimension to be count (with length ≥5 µm or also asbestos fibers with length <5 µm) in the lung asbestos fiber burden analysis for legal medicine evaluations. METHODS: On the same lung tissue samples, two different analyses were carried out to count any asbestos fibers with length ≥1 µm and with length ≥5 µm. Results of the amphibole burden of the two analyses were compared by linear regression analysis on log10-transformed values. RESULTS: The analysis should be carried out at an appropriate magnification and on samples prepared in such a way as they allow the counting of very fine fibers. If the analysis is limited to the asbestos fibers with length ≥5 µm, there is a high risk of not detecting possible residual chrysotile fiber burden and thinner crocidolite asbestos fibers. CONCLUSIONS: On average we estimated that 1 amphibole fiber with length ≥5 µm corresponds to ∼8 amphibole fibers with length ≥1 µm in the lung. The values of the Helsinki criteria should be updated taking this into account.


Subject(s)
Asbestos , Lung Neoplasms , Humans , Asbestos/toxicity , Asbestos/analysis , Lung/chemistry , Asbestos, Amphibole/toxicity , Asbestos, Amphibole/analysis , Asbestos, Serpentine/toxicity , Forensic Medicine
15.
Histol Histopathol ; 38(11): 1249-1256, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466108

ABSTRACT

BACKGROUND: Mesothelioma is strongly associated with exposure to asbestos fibers, however, recent studies have also linked exposure to "naturally occurring asbestos" fibers with this disease. Fluoro-edenite, a silicate mineral found in the southeast of Biancavilla (Sicily, Italy), has been identified as a potential risk factor for mesothelioma. Unfortunately, this cancer often has a poor prognosis, and current diagnostic and prognostic biomarkers are inadequate. Histological subtype, gender, and age at diagnosis are the most significant parameters for mesothelioma. Stathmin, a cytosolic protein that regulates cell growth and migration and is overexpressed in many human malignancies, has not yet been linked to mesothelioma survival or clinical-pathological variables. AIM: The aim of this study was to investigate the immunohistochemical expression of stathmin in ten mesothelioma tissue samples with available clinical and follow-up data. MATERIAL AND METHODS: Paraffin-embedded tissue samples from ten mesothelioma patients were processed for immunohistochemical analyses to evaluate stathmin expression. RESULTS: Our findings suggest that stathmin overexpression is associated with shorter overall survival in patients with mesothelioma. Furthermore, stathmin expression was significantly correlated with the survival time of mesothelioma patients. CONCLUSION: Our results suggest that stathmin expression may serve as a potential prognostic biomarker for mesothelioma. This biomarker could be used to promptly identify patients with poor prognosis and to guide clinicians in the selection of treatment options.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Humans , Asbestos/toxicity , Asbestos/analysis , Biomarkers/analysis , Lung Neoplasms/pathology , Mesothelioma/diagnosis , Mesothelioma/metabolism , Sicily , Stathmin
16.
Inhal Toxicol ; 35(7-8): 201-213, 2023.
Article in English | MEDLINE | ID: mdl-37339371

ABSTRACT

BACKGROUND: Asbestos has been classified as a human carcinogen, and exposure may increase the risk of diseases associated with impaired respiratory function. As the range of health effects and airborne concentrations that result in health effects across asbestos-related natural mineral fiber types are not fully understood, the National Institute of Environmental Health Sciences has established a series of research studies to characterize hazards of natural mineral fibers after inhalation exposure. This paper presents the method development work of this research project. RESULTS: A prototype nose-only exposure system was fabricated to explore the feasibility of generating natural mineral fiber aerosol for in vivo inhalation toxicity studies. The prototype system consisted of a slide bar aerosol generator, a distribution/delivery system and an exposure carousel. Characterization tests conducted using Libby Amphibole 2007 (LA 2007) demonstrated the prototype system delivered stable and controllable aerosol concentration to the exposure carousel. Transmission electron microscopy (TEM) analysis of aerosol samples collected at the exposure port showed the average fiber length and width were comparable to the bulk LA 2007. TEM coupled with energy dispersive spectrometry (EDS) and selected area electron diffraction (SAED) analysis further confirmed fibers from the aerosol samples were consistent with the bulk LA 2007 chemically and physically. CONCLUSIONS: Characterization of the prototype system demonstrated feasibility of generating LA 2007 fiber aerosols appropriate for in vivo inhalation toxicity studies. The methods developed in this study are suitable to apply to a multiple-carousel exposure system for a rat inhalation toxicity testing using LA 2007.


Subject(s)
Asbestos, Amphibole , Asbestos , Humans , Rats , Animals , Asbestos, Amphibole/toxicity , Mineral Fibers , Asbestos/analysis , Carcinogens/toxicity , Aerosols
17.
Inhal Toxicol ; 35(7-8): 185-200, 2023.
Article in English | MEDLINE | ID: mdl-37220304

ABSTRACT

CONTEXT: Excess mesothelioma risk was observed among chrysotile miners and millers in Balangero, Italy. The mineral balangeroite has been identified in an asbestiform habit from the Balangero chrysotile mine (Italy). Previous studies did not contain a detailed description of the fiber dimensions, thus limiting possible approaches to estimating their carcinogenic potential. OBJECTIVES: To reconstruct excess mesothelioma risk based on characteristics of mixed fiber exposure. METHODS: The lengths and widths of particles from a sample of balangeroite were measured by transmission electron microscopy (TEM). Statistical analysis and modeling were applied to assess the toxicological potential of balangeroite. RESULTS: Balangeroite fibers are characterized as asbestiform, with geometric mean length of 10 µm, width of 0.54 µm, aspect ratio of 19, and specific surface area of 13.8 (1/µm). Proximity analysis shows dimensional characteristics of balangeroite close to asbestiform anthophyllite. Modeling estimates the average potency of balangeroite as 0.04% (95% CI 0.0058, 0.16) based on dimensional characteristics and 0.05% (95% CI-0.04, 0.24) based on epidemiological data. The available estimate of the fraction of balangeroite in the Balangero mine is very approximate. There were no data for airborne balangeroite fibers from the Balangero mine and no lung burden data are available. All estimates were performed using weight fractions of balangeroite and chrysotile. However, based on reasonable assumptions, of the seven cases of mesothelioma in the cohort, about three cases (43%) can be attributed to fibrous balangeroite. CONCLUSION: The presence of different types of mineral fibers in aerosolized materials even in small proportions can explain observed cancer risks.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Humans , Asbestos, Serpentine/toxicity , Mineral Fibers/toxicity , Carcinogens/toxicity , Asbestos, Amphibole/toxicity , Mesothelioma/chemically induced , Mesothelioma/epidemiology , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Asbestos/analysis
18.
Part Fibre Toxicol ; 20(1): 19, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37150820

ABSTRACT

BACKGROUND: Asbestos is a fibrous mineral that was widely used in the past. However, asbestos inhalation is associated with an aggressive type of cancer known as malignant mesothelioma (MM). After inhalation, an iron-rich coat forms around the asbestos fibres, together the coat and fibre are termed an "asbestos ferruginous body" (AFB). AFBs are the main features associated with asbestos-induced MM. Whilst several studies have investigated the external morphology of AFBs, none have characterised the internal morphology. Here, cross-sections of multiple AFBs from two smokers and two non-smokers are compared to investigate the effects of smoking on the onset and growth of AFBs. Morphological and chemical observations of AFBs were undertaken by transmission electron microscopy, energy dispersive x-ray spectroscopy and selected area diffraction. RESULTS: The AFBs of all patients were composed of concentric layers of 2-line or 6-line ferrihydrite, with small spherical features being observed on the outside of the AFBs and within the cross-sections. The spherical components are of a similar size to Fe-rich inclusions found within macrophages from mice injected with asbestos fibres in a previous study. As such, the spherical components composing the AFBs may result from the deposition of Fe-rich inclusions during frustrated phagocytosis. The AFBs were also variable in terms of their Fe, P and Ca abundances, with some layers recording higher Fe concentrations (dense layers), whilst others lower Fe concentrations (porous layers). Furthermore, smokers were found to have smaller and overall denser AFBs than non-smokers. CONCLUSIONS: The AFBs of smokers and non-smokers show differences in their morphology, indicating they grew in lung environments that experienced disparate conditions. Both the asbestos fibres of smokers and non-smokers were likely subjected to frustrated phagocytosis and accreted mucopolysaccharides, resulting in Fe accumulation and AFB formation. However, smokers' AFBs experienced a more uniform Fe-supply within the lung environment compared to non-smokers, likely due to Fe complexation from cigarette smoke, yielding denser, smaller and more Fe-rich AFBs. Moreover, the lack of any non-ferrihydrite Fe phases in the AFBs may indicate that the ferritin shell was intact, and that ROS may not be the main driver for the onset of MM.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Mesothelioma, Malignant/pathology , Smoking/adverse effects , Asbestos/toxicity , Asbestos/analysis , Lung , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mesothelioma/chemically induced , Mesothelioma/pathology
19.
Environ Geochem Health ; 45(7): 5039-5051, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37058192

ABSTRACT

Asbestos bodies (AB) form in the lungs as a result of a biomineralization process initiated by the alveolar macrophages in the attempt to remove asbestos. During this process, organic and inorganic material deposit on the foreign fibers forming a Fe-rich coating. The AB start to form in months, thus quickly becoming the actual interface between asbestos and the lung tissue. Therefore, revealing their composition, and, in particular, the chemical form of Fe, which is the major component of the AB, is essential to assess their possible role in the pathogenesis of asbestos-related diseases. In this work we report the result of the first x-ray diffraction measurements performed on single AB embedded in the lung tissue samples of former asbestos plant workers. The combination with x-ray absorption spectroscopy data allowed to unambiguously reveal that Fe is present in the AB in the form of two Fe-oxy(hydroxides): ferrihydrite and goethite. The presence of goethite, which can be explained in terms of the transformation of ferrihydrite (a metastable phase) due to the acidic conditions induced by the alveolar macrophages in their attempt to phagocytose the fibers, has toxicological implications that are discussed in the paper.


Subject(s)
Asbestos , Asbestosis , Humans , Asbestosis/etiology , Asbestosis/pathology , Asbestos/toxicity , Asbestos/analysis , Lung/chemistry
20.
Am J Ind Med ; 66(7): 543-553, 2023 07.
Article in English | MEDLINE | ID: mdl-36974955

ABSTRACT

While all forms of asbestos have been determined to be carcinogenic to humans by the International Agency for Research on Cancer (IARC) as well as other authoritative bodies, the relative carcinogenic potency of chrysotile continues to be argued, largely in the context of toxic tort litigation. Relatively few epidemiologic studies have investigated only a single form of asbestos; however, one study that included an asbestos textile plant located in Marshville, North Carolina that processed chrysotile asbestos was used by the United States Environmental Protection Agency (EPA) in 2020 to help inform the agency's chrysotile asbestos risk assessment. During the EPA proceedings toxic tort defense consultants submitted comments to the EPA docket and made public presentations asserting that the Marshville plant had processed amphibole asbestos types and should not be used for the chrysotile risk assessment. A detailed evaluation of defense consultant assertions and supporting information and a full assessment of the available information concerning asbestos types used at the Marshville plant was undertaken. The preponderance of evidence continues to support the conclusion that neither amosite nor crocidolite were likely to have been processed in the Marshville textile plant. Defense consultants' assertions about chrysotile use are not supported by the preponderance of evidence and constitute an example of manipulation of information to cast uncertainty and doubt rather than to seek truth and contribute to the body of scientific evidence.


Subject(s)
Asbestos , Lung Neoplasms , Mesothelioma , United States , Humans , Asbestos, Serpentine/toxicity , Asbestos, Serpentine/analysis , United States Environmental Protection Agency , Asbestos/toxicity , Asbestos/analysis , Asbestos, Amphibole/toxicity , Asbestos, Amphibole/analysis , Asbestos, Crocidolite/analysis , Asbestos, Crocidolite/toxicity , Risk Assessment , Mesothelioma/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...