Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.277
Filter
1.
J Exp Biol ; 227(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39022893

ABSTRACT

Social status directly affects the health of humans and other animals. Low status individuals receive more antagonistic encounters, have fewer supportive relationships and have worse health outcomes. However, the physiological and cellular processes that mediate the relationship between the social environment and health are incompletely known. Epigenetic regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine pathway that activates in response to stressors, may be one process that is sensitive to the social environment. Here, we experimentally manipulated plumage, a key social signal in female tree swallows (Tachycineta bicolor) and quantified methylation of four genes in the HPA axis before and after treatment. We found that dulling the white breast plumage affected methylation in one gene, CRHR1; however, the effect depended on the original brightness of the bird. Methylation in this gene was correlated with baseline corticosterone levels, suggesting that DNA methylation of CRHR1 helps regulate glucocorticoid production in this species. Methylation in two other genes, FKBP5 and GR, changed over the course of the experiment, independent of treatment. These results show that methylation of these genes is labile into adulthood and suggest that epigenetic regulation of the HPA axis could help birds respond to current environmental conditions.


Subject(s)
DNA Methylation , Feathers , Hypothalamo-Hypophyseal System , Receptors, Corticotropin-Releasing Hormone , Swallows , Animals , Female , Feathers/physiology , Swallows/genetics , Swallows/physiology , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Corticosterone/blood , Corticosterone/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Epigenesis, Genetic , Stress, Physiological/genetics , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism
2.
Dev Comp Immunol ; 159: 105213, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880215

ABSTRACT

Regulation of neuroimmune interactions varies across avian species. Little is presently known about the interplay between periphery and central nervous system (CNS) in parrots, birds sensitive to neuroinflammation. Here we investigated the systemic and CNS responses to dextran sulphate sodium (DSS)- and lipopolysaccharide (LPS)-induced subclinical acute peripheral inflammation in budgerigar (Melopsittacus undulatus). Three experimental treatment groups differing in DSS and LPS stimulation were compared to controls. Individuals treated with DSS showed significant histological intestinal damage. Through quantitative proteomics we described changes in plasma (PL) and cerebrospinal fluid (CSF) composition. In total, we identified 180 proteins in PL and 978 proteins in CSF, with moderate co-structure between the proteomes. Between treatments we detected differences in immune, coagulation and metabolic pathways. Proteomic variation was associated with the levels of pro-inflammatory cytokine mRNA expression in intestine and brain. Our findings shed light on systemic impacts of peripheral low-grade inflammation in birds.


Subject(s)
Central Nervous System , Dextran Sulfate , Inflammation , Lipopolysaccharides , Melopsittacus , Proteome , Animals , Proteome/metabolism , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/immunology , Melopsittacus/immunology , Central Nervous System/metabolism , Central Nervous System/immunology , Proteomics/methods , Cytokines/metabolism , Avian Proteins/metabolism , Avian Proteins/genetics , Brain/metabolism , Brain/immunology , Neuroimmunomodulation , Intestines/immunology , Neuroinflammatory Diseases/immunology , Bird Diseases/immunology , Bird Diseases/metabolism
3.
J Immunol ; 213(2): 187-203, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38829131

ABSTRACT

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Subject(s)
Ducks , Immunity, Innate , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Signal Transduction , Ubiquitin-Protein Ligases , Virus Replication , Animals , Ducks/immunology , Ducks/virology , Virus Replication/immunology , Signal Transduction/immunology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/physiology , Immunity, Innate/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Fibroblasts/immunology , Fibroblasts/virology , Avian Proteins/immunology , Avian Proteins/genetics , Avian Proteins/metabolism , Ubiquitination , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/immunology
4.
Poult Sci ; 103(7): 103866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833957

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Subject(s)
Acute Lung Injury , Chickens , Escherichia coli Infections , Glucosides , Monoterpenes , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Acute Lung Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/veterinary , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Glucosides/pharmacology , Glucosides/administration & dosage , Monoterpenes/pharmacology , Monoterpenes/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Escherichia coli/drug effects
5.
Poult Sci ; 103(8): 103850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838589

ABSTRACT

Follicle selection in chicken refers to the process of selecting a follicle to enter hierarchy from a cohort of small yellow follicles (SY) with a diameter of 6 to 8 mm. The follicle being selected will develop rapidly and ovulate. Follicle selection is a key stage affecting chicken egg-laying performance. Our previous study showed that the phosphorylation level of lysine (K)-specific demethylase 1A (LSD1) at serine 54 (LSD1Ser54p) was significantly increased in F6 follicles compared to prehierarchal SY follicles, but its function was unclear. Here, the mechanism of this modification, the effect of LSD1Ser54p dephosphorylation on gene expression profile of chicken hierarchal granulosa cells and the function of fibroblast growth factor 9 (FGF9) that is regulated by LSD1Ser54p were further investigated. The modification of LSD1Ser54p was predicted to be mediated by cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3). Treatment of chicken hierarchal granulosa cells with CDK5 inhibitor significantly decreased LSD1Ser54p level (P < 0.05) and LSD1Ser54p interacted with CDK5, suggesting that, in the granulosa cells of chicken hierarchal follicles, LSD1Ser54p modification was carried out by CDK5. When the LSD1Ser54p level decreased in the granulosa cells of chicken hierarchal follicles, both the mRNA expression of FGF9 and α-actinin 2 (ACTN2) and the H3K4me2 level in their promoter regions significantly increased (P < 0.05), indicating that this phosphorylation modification enhanced the demethylation activity of LSD1. Moreover, in chicken hierarchal granulosa cells, overexpression of chicken FGF9 stimulated their proliferation and increased the mRNA expression of hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (Hsd3b) and steroidogenic acute regulatory protein (StAR). This study collectively revealed that phosphorylation of LSD1 at serine 54 by CDK5 enhanced its demethylation activity in chicken ovarian granulosa cells and regulated genes including FGF9 that is engaged in chicken follicle selection.


Subject(s)
Avian Proteins , Chickens , Granulosa Cells , Histone Demethylases , Ovarian Follicle , Animals , Female , Granulosa Cells/metabolism , Chickens/genetics , Histone Demethylases/metabolism , Histone Demethylases/genetics , Ovarian Follicle/metabolism , Phosphorylation , Avian Proteins/metabolism , Avian Proteins/genetics , Demethylation , Gene Expression Regulation/drug effects , Serine/metabolism
6.
Poult Sci ; 103(8): 103862, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843562

ABSTRACT

Oncomodulins (OCMs), also known as non-α-parvalbumins, are small molecules known for their high-affinity binding of Ca2+ ions. They play crucial roles as Ca2+ buffers and participate in signaling pathways within muscle and neuron cells. In chickens, 3 oncomodulin molecules have been identified at the protein level and are named chicken oncomodulin 1 (OCM1), -3 (OCM3), and alpha-parvalbumin (PVALB). OCM4 was newly assigned by genome annotation. A gene cluster containing OCM1, OCM3, and OCM4 is located in chromosome 14, while a single gene of PVALB is on chromosome 1. The Ca2+ signaling pathway may be a potential contributor to the onset of chicken breast myopathies. However, chicken OCMs have not been extensively studied in muscle tissues. In this study, the genetic specifications, tissue-specific and differential expression of OCM1, OCM3, OCM4, and PVALB in the context of chicken breast myopathies were investigated. OCM1 exhibited moderate expression in the liver, intestine, and kidney. OCM3 was highly expressed in thymus and breast muscle. A long noncoding RNA (lncRNA) transcribed from the antisense strand of the OCM3 gene was found to be expressed in liver, lung, heart, intestine, and kidney tissues. OCM4 was barely expressed in thymus, thigh-, and breast muscle. PVALB exhibited high expression across all tissues examined. Results of quantitative PCR (qPCR) indicated that the expression of OCM3 was significantly increased (4.4 ± 0.7 fold; P-value = 0.03) in woody breast (WB) muscle and even greater (8.5 ± 0.6 fold; P-value = 0.004) in WB/white striping (WS) muscles. The expression of PVALB showed no difference in WB muscle, but it was notably higher (4.6 ± 0.7 fold; P-value = 0.054) in WB/WS muscle, although statistical significance was not reached. These findings suggest that increased expression of OCM3 and PVALB may be linked to chicken breast myopathies with regard to disruption of Ca2+ buffering.


Subject(s)
Avian Proteins , Chickens , Muscular Diseases , Poultry Diseases , Animals , Chickens/genetics , Poultry Diseases/genetics , Poultry Diseases/metabolism , Muscular Diseases/veterinary , Muscular Diseases/genetics , Muscular Diseases/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Pectoralis Muscles/metabolism , Gene Expression Profiling/veterinary
7.
Poult Sci ; 103(8): 103870, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851181

ABSTRACT

Macrophages play a crucial role in both innate and adaptive immunity. However, their abnormal activation can lead to undesirable inflammatory reactions. This study aimed to investigate the effects of glycerol monolaurate (GML), a natural monoester known for its anti-inflammatory and immunoregulatory properties, on avian macrophages using the HD11 cell line. The results indicated that a concentration of 10 µg/mL of GML enhanced the phagocytic activity of HD11 cells (P < 0.05) without affecting cell viability (P > 0.05). GML decreased the expression of M1 macrophage polarization markers, such as CD86 and TNF-α genes (P < 0.05), while increasing the expression of M2 macrophage polarization markers, such as TGF-ß1 and IL-10 genes (P < 0.05). GML suppressed ROS production, apoptosis, and the expression of proinflammatory genes (IL-1ß and IL-6) induced by LPS (P < 0.05). GML also promoted the expression of TGF-ß1 and IL-10 (P < 0.05), both in the presence and absence of LPS exposure. Moreover, GML suppressed the gene expression of TLR4 and NF-κB p65 induced by LPS (P < 0.05), as well as the phosphorylation of NF-κB p65 (P < 0.05). In conclusion, GML exhibited regulatory effects on the polarized state of avian macrophages and demonstrated significant anti-apoptotic and anti-inflammatory properties by suppressing intracellular ROS and the NF-κB signaling pathway.


Subject(s)
Apoptosis , Chickens , Inflammation , Laurates , Lipopolysaccharides , Macrophages , Monoglycerides , NF-kappa B , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Macrophages/drug effects , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Inflammation/veterinary , Inflammation/chemically induced , Monoglycerides/pharmacology , Laurates/pharmacology , Cell Line , Anti-Inflammatory Agents/pharmacology , Avian Proteins/genetics , Avian Proteins/metabolism
8.
Poult Sci ; 103(8): 103852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861843

ABSTRACT

The objective of this study was to determine the effects of dietary crude protein (CP) levels on intestinal antioxidant status, tight junction proteins expression, and amino acids transporters levels in squabs. A total of 180 pairs of White King parent pigeons approximately 10 mo old were randomly assigned to 5 groups with 6 replications of 6 pairs of parental pigeons each, and were fed with 14, 15, 16, 17, and 18% CP diets for 46 d, respectively. Dietary increasing CP levels increased final body weight (linear and quadratic, P < 0.05), serum urea nitrogen (linear, P<0.05) and triglyceride levels (quadratic, P < 0.05), and reduced kidney relative weight (quadratic, P < 0.05) in squabs. Final body weight of squabs in the 18% CP diet group was higher than that of the 14, 15, and 16% CP diet groups (P < 0.05) but was similar to that of the 17% CP diet group (P > 0.05). Increasing dietary CP levels reduced intestinal malondialdehyde contents (linear and quadratic, P < 0.05) and jejunal total superoxide dismutase (T-SOD) activity (linear, P < 0.05), and enhanced (linear and quadratic, P<0.05) ileal catalase and T-SOD activities in squabs, and these effects were more prominent in the 17% CP diet group. Graded CP levels up-regulated the mRNA expression of intestinal zonula occludens 1 (linear, P < 0.05), solute carrier family 7 members 9 (linear, P < 0.05) and claudin 1 (CLDN1, linear and quadratic, P < 0.05), ileal CLDN3 and solute carrier family 6 members 14 (linear, P < 0.05) but lowered jejunal solute carrier family 6 member 14 (quadratic, P<0.05) mRNA expression in squabs. The effects of dietary CP levels on intestinal tight junction proteins expression were more apparent when its supplemental levels were 18%. These results suggested that increasing parental dietary CP levels ranged from 14 to 18% during breeding period improved growth and intestinal function of squabs, with its recommended level being 17%.


Subject(s)
Animal Feed , Columbidae , Diet , Dietary Proteins , Animals , Columbidae/physiology , Diet/veterinary , Animal Feed/analysis , Dietary Proteins/administration & dosage , Random Allocation , Male , Intestines/drug effects , Intestines/physiology , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Animal Nutritional Physiological Phenomena , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Intestinal Mucosa/metabolism
9.
Poult Sci ; 103(8): 103883, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865767

ABSTRACT

Aflatoxin B1 (AFB1) is an unavoidable environmental toxin. The accumulation of AFB1 and its metabolites in the liver poses a threat to both human and animal health. Curcumin exhibits anti-oxidative, anti-tumor, and anti-inflammatory properties. There is no report on the mechanism regarding how curcumin relived liver necroptosis in chickens induced by AFB1 based on the regulatory network of ceRNA. To explore this, we performed transmission electron microscopy and sequenced lncRNA and mRNA in chicken livers treated with AFB1 and/or curcumin for 28 d in vivo. We observed substantial alterations in the lncRNA and mRNA expression profiles within the chicken liver, indicating that curcumin can mitigate AFB1-induced necroptosis both in vivo and in vitro. Further analysis, including the establishment of an lncRNA-miRNA-mRNA network and the utilization of a dual luciferase reporter assay, revealed that LOC769044 acts as a competing endogenous RNA (ceRNA) for miR-1679. In addition, STAT1 was identified as a direct target of miR-1679. Modulating miR-1679 levels through overexpression, and silencing LOC769044 and STAT1, effectively reversed the necroptotic effects induced by AFB1, a reversal that was also observed with curcumin supplementation. In conclusion, our data demonstrate that curcumin alleviates AFB1-induced liver necroptosis through the LOC769044/miR-1679/STAT1 signaling axis. This study suggests that LOC769044 may serve as a novel therapeutic target for managing AFB1-mediated liver toxicity.


Subject(s)
Aflatoxin B1 , Chickens , Curcumin , Liver , MicroRNAs , Necroptosis , STAT1 Transcription Factor , Animals , Curcumin/pharmacology , Aflatoxin B1/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Necroptosis/drug effects , Liver/drug effects , Liver/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Avian Proteins/metabolism , Avian Proteins/genetics
10.
Poult Sci ; 103(8): 103891, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878746

ABSTRACT

Mercuric chloride (HgCl2) is a nephrotoxic contaminant that is widely present in the environment. Selenium (Se) can effectively antagonize the biological toxicity caused by heavy metals. Here, in vivo and in vitro models of Se antagonism to HgCl2-induced nephrotoxicity in chickens were established, with the aim of exploring the specific mechanism. Morphological observation and kidney function analysis showed that Se alleviated HgCl2-induced kidney tissue injury and cytotoxicity. The results showed that ferroptosis was the primary mechanism for the toxicity of HgCl2, as indicated by iron overload and lipid peroxidation. On the one hand, Se significantly prevented HgCl2-induced iron overload. On the other hand, Se alleviated the intracellular reactive oxygen species (ROS) levels caused by HgCl2. Subsequently, we focused on the sources of ROS during HgCl2-induced ferroptosis. Mechanically, Se reduced ROS overproduction induced by HgCl2 through mitochondrial calcium uniporter (MCU)/mitochondrial calcium uptake 1 (MICU1)-mediated mitochondrial calcium ion (Ca2+) overload. Furthermore, a dual luciferase reporter assay demonstrated that MICU1 was the direct target of miR-202-5p. Overall, Se represses miR-202-5p/MICU1 axis to attenuate HgCl2-induced kidney ferroptosis.


Subject(s)
Chickens , Ferroptosis , Mercuric Chloride , MicroRNAs , Poultry Diseases , Selenium , Animals , Mercuric Chloride/toxicity , Ferroptosis/drug effects , Selenium/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Poultry Diseases/chemically induced , Poultry Diseases/prevention & control , Avian Proteins/metabolism , Avian Proteins/genetics , Kidney Diseases/chemically induced , Kidney Diseases/veterinary , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Reactive Oxygen Species/metabolism , Kidney/drug effects , Kidney/pathology , Male
11.
Poult Sci ; 103(8): 103910, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905756

ABSTRACT

Within the poultry industry, hens' reproductive performance is of great economic significance. The development and growth of follicles is a key aspect of hen egg production, and ovarian follicle growth and development are closely associated with granulosa cells (GCs) proliferation and the synthesis of steroid hormones. It has been confirmed by numerous studies that microRNAs (miRNAs) play important roles in the steroid hormone synthesis and proliferation of GCs. In this study, we examined the main miRNAs influencing hens' ability to reproduce, identified the miR-223 that is mainly expressed in atretic follicles based on sequencing, and investigated its role in GCs. Then, we used miR-223 mimic and inhibitor to knockdown or overexpress miR-223 expression. The result showed that miR-223 significantly inhibits both the steroid hormone synthesis and the proliferation of GCs. Subsequently, the results of the dual luciferase reporter experiment and bioinformatics prediction demonstrated that cysteine rich transmembrane BMP regulator 1 (CRIM1) was a downstream target gene of miR-223, and overexpression of miR-223 prevented CRIM1 expression. The function of CRIM1 was further investigated, and we observed a significant reduction in the synthesis of steroid hormones and the proliferation of GCs after transfection with CRIM1 siRNA. The opposite function of miR-223 was observed for CRIM1 in our study. Additionally, we demonstrated the involvement of the miR-223/CRIM1 axis in GCs through modulation of the AKT signaling pathway. Our data demonstrate the pivotal role of the miR-223 in the proliferation and steroid hormone synthesis of chicken GCs, which helps to explain how non-coding RNA (ncRNA) affects chicken reproductive function.


Subject(s)
Cell Proliferation , Chickens , Granulosa Cells , MicroRNAs , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Chickens/genetics , Granulosa Cells/metabolism , Granulosa Cells/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/biosynthesis
12.
Poult Sci ; 103(8): 103950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917610

ABSTRACT

Incubation behavior in chickens is closely associated with hypothalamus. Here, RNA sequencing of hypothalamus from Changshun green-shell laying hens, an indigenous chicken breed from China, in egg-laying period (LP) and incubation period (BP) was conducted to identify critical pathways and candidate genes involved in controlling the incubation behavior in hypothalamus. A total of 637 up-regulated and 305 down-regulated differently expressed genes (DEGs) were identified in chicken hypothalamus between LP and BP groups. Gene ontology term (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis further revealed that neuroactive ligand-receptor interaction, hippo signaling pathway, and focal adhesion were significantly enriched. Five candidate genes (POMC, IGF1R, CHAD, VCL, and MYL9) were suggested to play crucial roles in the regulation of chicken incubation behavior. Our results further indicated the complexity of reproductive behavior of different chicken breeds.


Subject(s)
Chickens , Hypothalamus , Transcriptome , Animals , Chickens/genetics , Chickens/physiology , Chickens/metabolism , Hypothalamus/metabolism , Female , Oviposition , Gene Expression Profiling/veterinary , Avian Proteins/genetics , Avian Proteins/metabolism
13.
Poult Sci ; 103(8): 103927, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917607

ABSTRACT

Goose creates important economic value depending on their enrich nutrients of meat. Our previous study investigates potential candidate genes associated with variations in meat quality between Xianghai Flying (XHF) Goose and Zi Goose through genomic and transcriptome integrated analysis. Screening of 5 differential expression candidate genes related to muscle development identified by the FST, XP-EHH and RNA-seq in breast muscle from various geese. Among them, C1QTNF1 (C1q and TNF related protein 1), a gene of unknown function in goose, which observed mutations in coding sequence regions in sequencing data. Its function was explored after overexpression and knockdown which designed depending on the genetic sequence of the goose, respectively. Results showed that over-expression of C1QTNF1 significantly enhances cell proliferation and viability. In addition, the expression levels of the fusion marker gene Myomaker and the differentiation marker gene MyoD are significantly upregulated in cells. Knock-down C1QTNF1 leads to down regulated Myomaker and MyoD which involved muscle formation. But, the expression level of muscle atrophy marker MuRF is not significantly changed among different transfection groups. Since protein structures and interactions are closely related to their functions, we further analyzed the C1QTNF1 for physicochemical properties, structural predictions, protein interactions and homology. It can be reasonably inferred that C1QTNF1 has a similar effect to collagen, which may affect muscle development. In summary, we first speculate that C1QTNF1 may play an important regulatory role in muscle growth and development and thereby contributes to the further understanding of the genetic mechanisms that underlie meat quality traits of goose.


Subject(s)
Avian Proteins , Cell Proliferation , Geese , Meat , Animals , Geese/genetics , Geese/growth & development , Geese/physiology , Avian Proteins/genetics , Avian Proteins/metabolism , Meat/analysis , Muscle Development , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism
14.
Poult Sci ; 103(8): 103964, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936217

ABSTRACT

This study aimed to explore the impact of dietary Bacillus subtilis fmbj (BS) supplementation on acute intestinal dysfunction induced by lipopolysaccharide (LPS) in broilers. One hundred and eighty 1-day-old male Arbor Acres broilers were randomly divided into three treatment groups, each comprising ten replicates of 6 birds. On d 20, LPS-challenged (LPS group and LPS-BS group) and LPS-unchallenged (CON group) broilers received intraperitoneal injections of 1 mg/kg body weight LPS solution and an equivalent volume of sterile saline, respectively. Compared to the CON group, LPS disrupted (P < 0.05) the morphology of the small intestine (jejunum or ileum), exacerbated (P < 0.05) serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, induced (P < 0.05) small intestinal oxidative damage, and altered (P < 0.05) the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum. The LPS-BS group exhibited a tendency towards improvement in small intestinal morphology, serum, small intestinal, and small intestinal mitochondrial antioxidant capacity, small intestinal oxidative damage, and the expression of genes and proteins related to antioxidants, cell adhesion, and mitochondrial function in the jejunum when compared to the LPS group. In conclusion, BS supplementation may confer protection against LPS-induced acute intestinal dysfunction in broilers by enhancing the activation of SIRT1/PGC1α, suggesting its potential as a valuable additive for the poultry industry.


Subject(s)
Animal Feed , Bacillus subtilis , Chickens , Diet , Lipopolysaccharides , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Poultry Diseases , Probiotics , Sirtuin 1 , Animals , Male , Bacillus subtilis/chemistry , Poultry Diseases/chemically induced , Probiotics/administration & dosage , Probiotics/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Animal Feed/analysis , Diet/veterinary , Intestinal Diseases/veterinary , Intestinal Diseases/chemically induced , Random Allocation , Dietary Supplements/analysis , Avian Proteins/metabolism , Avian Proteins/genetics
15.
Poult Sci ; 103(8): 103898, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936216

ABSTRACT

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Cell Differentiation , Chickens , Exosomes , MicroRNAs , RNA, Circular , Animals , Avian Leukosis Virus/physiology , Exosomes/metabolism , Exosomes/virology , Exosomes/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Avian Leukosis/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Poultry Diseases/virology , Poultry Diseases/genetics , Embryonic Stem Cells/virology , Embryonic Stem Cells/physiology , Chick Embryo , Avian Proteins/genetics , Avian Proteins/metabolism
16.
Poult Sci ; 103(8): 103912, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943808

ABSTRACT

The proliferation and death of granulosa cells (GCs) in poultry play a decisive role in follicular fate and egg production. The follicular fluid (FF) contains a variety of nutrients and genetic substances to ensure the communication between follicular cells. Exosomes, as a new intercellular communication, could carry and transport the proteins, RNA, and lipids to react on GCs, which had been found in FF of various domestic animals. Whether exosomes of FF in poultry play a similar role is unclear. In this study, geese, a poultry with low egg production, were chosen, and the effect of FF exosomes on the proliferation and death of GCs was investigated. Firstly, there were not only a large number of healthy small yellow follicles (HSYFs) but also some atresia small yellow follicles (ASYFs) in the egg-laying stage. Also, the GC layers of ASYFs became loose interconnections, inward detachment, and diminished survival rate than that of HSYFs. Besides, compared to HSYFs, the contents of E2, P4, and the mRNA expression levels of ferroptosis-related genes GPX4, FPN1, and FTH1 were significantly decreased, while COX2, NCOA4, VDAC3 mRNA were significantly increased, and the structure of mitochondrial cristae disappeared and the outer membrane broke in the GC layers of ASYFs. Moreover, the ROS, MDA, and oxidation levels in the GC layers of ASYFs were significantly higher than those of HSYFs. All these hinted that ferroptosis might result in a large number of GCs death and involvement in follicle atresia. Secondly, FF exosomes were isolated from HSYFs and ASYFs, respectively, and identified by TEM, NTA, and detection of exosome marker proteins. Also, we found the exosomes were phagocytic by GCs by tracking CM-Dil. Moreover, the addition of ASYF-FF exosomes significantly elevated the MDA content, Fe2+ levels, and the mitochondrial membrane potential (MMP) in GCs, thus significantly inhibiting the proliferation of GCs, which was restored by the ferroptosis inhibitor ferrostatin-1. Thirdly, the proteomic sequencing was performed between FF-derived exosomes of HSYFs and ASYFs. We obtained 1615 differentially expressed proteins, which were mainly enriched in the protein transport and ferroptosis pathways. Among them, HMOX1 was enriched in the ferroptosis pathway based on differential protein-protein interaction network analysis. Finally, the role of HMOX1 in regulating ferroptosis in GCs was further explored. The highly expressed HMOX1 was observed in the exosomes of ASYF-FF than that in HSYF-FF. Overexpression of HMOX1 increased ATG5, LC3II, and NCOA4 expression and reduced the expression of FTH1, GPX4, PCBP2, FPN1 in the ferroptosis pathway, also promoted intracellular Fe2+ accumulation and MDA surge, which drove ferroptosis in GCs. The effects of HMOX1 on ferroptosis could be blocked by its inhibitor Znpp. Taken together, the important protein HMOX1 was identified in FF, which could be delivered to GCs via exosomes, triggering ferroptosis and thus determining the fate of follicles.


Subject(s)
Exosomes , Ferroptosis , Follicular Atresia , Follicular Fluid , Geese , Granulosa Cells , Heme Oxygenase-1 , Animals , Ferroptosis/physiology , Female , Exosomes/metabolism , Granulosa Cells/physiology , Granulosa Cells/metabolism , Follicular Atresia/physiology , Follicular Fluid/metabolism , Geese/physiology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Avian Proteins/metabolism , Avian Proteins/genetics
17.
Poult Sci ; 103(8): 103889, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861844

ABSTRACT

Previous studies with broiler breeders indicate a P retention threshold when fed daily dietary levels of non-phytate P (NPP) exceeding 320 mg. Fibroblast growth factor 23 (FGF23) is a hormone secreted by osteocytes which modulates P retention and could be the biological agent which controls the P threshold in breeders. To evaluate the relationship between FGF23 and the P retention threshold, a 4-wk study with 32-wk-old breeders was conducted with 6 dietary treatments with daily NPP intake of 216 to 576 mg/d/h with increments of 80 mg/kg diet. The goals were 1) to elucidate how plasma FGF23 corresponds with the P retention threshold in broiler breeders and 2) to determine the amount of P for optimal egg production and bone health. Results showed that between daily 288 mg and 360 mg dietary NPP intake, P retention decreased from 33 to 26% but FGF23 levels increased from 130 pg/mL to 220 pg/mL with increasing NPP. The elevation of plasma FGF23 between the range of 288 mg to 360 mg dietary NPP/d intake suggests that FGF23 is related to the P retention threshold and may be the major hormone for regulating physiological P levels when intake of daily dietary P levels are increased above 288 mg NPP.


Subject(s)
Animal Feed , Chickens , Diet , Fibroblast Growth Factors , Phosphorus, Dietary , Animals , Female , Male , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Avian Proteins/metabolism , Chickens/metabolism , Chickens/physiology , Diet/veterinary , Dose-Response Relationship, Drug , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/blood , Phosphorus/metabolism , Phosphorus, Dietary/metabolism , Phosphorus, Dietary/administration & dosage , Random Allocation
18.
Poult Sci ; 103(8): 103951, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909511

ABSTRACT

As an anti-myogenic factor, the myostatin (MSTN) gene was mainly considered as a genetic marker to improve meat production. Moreover, an additional effect of the MSTN mutation on reducing fat deposition in various farm animals suggested a potential application of the MSTN gene on regulating fat deposition in poultry species. Although increase in muscle mass resulted from muscle hyperplasia in the MSTN mutant quail, cellular mechanism behind the decrease in fat deposition was not investigated in the quail model. In the current study, to investigate sexual dimorphic association between fat deposition and Mstn mutation in quail, leg and abdominal fat pads from 4-month-old male and female quail were histologically analyzed. Interestingly, abdominal and leg fat pad weights were significantly decreased by the MSTN mutation only in female quail, but not in male quail, showing sexual dimorphism in regulating fat deposition by the MSTN mutation in quail. Histological analysis also revealed that fat cell sizes of leg and abdominal fats were significantly reduced only in female groups aligning with the decreased fat pad weights. Sexual dimorphic effect of the MSTN mutation on fat cell hypotrophy and reduced fat pad weights in quail provided an important scientific finding to be considered on the usage of the MSTN gene as a genetic marker to reduce fat deposition in poultry species.


Subject(s)
Adipose Tissue , Coturnix , Mutation , Myostatin , Animals , Myostatin/genetics , Myostatin/metabolism , Female , Male , Coturnix/genetics , Coturnix/physiology , Adipose Tissue/metabolism , Sex Characteristics , Avian Proteins/genetics , Avian Proteins/metabolism
19.
Poult Sci ; 103(8): 103872, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848631

ABSTRACT

Interleukin-23 (IL-23) is a recently identified member of the IL-12 family of heterodimeric cytokines that play a critical role in regulating T helper cell function. IL-12 and IL-23 share a common p40 subunit, but differ in their p35 and p19 subunits, respectively. This difference in subunit composition results in distinct signaling pathways and biological functions for IL-12 and IL-23. Here, we report the functional characterization and immunomodulatory properties of chicken IL-12 and IL-23 using the panels of newly developed mouse anti-IL-12p40, IL-12p35-α and IL-23p19 monoclonal antibodies (mAbs). Western blot and indirect ELISA analysis demonstrated that the anti-chicken IL-12p40 mAbs (chIL-12p40; #10G10F4 and #10D8G2) bound to both recombinant proteins (IL-12 and IL-23), the anti-chicken IL-12p35 mAb (chIL-12p35; #2F1) specifically recognized recombinant IL-12, and the anti-chicken IL-23p19 mAb (chIL-23p19; #15A3) exhibited specificity for recombinant IL-23, without any cross-reactivity. Two ELISAs detecting specific chicken IL-12 (#10G10F4 and #2F1) or IL-23 (#10D8G2 and #15A3) were developed using newly developed mAb combinations, #10G10F4/ #2F1 and #10D8G2/#15A3 for IL-12 and IL-23, respectively, identified through a pairing assay. The levels of IL-12 and IL-23 in Resiquimod-848 stimulated-HD11 chicken macrophage cells were monitored over time using antigen-capture sandwich ELISA developed in this study. Furthermore, the levels of chicken IL-12 and IL-23 in the circulation of Eimeria maxima (E. maxima) and Eimeria tenella (E. tenella)-infected chickens were determined. Notably, the anti-chIL-12p40 mAbs (#10G10F4 and #10D8G2) neutralized the function of both chIL-12 and chIL-23 proteins, which share the p40 subunit, while the anti-chIL-23p19 mAb (#15A3) specifically neutralized chIL-23 protein in HD11 cells in vitro. The anti-chIL-12p35 mAb (#2F1), which is specific to the p35 subunit of IL-12, showed a partial neutralizing effect on chIL-12 protein. Collectively, our study validates the specificity and significance of 2 newly developed antigen-capture immunoassays for chIL-12 and chIL-23 which will expand our understanding of the functional characteristics of IL-12 and IL-23 and their association in normal and diseased chickens. These mAbs for each subunit, anti-chIL-12p35, anti-chIL-12p40 and anti-chIL-23p19, will serve as valuable immune reagents to elucidate host immune responses against disease pathogenesis in both fundamental and applied studies of avian species.


Subject(s)
Antibodies, Monoclonal , Chickens , Interleukin-12 , Interleukin-23 , Animals , Chickens/immunology , Antibodies, Monoclonal/immunology , Mice , Interleukin-23/immunology , Interleukin-12/immunology , Interleukin-12/metabolism , Enzyme-Linked Immunosorbent Assay/veterinary , Avian Proteins/immunology , Avian Proteins/genetics , Avian Proteins/metabolism , Mice, Inbred BALB C
20.
Poult Sci ; 103(8): 103930, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908126

ABSTRACT

Interferon-induced protein with tetratricopeptide repeats (IFITs), a family of proteins strongly induced by type I interferon (IFN-I), are deeply involved in many cellular and viral processes. IFIT5, the sole protein in this family found in birds, also plays a crucial role in regulating virus infection. In this study, goose IFIT5 (gIFIT5) was first cloned from peripheral blood lymphocyte (PBL) and phylogenetic analysis showed that it was highly homologous with duck IFIT5 (dIFIT5), sharing 94.6% identity in amino acid sequence. Subsequently, the expression kinetics of gIFIT5 during goose astrovirus (GAstV) infection and the regulatory effect of gIFIT5 on GAstV proliferation were evaluated. Results showed that the mRNA and protein expression level of gIFIT5 was greatly induced by GAstV infection, especially at 12 hpi. Importantly, gIFIT5 could conversely promote GAstV replication in GEF cells. Virus titers in gIFIT5 overexpression group were significantly higher than those in control group at 12 and 24 hpi. Western blot and quantitative real-time PCR (qRT-PCR) further demonstrated that the production of viral cap protein was significantly facilitated in gIFIT5-transfected group. Collectively, GAstV facilitates self-replication via promoting gIFIT5 expression.


Subject(s)
Astroviridae Infections , Avian Proteins , Geese , Poultry Diseases , Virus Replication , Animals , Geese/physiology , Geese/virology , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Poultry Diseases/virology , Avian Proteins/genetics , Avian Proteins/metabolism , Phylogeny , Avastrovirus/physiology , Avastrovirus/genetics , Amino Acid Sequence , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL