Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 1495, 2019.
Article in English | MEDLINE | ID: mdl-31379806

ABSTRACT

The interplay between NOD2 and TLR2 following recognition of components of the bacterial cell wall peptidoglycan is well-established, however their role in redirecting metabolic pathways in myeloid cells to degrade pathogens and mount antigen presentation remains unclear. We show NOD2 and TLR2 mediate phosphorylation of the deubiquitinase ataxin-3 via RIPK2 and TBK1. In myeloid cells ataxin-3 associates with the mitochondrial cristae protein MIC60, and is required for oxidative phosphorylation. Depletion of ataxin-3 leads to impaired induction of mitochondrial reactive oxygen species (mROS) and defective bacterial killing. A mass spectrometry analysis of NOD2/TLR2 triggered ataxin-3 deubiquitination targets revealed immunometabolic regulators, including HIF-1α and LAMTOR1 that may contribute to these effects. Thus, we define how ataxin-3 plays an essential role in NOD2 and TLR2 sensing and effector functions in myeloid cells.


Subject(s)
Ataxin-3/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Nod2 Signaling Adaptor Protein/immunology , Receptor-Interacting Protein Serine-Threonine Kinase 2/immunology , Toll-Like Receptor 2/immunology , Ataxin-3/metabolism , Cell Respiration , HEK293 Cells , Humans , Immunity, Innate , Mitochondria/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction , THP-1 Cells , Toll-Like Receptor 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...