Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.034
Filter
1.
PeerJ ; 12: e17715, 2024.
Article in English | MEDLINE | ID: mdl-39119104

ABSTRACT

Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, ß-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.


Subject(s)
Actinidia , Ascomycota , Genome, Fungal , Plant Diseases , Actinidia/microbiology , Plant Diseases/microbiology , China , Ascomycota/genetics , Ascomycota/pathogenicity , Ascomycota/enzymology , Genome, Fungal/genetics , Polygalacturonase/genetics , Polygalacturonase/metabolism , Fruit/microbiology , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cellulase/genetics , Cellulase/metabolism , Cell Wall/metabolism , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
2.
J Agric Food Chem ; 72(32): 17802-17812, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39092526

ABSTRACT

Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 µg/mL and against Cercospora arachidicola even below 2 µg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.


Subject(s)
Enzyme Inhibitors , Fungicides, Industrial , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Molecular Docking Simulation , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Ascomycota/drug effects , Ascomycota/enzymology , Molecular Structure
3.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010102

ABSTRACT

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Subject(s)
Autophagy , Fungal Proteins , Oryza , Fungal Proteins/metabolism , Fungal Proteins/genetics , Oryza/microbiology , Virulence/genetics , Peroxisomes/metabolism , Plant Diseases/microbiology , Ascomycota/pathogenicity , Ascomycota/genetics , Ascomycota/enzymology , MAP Kinase Signaling System , Oxidative Stress
4.
J Agric Food Chem ; 72(26): 14535-14546, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38906830

ABSTRACT

The development of new fungicide molecules is a crucial task for agricultural chemists to enhance the effectiveness of fungicides in agricultural production. In this study, a series of novel fluoroalkenyl modified succinate dehydrogenase inhibitors were synthesized and evaluated for their antifungal activities against eight fungi. The results from the in vitro antifungal assay demonstrated that compound 34 exhibited superior activity against Rhizoctonia solani with an EC50 value of 0.04 µM, outperforming commercial fluxapyroxad (EC50 = 0.18 µM) and boscalid (EC50 = 3.07 µM). Furthermore, compound 34 showed similar effects to fluxapyroxad on other pathogenic fungi such as Sclerotinia sclerotiorum (EC50 = 1.13 µM), Monilinia fructicola (EC50 = 1.61 µM), Botrytis cinerea (EC50 = 1.21 µM), and also demonstrated protective and curative efficacies in vivo on rapeseed leaves and tomato fruits. Enzyme activity experiments and protein-ligand interaction analysis by surface plasmon resonance revealed that compound 34 had a stronger inhibitory effect on succinate dehydrogenase compared to fluxapyroxad. Additionally, molecular docking and DFT calculation confirmed that the fluoroalkenyl unit in compound 34 could enhance its binding capacity with the target protein through p-π conjugation and hydrogen bond interactions.


Subject(s)
Drug Design , Enzyme Inhibitors , Fungal Proteins , Fungicides, Industrial , Rhizoctonia , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/enzymology , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Plant Diseases/microbiology , Molecular Docking Simulation , Botrytis/drug effects , Botrytis/enzymology , Ascomycota/drug effects , Ascomycota/enzymology , Solanum lycopersicum/microbiology , Solanum lycopersicum/chemistry , Molecular Structure
5.
Fungal Genet Biol ; 173: 103899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802054

ABSTRACT

Fusarium head blight is a devastating disease that causes severe yield loses and mycotoxin contamination in wheat grain. Additionally, balancing the trade-off between wheat production and disease resistance has proved challenging. This study aimed to expand the genetic tools of the endophyte Phomopsis liquidambaris against Fusarium graminearum. Specifically, we engineered a UDP-glucosyltransferase-expressing P. liquidambaris strain (PL-UGT) using ADE1 as a selection marker and obtained a deletion mutant using an inducible promoter that drives Cas9 expression. Our PL-UGT strain converted deoxynivalenol (DON) into DON-3-G in vitro at a rate of 71.4 % after 36 h. DON inactivation can be used to confer tolerance in planta. Wheat seedlings inoculated with endophytic strain PL-UGT showed improved growth compared with those inoculated with wildtype P. liquidambaris. Strain PL-UGT inhibited the growth of Fusarium graminearum and reduced infection rate to 15.7 %. Consistent with this finding, DON levels in wheat grains decreased from 14.25 to 0.56 µg/g when the flowers were pre-inoculated with PL-UGT and then infected with F. graminearum. The expression of UGT in P. liquidambaris was nontoxic and did not inhibit plant growth. Endophytes do not enter the seeds nor induce plant disease, thereby representing a novel approach to fungal disease control.


Subject(s)
Ascomycota , Endophytes , Fusarium , Glucosyltransferases , Plant Diseases , Trichothecenes , Triticum , Triticum/microbiology , Triticum/genetics , Trichothecenes/metabolism , Fusarium/genetics , Fusarium/drug effects , Fusarium/enzymology , Endophytes/genetics , Endophytes/enzymology , Endophytes/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Ascomycota/genetics , Ascomycota/drug effects , Ascomycota/enzymology , Disease Resistance/genetics , Mycotoxins/metabolism
6.
Microbiol Spectr ; 12(7): e0394323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757984

ABSTRACT

Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and ß-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.


Subject(s)
Fungal Proteins , Lignin , Proteomics , Lignin/metabolism , Fungal Proteins/metabolism , Secretome/metabolism , Biomass , Cellulases/metabolism , Ascomycota/metabolism , Ascomycota/growth & development , Ascomycota/enzymology
7.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38759097

ABSTRACT

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


Subject(s)
14-alpha Demethylase Inhibitors , Ascomycota , Drug Design , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Rhizoctonia , Sterol 14-Demethylase , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Rhizoctonia/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Ascomycota/drug effects , Ascomycota/enzymology , Models, Molecular , Botrytis/drug effects , Penicillium/drug effects , Penicillium/enzymology , Molecular Structure , Molecular Docking Simulation
8.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760519

ABSTRACT

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Subject(s)
Ascomycota , Enzyme Stability , Fungal Proteins , Lipase , Plant Leaves , Lipase/metabolism , Lipase/genetics , Plant Leaves/microbiology , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/metabolism , Hydrogen-Ion Concentration , Fungal Proteins/metabolism , Fungal Proteins/genetics , Temperature , Substrate Specificity , Hot Temperature , Bacterial Proteins
9.
Int J Biol Macromol ; 271(Pt 1): 132539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777023

ABSTRACT

The deep-sea fungus Phomopsis lithocarpus FS508 produces tenellone-macrolide conjugated hetero-dimer lithocarpins A-G with anti-tumor activities. The deficiency of new intermolecular Diels-Alder (DA) enzymes hindered the development of new bioactive hetero-dimers. A novel single-function intermolecular DA enzyme, g7882, was initially discovered in this study. The deletion of g7882 led to the disappearance of lithocarpin A and an increase in precursor level . the overexpression of g7882 significantly improved lithocarpin A yield. The in vitro function of g7882DA was also confirmed by biochemical reaction using tenellone B as a substrate. Additionally, the knockout of KS modules of PKS in cluster 41 and cluster 81 (lit cluster) eliminated the production of lithocarpins, which firstly explains the biosynthetic process of hetero-dimer lithocarpins mediated by DA enzyme in FS508. Furthermore, the removal of a novel acetyltransferase GPAT in cluster 41 and the oxidoreductase, prenyltransferase in cluster81 resulted in the reduction of lithocarpin A in P. lithocarpus. The overexpression of gpat in P. lithocarpus FS508 improved the yield of lithocarpin A significantly and produced a new tenellone derivative lithocarol G. This study offers a new DA enzyme tool for the biosynthesis of novel hetero-dimer and biochemical clues for the biosynthetic logic elucidation of lithocarpins.


Subject(s)
Cycloaddition Reaction , Ascomycota/enzymology , Multigene Family
10.
J Food Sci ; 89(5): 2645-2658, 2024 May.
Article in English | MEDLINE | ID: mdl-38563094

ABSTRACT

Xylanases are mainly utilized in bakery industry for the hydrolysis of dietary fiber-based fractions. Their applications in gluten-free products have not been considered before. In the present study, the xylanase produced by Aureobasidium pullulans NRRL Y-2311-1 was utilized in a mulberry and rice flours-based gluten-free cookie formulation for the first time. Effects of various xylanase concentrations on gluten-free dough rheology and cookie characteristics were elucidated. Only rice flour-based cookie and only wheat flour-based cookie formulations were also prepared as comparison. Incorporation of xylanase into all cookie recipes resulted in softer cookie doughs with lower absolute stickiness. The hardness and absolute stickiness of the cookie doughs prepared by the mixture of mulberry and rice flours decreased by the addition of the enzyme into the formulation in a concentration-dependent manner. Enzyme concentrations above 100 U/100 g flour did not provide statistically significant further changes on gluten-free cookie doughs. Incorporation of xylanase into the cookie recipes resulted in increased baking loss and spread ratio in an enzyme concentration-dependent manner for all cookie types. Hardness values of both types of gluten-free cookies decreased by xylanase incorporation. Different effects on fracturability were observed depending on the cookie type and enzyme concentration. Enzyme concentration of 100 U/100 g flour provided mulberry and rice flours-based cookies with a more flexible and softer structure. No significant effects on color parameters of cookies were observed by xylanase incorporation.


Subject(s)
Diet, Gluten-Free , Flour , Morus , Oryza , Rheology , Flour/analysis , Oryza/chemistry , Morus/chemistry , Ascomycota/enzymology , Food Handling/methods , Endo-1,4-beta Xylanases/metabolism , Hardness , Cooking/methods , Dietary Fiber/analysis , Triticum/chemistry , Glutens/analysis
11.
Phys Chem Chem Phys ; 26(16): 12331-12344, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38598177

ABSTRACT

Oxaloacetic acid (OAA) is a ß-ketocarboxylic acid, which plays an important role as an intermediate in some metabolic pathways, including the tricarboxylic acid cycle, gluconeogenesis and fatty acid biosynthesis. Animal studies have indicated that supplementing oxaloacetic acid shows an increase of lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Most of the chemical transformations of OAA in the metabolic pathways have been extensively studied; however, the understanding of decarboxylation of OAA at the atomic level is relatively lacking. Here, we carried out MD simulations and combined quantum mechanical/molecular mechanical (QM/MM) calculations as an example to systematically elucidate the binding modes, keto-enol tautomerization and decarboxylation of OAA in the active site of macrophomate synthase (MPS), which is a Mg(II)-dependent bifunctional enzyme that catalyzes both the decarboxylation of OAA and [4+2] cycloaddition of 2-pyrone with the decarboxylated intermediate of OAA (pyruvate enolate). On the basis of our calculations, it was found that the Mg2+-coordinated oxaloacetate may exist in enol forms and keto forms. The four keto forms can be transformed into each other by simply rotating the C2-C3 single bond, nevertheless, the keto-enol tautomerization strictly requires the assistance of pocket water molecules. In addition, the decarboxylation is stereo-electronically controlled, i.e., it is the relative orientation of the terminal carboxyl anion that determines the rate of decarboxylation. As such, the chemistry of oxaloacetate in the active site of MPS is complex. On one hand, the most stable binding mode (K-I) may undergo enol-keto tautomerization to isomerize to the enol form, which may further react with the second substrate; on the other hand, K-I may isomerize to another binding mode K-II to proceed decarboxylation to generate pyruvate enolate and CO2. Starting from K-I, the enol-keto tautomerization corresponds to a barrier of 16.2 kcal mol-1, whereas the decarboxylation is associated with an overall barrier of 19.7 kcal mol-1. These findings may provide useful information for understanding the chemistry of OAA and the catalysis of related enzymes, and they are basically in agreement with the available experimental kinetic data.


Subject(s)
Ascomycota , Multienzyme Complexes , Catalytic Domain , Decarboxylation , Molecular Dynamics Simulation , Oxaloacetic Acid/metabolism , Oxaloacetic Acid/chemistry , Quantum Theory , Stereoisomerism , Multienzyme Complexes/chemistry , Ascomycota/enzymology
12.
Int J Biol Macromol ; 266(Pt 2): 131149, 2024 May.
Article in English | MEDLINE | ID: mdl-38556232

ABSTRACT

Northern corn leaf blight caused by Setosphaeria turcica is a major fungal disease responsible for significant reductions in maize yield worldwide. Eukaryotic type 2A protein phosphatase (PP2A) influences growth and virulence in a number of pathogenic fungi, but little is known about its roles in S. turcica. Here, we functionally characterized S. turcica StPP2A-C, which encodes the catalytic C subunit of StPP2A. StPP2A-C deletion slowed colony growth, conidial germination, and appressorium formation but increased conidiation, melanin biosynthesis, glycerol content, and disease lesion size on maize. These effects were associated with expression changes in genes related to calcium signaling, conidiation, laccase activity, and melanin and glycerol biosynthesis, as well as changes in intra- and extracellular laccase activity. A pull-down screen for candidate StPP2A-c interactors revealed an interaction between StPP2A-c and StLac1. Theoretical modeling and yeast two-hybrid experiments confirmed that StPP2A-c interacted specifically with the copper ion binding domain of StLac1 and that Cys267 of StPP2A-c was required for this interaction. StPP2A-C expression thus appears to promote hyphal growth and reduce pathogenicity in S. turcica, at least in part by altering melanin synthesis and laccase activity; these insights may ultimately support the development of novel strategies for biological management of S. turcica.


Subject(s)
Ascomycota , Catalytic Domain , Gene Expression Regulation, Fungal , Melanins , Protein Phosphatase 2 , Spores, Fungal , Melanins/biosynthesis , Ascomycota/genetics , Ascomycota/metabolism , Ascomycota/enzymology , Spores, Fungal/growth & development , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Zea mays/microbiology
13.
J Biol Chem ; 299(7): 104898, 2023 07.
Article in English | MEDLINE | ID: mdl-37295774

ABSTRACT

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Subject(s)
Alcohol Oxidoreductases , Ascomycota , Biocatalysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Ascomycota/enzymology , Phenols/chemistry , Phenols/metabolism , Substrate Specificity , Hydroxylation , Ethers/chemistry , Ethers/metabolism
14.
Nature ; 606(7913): 414-419, 2022 06.
Article in English | MEDLINE | ID: mdl-35650436

ABSTRACT

All known triterpenes are generated by triterpene synthases (TrTSs) from squalene or oxidosqualene1. This approach is fundamentally different from the biosynthesis of short-chain (C10-C25) terpenes that are formed from polyisoprenyl diphosphates2-4. In this study, two fungal chimeric class I TrTSs, Talaromyces verruculosus talaropentaene synthase (TvTS) and Macrophomina phaseolina macrophomene synthase (MpMS), were characterized. Both enzymes use dimethylallyl diphosphate and isopentenyl diphosphate or hexaprenyl diphosphate as substrates, representing the first examples, to our knowledge, of non-squalene-dependent triterpene biosynthesis. The cyclization mechanisms of TvTS and MpMS and the absolute configurations of their products were investigated in isotopic labelling experiments. Structural analyses of the terpene cyclase domain of TvTS and full-length MpMS provide detailed insights into their catalytic mechanisms. An AlphaFold2-based screening platform was developed to mine a third TrTS, Colletotrichum gloeosporioides colleterpenol synthase (CgCS). Our findings identify a new enzymatic mechanism for the biosynthesis of triterpenes and enhance understanding of terpene biosynthesis in nature.


Subject(s)
Ascomycota , Talaromyces , Triterpenes , Ascomycota/enzymology , Colletotrichum/enzymology , Cyclization , Diphosphates/metabolism , Squalene/chemistry , Substrate Specificity , Talaromyces/enzymology , Triterpenes/chemistry , Triterpenes/metabolism
15.
Toxins (Basel) ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: mdl-35202110

ABSTRACT

Zearalenone is a common mycotoxin contaminant in cereals that causes severe economic losses and serious risks to health of human and animals. Many strategies have been devised to degrade ZEN and keep food safe. The hydrolase ZHD101 from Clonostachys rosea, which catalyzes the hydrolytic degradation of ZEN, has been studied widely. In the current research, three new enzymes that have the capacity to detoxify ZEN were identified, namely CLA, EXO, and TRI, showing 61%, 63%, and 97% amino acids identities with ZHD101, respectively. Three coding genes was expressed as heterologous in Escherichia coli BL21. Through biochemical analysis, the purified recombinant CLA, EXO, TRI, and ZHD101 exhibited high activities of degrading ZEN with the specific activity of 114.8 U/mg, 459.0 U/mg, 239.8 U/mg, and 242.8 U/mg. The optimal temperatures of CLA, EXO, TRI, and ZHD101 were 40 °C, 40 °C, 40 °C, and 45 °C, and their optimum pH were 7.0, 9.0, 9.5, and 9.0, respectively. Our study demonstrated that the novel enzymes CLA, EXO, and TRI possessed high ability to degrade ZEN from the model solutions and could be the promising candidates for ZEN detoxification in practical application.


Subject(s)
Ascomycota/enzymology , Cloning, Molecular , Fungal Proteins/metabolism , Zearalenone/metabolism , Zearalenone/toxicity , Amino Acid Sequence , Fungal Proteins/genetics , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology
16.
J Biol Chem ; 298(3): 101670, 2022 03.
Article in English | MEDLINE | ID: mdl-35120929

ABSTRACT

Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) ß-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate-binding pocket at subsite -1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the KM values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.


Subject(s)
Ascomycota , Phanerochaete , Xylans , Xylosidases , Ascomycota/enzymology , Ascomycota/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Phanerochaete/enzymology , Phanerochaete/genetics , Phylogeny , Substrate Specificity , Xylans/metabolism , Xylosidases/chemistry , Xylosidases/genetics , Xylosidases/metabolism
17.
G3 (Bethesda) ; 12(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-35077565

ABSTRACT

Fungal species of the Ceratocystidaceae grow on their host plants using a variety of different lifestyles, from saprophytic to highly pathogenic. Although many genomes of fungi in the Ceratocystidaceae are publicly available, it is not known how the genes that encode catechol dioxygenases (CDOs), enzymes involved in the degradation of phenolic plant defense compounds, differ among members of the Ceratocystidaceae. The aim of this study was therefore to identify and characterize the genes encoding CDOs in the genomes of Ceratocystidaceae representatives. We found that genes encoding CDOs are more abundant in pathogenic necrotrophic species of the Ceratocystidaceae and less abundant in saprophytic species. The loss of the CDO genes and the associated 3-oxoadipate catabolic pathway appears to have occurred in a lineage-specific manner. Taken together, this study revealed a positive association between CDO gene copy number and fungal lifestyle in Ceratocystidaceae representatives.


Subject(s)
Ascomycota , Dioxygenases , Plants , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/pathogenicity , Catechols/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Dosage , Plants/microbiology
18.
J Appl Microbiol ; 132(3): 2144-2156, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34797022

ABSTRACT

AIMS: Phospholipase C (PLC) is a hydrolase involved in signal transduction in eukaryotic cells. This study aimed to understand the function of PLC in the nematode-trapping fungus Arthrobotrys oligospora. METHODS AND RESULTS: Orthologous PLC (AoPLC2) of A. oligospora was functionally analysed using gene disruption and multi-phenotypic analysis. Disrupting Aoplc2 caused a deformation of partial hyphal cells (about 10%) and conidia (about 50%), decreased the number of nuclei in both conidia and hyphal cells, and increased the accumulation of lipid droplets. Meanwhile, the sporulation-related genes fluG and abaA were downregulated in ΔAoplc2 mutants than in the wild-type strain. Moreover, ΔAoplc2 mutants were more sensitive to osmotic stressors. Importantly, the number of traps, electron-dense bodies in traps, and nematicidal activity of ΔAoplc2 mutants were reduced, and the shape of the traps was deformed. In addition, AoPLC2 was involved in the biosynthesis of secondary metabolites in A. oligospora. CONCLUSIONS: AoPLC2 plays an important role in the development of hyphae, spores, and cell nuclei, responses to stress, formation of traps, and predation of nematodes in A. oligospora. SIGNIFICANCE AND IMPACT OF STUDY: This study reveals the various functions of phospholipase C and elucidates the regulation of trap morphogenesis in nematode-trapping fungi.


Subject(s)
Ascomycota , Nematoda , Type C Phospholipases , Animals , Ascomycota/enzymology , Ascomycota/genetics , Morphogenesis , Nematoda/microbiology , Type C Phospholipases/genetics , Type C Phospholipases/metabolism , Virulence/genetics
19.
J Microbiol ; 60(1): 79-88, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34964944

ABSTRACT

Phytopathogenic fungi are known to secrete specific proteins which act as virulence factors and promote host colonization. Some of them are enzymes with plant cell wall degradation capability, like pectate lyases (Pls). In this work, we examined the involvement of Pls in the infection process of Magnaporthe oryzae, the causal agent of rice blast disease. From three Plgenes annotated in the M. oryzae genome, only transcripts of MoPL1 considerably accumulated during the infection process with a peak at 72 h post inoculation. Both, gene deletion and a constitutive expression of MoPL1 in M. oryzae led to a significant reduction in virulence. By contrast, mutants that constitutively expressed an enzymatic inactive version of MoPl1 did not differ in virulence compared to the wild type isolate. This indicates that the enzymatic activity of MoPl1 is responsible for diminished virulence, which is presumably due to degradation products recognized as danger associated molecular patterns (DAMPs), which strengthen the plant immune response. Microscopic analysis of infection sites pointed to an increased plant defense response. Additionally, MoPl1 tagged with mRFP, and not the enzymatic inactive version, focally accumulated in attacked plant cells beneath appressoria and at sites where fungal hyphae transverse from one to another cell. These findings shed new light on the role of pectate lyases during tissue colonization in the necrotrophic stage of M. oryzae's life cycle.


Subject(s)
Ascomycota/enzymology , Ascomycota/pathogenicity , Fungal Proteins/genetics , Gene Deletion , Plant Diseases/microbiology , Polysaccharide-Lyases/genetics , Ascomycota/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Multigene Family , Oryza/microbiology , Polysaccharide-Lyases/metabolism , Virulence
20.
J Agric Food Chem ; 69(50): 15175-15183, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34881573

ABSTRACT

Macrophomina phaseolina (M. phaseolina) is a crucial pathogenic fungus that can cause severe charcoal rot in economic crops and other plants. In this study, four new natural products, macrollins A-D, were discovered from M. phaseolina by the strategy of heterologous expression. To our knowledge, macrollins are the first reported polyketide-amino acid hybrids from the plant pathogen. Heterologous expression and in vitro reactions revealed a cytochrome P450 mono-oxygenase (MacC) catalyzing the hydroxylation at the ß-carbon of tetramic acid molecules, which is different from P450s leading to the ring expansion in the biosynthesis of fungal 2-pyridones. Phylogenetic analysis of P450s involved in the fungal polyketide-amino acid hybrids showed that MacC was not classified in any known clades. The putative oxidative mechanisms of the P450s and the biosynthetic pathway of macrollins were also proposed.


Subject(s)
Ascomycota/enzymology , Cytochrome P-450 Enzyme System/metabolism , Pyrrolidinones/metabolism , Cytochrome P-450 Enzyme System/genetics , Phylogeny , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL