Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 689
Filter
1.
Skin Res Technol ; 30(8): e13899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112439

ABSTRACT

BACKGROUND: Due to its rarity, subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is often misdiagnosed as benign panniculitis, and there are no standardized treatment guidelines for SPTCL. Aurora kinase A (AURKA) plays a regulatory role in both mitosis and meiosis. Cells treated with an AURKA inhibitor showed severe mitotic delay, which triggered apoptosis. MATERIALS AND METHODS: Ten cases of SPTCL were collected in this study, and immunohistochemistry was performed to detect AURKA expression in the skin tissues of these cases. Control groups were set as follows: 1) 10 cases of inflammatory panniculitis; 2) 9 healthy individuals. Fisher's exact test was used to compare the positive rates of AURKA among various groups. RESULTS: An average onset age of 27.3 years was found in 10 SPTCL cases. Clinically, these patients primarily presented with multiple subcutaneous nodules on the trunk and lower extremities, accompanied by intermittent high fever. One case showed lymph node metastasis, while no other distant organ metastasis being observed in any case. Pathologically, there was an infiltration of a large number of atypical lymphocytes within the fat lobules, characterized as a cytotoxic type. AURKA stanning was positive in 6 out of 10 SPTCL cases, while no positive cases were found in the control groups. CONCLUSION: 1) SPTCL predominantly affects young individuals and can be identified by nodular erythema on the trunk, intermittent high fever, and infiltration of atypical cytotoxic lymphocytes within fat lobules. 2) For early-stage cases without metastasis, monotherapy with glucocorticoids or immunosuppressants such as cyclosporine can be considered. 3) High expression of AURKA in SPTCL tissues suggests that AURKA could be a potential biomarker for disease diagnosis, providing a theoretical basis for further targeted therapy.


Subject(s)
Aurora Kinase A , Lymphoma, T-Cell , Panniculitis , Humans , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Panniculitis/enzymology , Panniculitis/pathology , Female , Male , Adult , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/enzymology , Lymphoma, T-Cell/genetics , Young Adult , Diagnosis, Differential , Middle Aged , Adolescent , Skin/pathology , Immunohistochemistry
2.
Nat Commun ; 15(1): 6626, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103353

ABSTRACT

N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.


Subject(s)
HSP70 Heat-Shock Proteins , Prostatic Neoplasms , Proteostasis , Ubiquitin-Protein Ligases , Ubiquitination , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , HSP70 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Cell Line, Tumor , Animals , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Mice , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/pathology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
3.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995006

ABSTRACT

Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3ß. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.


Subject(s)
Aurora Kinase A , B7-H1 Antigen , Glioblastoma , Killer Cells, Natural , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/genetics , B7-H1 Antigen/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Azepines/pharmacology , Pyrimidines/pharmacology , Cytotoxicity, Immunologic/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays
4.
J Biochem Mol Toxicol ; 38(8): e23771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39015057

ABSTRACT

Colon cancer contributes to high mortality rates internationally that has seriously endangered human health. Aurora kinase A (AURKA) served as a key molecule in colon cancer. However, its role of AURKA on regulating ferroptosis in colon cancer and their possible interactions with miRNAs and circRNAs remain still elusive. Comprehensive bioinformatics analysis after RNA-sequencing was conducted to determine the differentially expressed genes (DEGs), ferroptosis-related DEGs and hub genes. The direct relationship between miR-506-3p and hsa_circRNA_007630 or AURKA was predicted, then verified by dual luciferase reporter and quantitative real-time polymerase chain reaction. The rescue experiments were conducted by cotransfection with si-hsa_circRNA_007630, miR-506-3p inhibitor or pcDNA-AURKA in HT29 cells. Erastin was used to induce ferroptosis in HT29 cells and validated by detecting levels of intracellular Fe2+, lipid reactive oxygen species, glutathione, malondialdehyde and ferroptosis markers expression. We screened a total of 331 DEGs, 26 ferroptosis-related genes, among which 3 hub genes were identified through PPI network analysis. Therein, AURKA expression was elevated in colon cancer cells. Moreover, AURKA was targeted by miR-506-3p, and hsa_circRNA_007630 operated as miR-506-3p sponge. The effect of hsa_circRNA_007630 depletion on the inhibiting malignant phenotypes of HT29 cells was rescued by inhibition of miR-506-3p or AURKA overexpression. Additionally, AURKA reduced erastin-induced ferroptosis in HT29 cells. Depletion of circRNA_007630 exerts as a suppressive role in colon cancer through a novel miR-506-3p/AURKA pathway related to ferroptosis, and might become a novel marker for colon cancer.


Subject(s)
Aurora Kinase A , Colonic Neoplasms , Ferroptosis , MicroRNAs , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Ferroptosis/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , HT29 Cells , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Disease Progression , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
5.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961488

ABSTRACT

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Subject(s)
Aurora Kinase A , Centrioles , Cilia , Cilia/metabolism , Humans , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Centrioles/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics
6.
Theranostics ; 14(10): 3909-3926, 2024.
Article in English | MEDLINE | ID: mdl-38994036

ABSTRACT

Background: Aurora kinase A (AURKA) is a potent oncogene that is often aberrantly expressed during tumorigenesis, and is associated with chemo-resistance in various malignancies. However, the role of AURKA in chemo-resistance remains largely elusive. Methods: The cleavage of AURKA upon viral infection or apoptosis stimuli was assesed by immunoblotting assays in several cancer cells or caspase deficient cell line models. The effect of AURKA cleavage at Asp132 on mitosis was explored by live cell imaging and immunofluorescence staining experiments. The role of Asp132-cleavage of AURKA induced by the chemotherapy drug paclitaxel was investigated using TUNEL, immunohistochemistry assay in mouse tumor xenograft model and patient tissues. Results: The proteolytic cleavage of AURKA at Asp132 commonly occurs in several cancer cell types, regardless of viral infection or apoptosis stimuli. Mechanistically, caspase 3/7/8 cleave AURKA at Asp132, and the Asp132-cleaved forms of AURKA promote cell apoptosis by disrupting centrosome formation and bipolar spindle assembly in metaphase during mitosis. The AURKAD132A mutation blocks the expression of cleaved caspase 3 and EGR1, which leads to reduced therapeutic effects of paclitaxel on colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model and cancer patients. Conclusions: This study reveals that caspase-mediated AURKAD132 proteolysis is essential for paclitaxel to elicit cell apoptosis and indicates that AURKAD132 is a potential key target for chemotherapy.


Subject(s)
Apoptosis , Aurora Kinase A , Paclitaxel , Paclitaxel/pharmacology , Aurora Kinase A/metabolism , Animals , Humans , Apoptosis/drug effects , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Caspases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Drug Resistance, Neoplasm , Mitosis/drug effects , Proteolysis/drug effects , Female , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
7.
Cell Death Dis ; 15(7): 551, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085197

ABSTRACT

PLK1 is currently at the forefront of mitotic research and has emerged as a potential target for small cell lung cancer (SCLC) therapy. However, the factors influencing the efficacy of PLK1 inhibitors remain unclear. Herein, BRCA1 was identified as a key factor affecting the response of SCLC cells to BI-2536. Targeting AURKA with alisertib, at a non-toxic concentration, reduced the BI-2536-induced accumulation of BRCA1 and RAD51, leading to DNA repair defects and mitotic cell death in SCLC cells. In vivo experiments confirmed that combining BI-2536 with alisertib impaired DNA repair capacity and significantly delayed tumor growth. Additionally, GSEA analysis and loss- and gain-of-function assays demonstrated that MYC/MYCN signaling is crucial for determining the sensitivity of SCLC cells to BI-2536 and its combination with alisertib. The study further revealed a positive correlation between RAD51 expression and PLK1/AURKA expression, and a negative correlation with the IC50 values of BI-2536. Manipulating RAD51 expression significantly influenced the efficacy of BI-2536 and restored the MYC/MYCN-induced enhancement of BI-2536 sensitivity in SCLC cells. Our findings indicate that the BRCA1 and MYC/MYCN-RAD51 axes govern the response of small cell lung cancer to BI-2536 and its combination with alisertib. This study propose the combined use of BI-2536 and alisertib as a novel therapeutic strategy for the treatment of SCLC patients with MYC/MYCN activation.


Subject(s)
Azepines , BRCA1 Protein , Lung Neoplasms , Proto-Oncogene Proteins c-myc , Pyrimidines , Small Cell Lung Carcinoma , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Line, Tumor , Azepines/pharmacology , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Rad51 Recombinase/metabolism , Mice , Mice, Nude , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Polo-Like Kinase 1 , DNA Repair/drug effects , Female , Xenograft Model Antitumor Assays , Pteridines
8.
J Chem Inf Model ; 64(12): 4759-4772, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38857305

ABSTRACT

The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.


Subject(s)
Aurora Kinase A , Aurora Kinase B , Molecular Dynamics Simulation , Aurora Kinase B/metabolism , Aurora Kinase B/chemistry , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase A/metabolism , Aurora Kinase A/chemistry , Aurora Kinase A/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/metabolism , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Protein Binding , Humans , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Thermodynamics
9.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892390

ABSTRACT

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aurora Kinase A , Lysosomes , Neurons , Aurora Kinase A/metabolism , Animals , Neurons/metabolism , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Rats , Lysosomes/metabolism , Phosphorylation , Cell Line, Tumor , Brain/metabolism , Cells, Cultured , Male , Amyloid Precursor Protein Secretases/metabolism
10.
Pathol Res Pract ; 260: 155390, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878668

ABSTRACT

Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy with poor prognosis and patient survival outcome. Protein kinase D2 (PKD2) belongs to Ca++/calmodulin-dependent serine/threonine kinase family and its aberrant expression is associated with many cellular and physiological functions associated with tumorigenesis including cell proliferation. We show that PKD2 is activated during G2/M cell cycle transition and its catalytic inactivation by small molecule inhibitor CRT0066101 or genetic knockdown caused suppression of EOC cell proliferation followed by a delay into mitotic entry. Our RNASeq analysis of PKD2-inactivated EOC cells revealed significant downregulation of genes associated with cell cycle including Aurora kinase A, a critical mitotic regulator. Mechanistically, PKD2 positively regulated Aurora kinase A stability at both transcriptional and post-translational levels by interfering with the function of Fbxw7, drove G2/M cell cycle transition and EOC cell proliferation. Moreover, pharmacological inhibition of Aurora kinase A by small molecule CD532 or its shRNA-mediated genetic knockdown suppressed EOC cell proliferation, induced G2/M cell cycle arrest and mitotic catastrophe followed by apoptosis. Taken together, our results indicated that PKD2 positively regulates Aurora kinase A during G2/M cell cycle entry and pharmacological targeting of PKD2/Aurora kinase A signalling axis could serve as a novel therapeutic intervention against a lethal pathology like EOC.


Subject(s)
Aurora Kinase A , Carcinoma, Ovarian Epithelial , Cell Proliferation , Ovarian Neoplasms , Protein Kinase D2 , Signal Transduction , Humans , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/metabolism , Female , Cell Proliferation/drug effects , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Signal Transduction/drug effects , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints/drug effects , Pyrimidines/pharmacology , Neoplasms, Glandular and Epithelial/pathology , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/drug therapy , Neoplasms, Glandular and Epithelial/genetics , Protein Kinase Inhibitors/pharmacology
11.
Cancer Lett ; 593: 216939, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729556

ABSTRACT

Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The SRY-Box Transcription Factor 9 (SOX9) serves as a marker of stomach stem cells. We detected strong associations between AURKA and SOX9 expression levels in gastric cancers. Utilizing in vitro and in vivo mouse models, we demonstrated that H. pylori infection induced elevated levels of both AURKA and SOX9 proteins. Notably, the SOX9 protein and transcription activity levels were dependent on AURKA expression. AURKA knockdown led to a reduction in the number and size of gastric gland organoids. Conditional knockout of AURKA in mice resulted in a decrease in SOX9 baseline level in AURKA-knockout gastric glands, accompanied by diminished SOX9 induction following H. pylori infection. We found an AURKA-dependent increase in EIF4E and cap-dependent translation with an AURKA-EIF4E-dependent increase in SOX9 polysomal RNA levels. Immunoprecipitation assays demonstrated binding of AURKA to EIF4E with a decrease in EIF4E ubiquitination. Immunohistochemistry analysis on tissue arrays revealed moderate to strong immunostaining of AURKA and SOX9 with a significant correlation in gastric cancer tissues. These findings elucidate the mechanistic role of AURKA in regulating SOX9 levels via cap-dependent translation in response to H. pylori infection in gastric tumorigenesis.


Subject(s)
Aurora Kinase A , Eukaryotic Initiation Factor-4E , Helicobacter Infections , Helicobacter pylori , SOX9 Transcription Factor , Stomach Neoplasms , Animals , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Humans , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics , Mice, Knockout , Mice , Protein Biosynthesis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Ubiquitination
12.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38739003

ABSTRACT

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Subject(s)
Aurora Kinase A , Cisplatin , Epithelial-Mesenchymal Transition , Indole Alkaloids , Triple Negative Breast Neoplasms , Female , Humans , Antineoplastic Agents/pharmacology , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Synergism , Epithelial-Mesenchymal Transition/drug effects , Indole Alkaloids/pharmacology , Molecular Docking Simulation , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
13.
Phytomedicine ; 130: 155735, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810557

ABSTRACT

BACKGROUND: Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS: The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS: SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the ß-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION: SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and ß-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.


Subject(s)
Aurora Kinase A , Azepines , Proto-Oncogene Proteins c-akt , STAT3 Transcription Factor , Stomach Neoplasms , beta Catenin , Stomach Neoplasms/drug therapy , Humans , STAT3 Transcription Factor/metabolism , Aurora Kinase A/metabolism , Cell Line, Tumor , Animals , beta Catenin/metabolism , Azepines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Heterocyclic Compounds, Bridged-Ring/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice, Nude , Dioxolanes/pharmacology , Mice, Inbred BALB C , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Carcinogenesis/drug effects , Molecular Docking Simulation , Lactones , Piperidines
14.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38785133

ABSTRACT

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Subject(s)
Meiosis , Oocytes , Protein Biosynthesis , Transcription Factors , mRNA Cleavage and Polyadenylation Factors , Animals , Female , Mice , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Oocytes/metabolism , Oocytes/cytology , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics
15.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783101

ABSTRACT

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Subject(s)
Aurora Kinase A , CREB-Binding Protein , Proto-Oncogene Proteins c-myc , Synthetic Lethal Mutations , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Animals , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Xenograft Model Antitumor Assays
16.
Ann Med ; 56(1): 2282184, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38738386

ABSTRACT

AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.


AURKA plays an important role in the control of the proliferation, invasion, cell cycle regulation and self-renewal of cancer stem cells.Small molecule kinase inhibitors targeting AURKA have been developed, but the overall response rate of patients in clinical trials is not ideal, prompting us to pay attention to the non-kinase activity of AURKA.This review focuses on the nuclear function of AURKA and its oncogenic properties independent of kinase activity, demonstrating that the nuclear substrate of AURKA and the remote allosteric site of the kinase may be targets of anticancer therapy.


Subject(s)
Aurora Kinase A , Carcinogenesis , Cell Nucleus , Humans , Aurora Kinase A/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Nucleus/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Protein Kinase Inhibitors/pharmacology , Animals
17.
Sci Rep ; 14(1): 12470, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816374

ABSTRACT

Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.


Subject(s)
Atrial Fibrillation , Aurora Kinase A , Cilia , Fibroblasts , Fibrosis , Heart Atria , Humans , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Cilia/metabolism , Cilia/pathology , Heart Atria/metabolism , Heart Atria/pathology , Male , Female , Middle Aged , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/antagonists & inhibitors , Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Tubulin/metabolism , Cells, Cultured , Tumor Suppressor Proteins
18.
Cell Prolif ; 57(8): e13641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38590119

ABSTRACT

Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.


Subject(s)
Aurora Kinase A , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Epithelial-Mesenchymal Transition , Tumor Microenvironment , Animals , Prognosis , Cell Movement , Biomarkers, Tumor/metabolism
19.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673957

ABSTRACT

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.


Subject(s)
Aurora Kinase A , Biomarkers, Tumor , Ferroptosis , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Ferroptosis/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Male , Female , Kaplan-Meier Estimate , Cell Proliferation/genetics
20.
Redox Biol ; 72: 103137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642502

ABSTRACT

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Subject(s)
Aurora Kinase A , Ferroptosis , Forkhead Box Protein M1 , Meningioma , NF-E2-Related Factor 2 , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , Forkhead Box Protein M1/metabolism , Forkhead Box Protein M1/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Meningioma/metabolism , Meningioma/genetics , Meningioma/pathology , Piperazines/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Meningeal Neoplasms/metabolism , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningeal Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL