Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Nat Neurosci ; 27(8): 1444, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107595
2.
Biol Res ; 57(1): 53, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135103

ABSTRACT

BACKGROUND: As a common disabling disease, irreversible neuronal death due to spinal cord injury (SCI) is the root cause of functional impairment; however, the capacity for neuronal regeneration in the developing spinal cord tissue is limited. Therefore, there is an urgent need to investigate how defective neurons can be replenished and functionally integrated by neural regeneration; the reprogramming of intrinsic cells into functional neurons may represent an ideal solution. METHODS: A mouse model of transection SCI was prepared by forceps clamping, and an adeno-associated virus (AAV) carrying the transcription factors NeuroD1 and Neurogenin-2(Ngn2) was injected in situ into the spinal cord to specifically overexpress these transcription factors in astrocytes close to the injury site. 5-bromo-2´-deoxyuridine (BrdU) was subsequently injected intraperitoneally to continuously track cell regeneration, neuroblasts and immature neurons marker expression, neuronal regeneration, and glial scar regeneration. In addition, immunoprotein blotting was used to measure the levels of transforming growth factor-ß (TGF-ß) pathway-related protein expression. We also evaluated motor function, sensory function, and the integrity of the blood-spinal cord barrier(BSCB). RESULTS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord was achieved by specific AAV vectors. This intervention led to a significant increase in cell regeneration and the proportion of cells with neuroblasts and immature neurons cell properties at the injury site(p < 0.0001). Immunofluorescence staining identified astrocytes with neuroblasts and immature neurons cell properties at the site of injury while neuronal marker-specific staining revealed an increased number of mature astrocytes at the injury site. Behavioral assessments showed that the intervention did not improve The BMS (Basso mouse scale) score (p = 0.0726) and gait (p > 0.05), although the treated mice had more sensory sensitivity and greater voluntary motor ability in open field than the non-intervention mice. We observed significant repair of the BSCB at the center of the injury site (p < 0.0001) and a significant improvement in glial scar proliferation. Electrophysiological assessments revealed a significant improvement in spinal nerve conduction (p < 0.0001) while immunostaining revealed that the levels of TGF-ß protein at the site of injury in the intervention group were lower than control group (p = 0.0034); in addition, P70 s6 and PP2A related to the TGF-ß pathway showed ascending trend (p = 0.0036, p = 0.0152 respectively). CONCLUSIONS: The in situ overexpression of NeuroD1 and Ngn2 in the spinal cord after spinal cord injury can reprogram astrocytes into neurons and significantly enhance cell regeneration at the injury site. The reprogramming of astrocytes can lead to tissue repair, thus improving the reduced threshold and increasing voluntary movements. This strategy can also improve the integrity of the blood-spinal cord barrier and enhance nerve conduction function. However, the simple reprogramming of astrocytes cannot lead to significant improvements in the striding function of the lower limbs.


Subject(s)
Astrocytes , Basic Helix-Loop-Helix Transcription Factors , Disease Models, Animal , Nerve Tissue Proteins , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Astrocytes/physiology , Nerve Tissue Proteins/metabolism , Mice , Nerve Regeneration/physiology , Neurons , Female , Mice, Inbred C57BL , Spinal Cord/metabolism
3.
Biol Res ; 57(1): 54, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143594

ABSTRACT

Brain damage triggers diverse cellular and molecular events, with astrocytes playing a crucial role in activating local neuroprotective and reparative signaling within damaged neuronal circuits. Here, we investigated reactive astrocytes using a multidimensional approach to categorize their responses into different subtypes based on morphology. This approach utilized the StarTrack lineage tracer, single-cell imaging reconstruction and multivariate data analysis. Our findings identified three profiles of reactive astrocyte responses, categorized by their effects on cell size- and shape- related morphological parameters: "moderate", "strong," and "very strong". We also examined the heterogeneity of astrocyte reactivity, focusing on spatial and clonal distribution. Our research revealed a notable enrichment of protoplasmic and fibrous astrocytes within the "strong" and "very strong" response subtypes. Overall, our study contributes to a better understanding of astrocyte heterogeneity in response to an injury. By characterizing the diverse reactive responses among astrocyte subpopulations, we provide insights that could guide future research aimed at identifying novel therapeutic targets to mitigate brain damage and promote neural repair.


Subject(s)
Astrocytes , Astrocytes/physiology , Animals , Mice , Cell Lineage/physiology , Cluster Analysis , Single-Cell Analysis
4.
Mol Brain ; 17(1): 52, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107815

ABSTRACT

Activation of astrocytes after sensory stimulation has been reported to be involved in increased blood flow in the central nervous system. In the present study, using a chemogenetic method to induce astrocyte activation in mice without sensory stimulation, we found that astrocytic activation led to increased blood flow in the olfactory bulb, suggesting that astrocyte activation is sufficient for increasing blood flow in the olfactory bulb. The technique established here will be useful for studying the mechanisms underlying sensory input-dependent blood flow increases.


Subject(s)
Astrocytes , Olfactory Bulb , Animals , Olfactory Bulb/physiology , Olfactory Bulb/blood supply , Astrocytes/physiology , Mice, Inbred C57BL , Regional Blood Flow/physiology , Male , Mice
5.
Proc Natl Acad Sci U S A ; 121(28): e2317711121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968101

ABSTRACT

Adult neural stem cells (NSCs) reside in the dentate gyrus of the hippocampus, and their capacity to generate neurons and glia plays a role in learning and memory. In addition, neurodegenerative diseases are known to be caused by a loss of neurons and glial cells, resulting in a need to better understand stem cell fate commitment processes. We previously showed that NSC fate commitment toward a neuronal or glial lineage is strongly influenced by extracellular matrix stiffness, a property of elastic materials. However, tissues in vivo are not purely elastic and have varying degrees of viscous character. Relatively little is known about how the viscoelastic properties of the substrate impact NSC fate commitment. Here, we introduce a polyacrylamide-based cell culture platform that incorporates mismatched DNA oligonucleotide-based cross-links as well as covalent cross-links. This platform allows for tunable viscous stress relaxation properties via variation in the number of mismatched base pairs. We find that NSCs exhibit increased astrocytic differentiation as the degree of stress relaxation is increased. Furthermore, culturing NSCs on increasingly stress-relaxing substrates impacts cytoskeletal dynamics by decreasing intracellular actin flow rates and stimulating cyclic activation of the mechanosensitive protein RhoA. Additionally, inhibition of motor-clutch model components such as myosin II and focal adhesion kinase partially or completely reverts cells to lineage distributions observed on elastic substrates. Collectively, our results introduce a unique system for controlling matrix stress relaxation properties and offer insight into how NSCs integrate viscoelastic cues to direct fate commitment.


Subject(s)
Cell Differentiation , Neural Stem Cells , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/physiology , Mice , Acrylic Resins/chemistry , rhoA GTP-Binding Protein/metabolism , Cells, Cultured , Neurons/metabolism , Neurons/physiology , Neurons/cytology , Extracellular Matrix/metabolism , Stress, Mechanical
6.
Nat Neurosci ; 27(8): 1475-1488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39020018

ABSTRACT

Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex. Approximately 95% of holes in the PNNs contain synapses and astrocytic processes expressing Kir4.1, glutamate and GABA transporters. Hence, holes in the PNNs contain tripartite synapses. In the adult mouse brain, PNN degradation causes an expanded astrocytic coverage of the neuronal somata without altering the axon terminals. The loss of PNNs impairs astrocytic transmitter and potassium uptake, resulting in the spillage of glutamate into the extrasynaptic space. Our data show that PNNs and astrocytes cooperate to contain synaptically released signals in physiological conditions. Their combined action is altered in mouse models of Alzheimer's disease and epilepsy where PNNs are disrupted.


Subject(s)
Astrocytes , Extracellular Matrix , Homeostasis , Somatosensory Cortex , Synapses , Animals , Astrocytes/metabolism , Astrocytes/physiology , Mice , Homeostasis/physiology , Synapses/physiology , Synapses/metabolism , Extracellular Matrix/metabolism , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Interneurons/physiology , Interneurons/metabolism , Mice, Inbred C57BL , Male , Mice, Transgenic , Nerve Net/physiology , Neuronal Plasticity/physiology
7.
Exp Neurol ; 379: 114889, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019303

ABSTRACT

Neuroscience dogma avers that astrocytic "scars" inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form "borders" around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons into reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI re-orient reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.


Subject(s)
Astrocytes , Axons , Nerve Regeneration , Spinal Cord Injuries , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Astrocytes/physiology , Animals , Nerve Regeneration/physiology , Axons/physiology , Rats , Female , Neural Stem Cells/transplantation , Neural Stem Cells/physiology , Disease Models, Animal , Chronic Disease , Rats, Sprague-Dawley
8.
PLoS Biol ; 22(7): e3002712, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38996200

ABSTRACT

Glial cells such as astrocytes can modulate neuronal signaling. Astrocytes can also acquire a reactive phenotype that correlates with cognitive impairments in brain diseases. A study in PLOS Biology shows that prolonged activation of astrocytes can trigger both cognitive impairments and a reactive astrocyte phenotype.


Subject(s)
Astrocytes , Cognition , Astrocytes/physiology , Animals , Humans , Cognition/physiology , Cognitive Dysfunction/physiopathology , Neurons/physiology
9.
Commun Biol ; 7(1): 852, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997325

ABSTRACT

Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.


Subject(s)
Astrocytes , Neuronal Plasticity , Reversal Learning , Animals , Astrocytes/physiology , Astrocytes/metabolism , Neuronal Plasticity/physiology , Mice , Reversal Learning/physiology , Serine/metabolism , Models, Neurological , Receptors, N-Methyl-D-Aspartate/metabolism
10.
J Neurosci ; 44(32)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38955487

ABSTRACT

Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.


Subject(s)
Astrocytes , Long-Term Potentiation , Receptors, Dopamine D1 , Receptors, Dopamine D5 , Synapses , Animals , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/genetics , Long-Term Potentiation/physiology , Astrocytes/metabolism , Astrocytes/physiology , Mice , Male , Receptors, Dopamine D5/metabolism , Receptors, Dopamine D5/agonists , Receptors, Dopamine D5/genetics , Female , Synapses/physiology , Synapses/metabolism , Ganglia, Spinal/cytology , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Dorsal Horn/cytology , Mice, Transgenic , Mice, Inbred C57BL
11.
Cell Rep ; 43(7): 114504, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38996064

ABSTRACT

Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex. This strong astroglial connectivity relies on high expression of gap-junction proteins. Genetic disruption of this connectivity functionally impairs SC retinotopic and orientation preference responses. These alterations are region specific, absent in primary visual cortex, and associated at the circuit level with a specific impairment of collicular neurons synaptic transmission. This has implications for SC-related visually induced innate behavior, as disrupting astroglial networks impairs light-evoked temporary arrest. Our results indicate that astroglial networks shape synaptic circuit activity underlying SC functional visual responses and play a crucial role in integrating visual cues to drive sensory-motor behavior.


Subject(s)
Astrocytes , Neurons , Superior Colliculi , Animals , Astrocytes/metabolism , Astrocytes/physiology , Mice , Superior Colliculi/physiology , Neurons/physiology , Neurons/metabolism , Mice, Inbred C57BL , Synaptic Transmission/physiology , Photic Stimulation , Visual Cortex/physiology , Nerve Net/physiology , Male
12.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39009447

ABSTRACT

Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.


Subject(s)
Astrocytes , Coculture Techniques , Induced Pluripotent Stem Cells , Motor Neurons , Induced Pluripotent Stem Cells/physiology , Animals , Motor Neurons/physiology , Mice , Astrocytes/physiology , Humans , Cell Differentiation/physiology , Cells, Cultured , Neurogenesis/physiology
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38904081

ABSTRACT

The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.


Subject(s)
Astrocytes , Glial Fibrillary Acidic Protein , Locus Coeruleus , Humans , Female , Male , Locus Coeruleus/diagnostic imaging , Astrocytes/physiology , Aged , Middle Aged , Adult , Aged, 80 and over , Glial Fibrillary Acidic Protein/metabolism , Magnetic Resonance Imaging/methods , Cerebral Cortex/diagnostic imaging , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Neurites/physiology
14.
Biol Res ; 57(1): 39, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867288

ABSTRACT

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Subject(s)
Astrocytes , Connexin 43 , Connexins , Cortical Spreading Depression , Synaptic Transmission , Animals , Astrocytes/physiology , Connexins/metabolism , Cortical Spreading Depression/physiology , Cortical Spreading Depression/drug effects , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Connexin 43/metabolism , Male , Nerve Tissue Proteins/metabolism , Cerebral Cortex , Neurons/physiology , Hippocampus , Rats, Sprague-Dawley , Rats , Potassium/metabolism
15.
Front Endocrinol (Lausanne) ; 15: 1389589, 2024.
Article in English | MEDLINE | ID: mdl-38887265

ABSTRACT

Food intake behavior is under the tight control of the central nervous system. Most studies to date focus on the contribution of neurons to this behavior. However, although previously overlooked, astrocytes have recently been implicated to play a key role in feeding control. Most of the recent literature has focused on astrocytic contribution in the hypothalamus or the dorsal vagal complex. The contribution of astrocytes located in the lateral parabrachial nucleus (lPBN) to feeding behavior control remains poorly understood. Thus, here, we first investigated whether activation of lPBN astrocytes affects feeding behavior in male and female rats using chemogenetic activation. Astrocytic activation in the lPBN led to profound anorexia in both sexes, under both ad-libitum feeding schedule and after a fasting challenge. Astrocytes have a key contribution to glutamate homeostasis and can themselves release glutamate. Moreover, lPBN glutamate signaling is a key contributor to potent anorexia, which can be induced by lPBN activation. Thus, here, we determined whether glutamate signaling is necessary for lPBN astrocyte activation-induced anorexia, and found that pharmacological N-methyl D-aspartate (NMDA) receptor blockade attenuated the food intake reduction resulting from lPBN astrocyte activation. Since astrocytes have been shown to contribute to feeding control by modulating the feeding effect of peripheral feeding signals, we further investigated whether lPBN astrocyte activation is capable of modulating the anorexic effect of the gut/brain hormone, glucagon like peptide -1, as well as the orexigenic effect of the stomach hormone - ghrelin, and found that the feeding effect of both signals is modulated by lPBN astrocytic activation. Lastly, we found that lPBN astrocyte activation-induced anorexia is affected by a diet-induced obesity challenge, in a sex-divergent manner. Collectively, current findings uncover a novel role for lPBN astrocytes in feeding behavior control.


Subject(s)
Astrocytes , Eating , Parabrachial Nucleus , Animals , Astrocytes/metabolism , Astrocytes/physiology , Male , Female , Rats , Eating/physiology , Parabrachial Nucleus/physiology , Anorexia/metabolism , Feeding Behavior/physiology , Rats, Sprague-Dawley , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
16.
J Neurosci ; 44(34)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38926088

ABSTRACT

Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of the paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of the PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on the PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT→prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which is mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.


Subject(s)
Astrocytes , Consciousness , Midline Thalamic Nuclei , Potassium Channels, Inwardly Rectifying , Sevoflurane , Animals , Astrocytes/physiology , Astrocytes/drug effects , Astrocytes/metabolism , Male , Mice , Sevoflurane/pharmacology , Consciousness/physiology , Consciousness/drug effects , Midline Thalamic Nuclei/physiology , Midline Thalamic Nuclei/drug effects , Midline Thalamic Nuclei/cytology , Potassium Channels, Inwardly Rectifying/metabolism , Mice, Inbred C57BL , Anesthetics, Inhalation/pharmacology , Neural Pathways/physiology , Neural Pathways/drug effects , Neurons/physiology , Neurons/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Frontal Lobe/physiology , Frontal Lobe/drug effects , Anesthesia Recovery Period
17.
Neuroscience ; 552: 76-88, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38909673

ABSTRACT

Mesenchymal stromal cells (MSCs) hold therapeutic potential for neurological disorders, but their impact on neuronal activity remains unclear. We investigated the effects of SB623 cells (Notch-1 intracellular domain-transfected MSCs) and parental MSCs on human induced pluripotent stem cell (iPSC)-derived neurons using multi-electrode arrays. SB623 cells significantly increased neuronal activity and oscillation in a dose-dependent manner, surpassing astrocytes in promoting network bursts. Strikingly, glutamatergic neurons showed a rapid increase in activity and bursts compared to GABAergic neurons, suggesting glutamate release from SB623 cells. We confirmed this by finding high glutamate levels in SB623 cell conditioned medium, which were reduced by glutaminase inhibition. Glutamate release was further implicated by the reduced excitability in co-cultures with astrocytes, known glutamate scavengers. Our findings reveal a novel mechanism for MSCs: promoting neuronal activity and network formation through tonic glutamate release, with potential implications for MSC-based therapies.


Subject(s)
Astrocytes , Coculture Techniques , Glutamic Acid , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Neurons , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Glutamic Acid/metabolism , Humans , Neurons/metabolism , Neurons/physiology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Astrocytes/metabolism , Astrocytes/physiology , Culture Media, Conditioned/pharmacology , Cells, Cultured , Action Potentials/physiology
18.
Glia ; 72(10): 1785-1800, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38856149

ABSTRACT

Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.


Subject(s)
Astrocytes , Ferrets , Primary Visual Cortex , Synapses , Animals , Astrocytes/physiology , Astrocytes/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Primary Visual Cortex/physiology , Pyramidal Cells/physiology , Pyramidal Cells/ultrastructure , Male , Female , Excitatory Postsynaptic Potentials/physiology , Calcium/metabolism , Visual Cortex/physiology , Visual Cortex/cytology , Photic Stimulation/methods
19.
20.
Int J Neural Syst ; 34(6): 2450028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706265

ABSTRACT

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.


Subject(s)
Astrocytes , Models, Neurological , Neural Networks, Computer , Neurons , Synapses , Synaptic Transmission , Synapses/physiology , Astrocytes/physiology , Neurons/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Adenosine Triphosphate/metabolism , Time Factors , Humans
SELECTION OF CITATIONS
SEARCH DETAIL