Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.242
Filter
1.
Sci Signal ; 17(852): eado0881, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226374

ABSTRACT

Glycogen synthase kinase 3ß (GSK-3ß) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component ß-catenin for phosphorylation by GSK-3ß and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3ß bound to a phosphoprimed ß-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site. An aspartate phosphomimic in the priming site of ß-catenin adopted an indistinguishable structure but reacted approximately 1000-fold slower than the native phosphoprimed substrate. This result suggests that substrate positioning alone is not sufficient for catalysis and that native phosphopriming interactions are necessary. We also obtained a structure of GSK-3ß with an extended peptide from the scaffold protein Axin that bound with greater affinity than that of previously crystallized Axin fragments. This structure neither revealed additional contacts that produce the higher affinity nor explained how substrate interactions in the GSK-3ß active site are modulated by remote Axin binding. Together, our findings suggest that phosphopriming and scaffolding produce small conformational changes or allosteric effects, not captured in the crystal structures, that activate GSK-3ß and facilitate ß-catenin phosphorylation. These results highlight limitations in our ability to predict catalytic activity from structure and have potential implications for the role of natural phosphomimic mutations in kinase regulation and phosphosite evolution.


Subject(s)
Axin Protein , Glycogen Synthase Kinase 3 beta , beta Catenin , Humans , Axin Protein/metabolism , Axin Protein/chemistry , Axin Protein/genetics , beta Catenin/metabolism , beta Catenin/chemistry , beta Catenin/genetics , Catalytic Domain , Crystallography, X-Ray , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/chemistry , Glycogen Synthase Kinase 3 beta/genetics , Models, Molecular , Phosphorylation , Protein Binding , Protein Conformation , Wnt Signaling Pathway
2.
Oncol Res ; 32(10): 1637-1648, 2024.
Article in English | MEDLINE | ID: mdl-39308524

ABSTRACT

Background: Metformin has pleiotropic effects beyond glucose reduction, including tumor inhibition and immune regulation. It enhanced the anti-tumor effects of programmed cell death protein 1 (PD-1) inhibitors in serine/threonine kinase 11 (STK11) mutant non-small cell lung cancer (NSCLC) through an axis inhibition protein 1 (AXIN1)-dependent manner. However, the alterations of tumor metabolism and metabolites upon metformin administration remain unclear. Methods: We performed untargeted metabolomics using liquid chromatography (LC)-mass spectrometry (MS)/MS system and conducted cell experiments to verify the results of bioinformatics analysis. Results: According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, most metabolites were annotated into metabolism, including nucleotide metabolism. Next, the differentially expressed metabolites in H460 (refers to H460 cells), H460_met (refers to metformin-treated H460 cells), and H460_KO_met (refers to metformin-treated Axin1 -/- H460 cells) were distributed into six clusters based on expression patterns. The clusters with a reversed expression pattern upon metformin treatment were selected for further analysis. We screened out metabolic pathways through KEGG pathway enrichment analysis and found that multiple nucleotide metabolites enriched in this pathway were upregulated. Furthermore, these metabolites enhanced the cytotoxicity of activated T cells on H460 cells in vitro and can activate the stimulator of the interferon genes (STING) pathway independently of AXIN1. Conclusion: Relying on AXIN1, metformin upregulated multiple nucleotide metabolites which promoted STING signaling and the killing of activated T cells in STK11 mutant NSCLC, indicating a potential immunotherapeutic strategy for STK11 mutant NSCLC.


Subject(s)
AMP-Activated Protein Kinase Kinases , Axin Protein , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metformin , Mutation , Nucleotides , Protein Serine-Threonine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Metformin/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Axin Protein/genetics , Axin Protein/metabolism , Nucleotides/metabolism , Cell Line, Tumor , Up-Regulation , Metabolomics/methods , Gene Expression Regulation, Neoplastic/drug effects
3.
J Agric Food Chem ; 72(37): 20582-20591, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230507

ABSTRACT

The formation of well-designed synthetic compartments or membraneless organelles for applications in synthetic biology and cellular engineering has aroused enormous interest. However, establishing stable and robust intracellular compartments in bacteria remains a challenge. Here, we use the structured DIX domains derived from Wnt signaling pathway components, more specifically, Dvl2 and Axin1, as building blocks to generate intracellular synthetic compartments in Escherichia coli. Moreover, the aggregation behaviors and physical properties of the DIX-based compartments can be tailored by genetically embedding a specific dimeric domain into the DIX domains. Then, a pair of interacting motifs, consisting of the aforementioned dimeric domain and its corresponding binding ligand, was incorporated to modify the client recruitment pattern of the synthetic compartments. As a proof of concept, the human milk oligosaccharide lacto-N-tetraose (LNT) biosynthesis pathway was selected as a model metabolic pathway. The fermentation results demonstrated that the co-compartmentalization of sequential pathway enzymes into intracellular compartments created by DIX domain, or by the DIX domain in conjunction with interacting motifs, prominently enhanced the metabolic flux and increased LNT production. These synthetic protein compartments may provide a feasible and effective tool to develop versatile organelle-like compartments in bacteria for applications in cellular engineering and synthetic biology.


Subject(s)
Escherichia coli , Metabolic Engineering , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/chemistry , Humans , Organelles/metabolism , Organelles/chemistry , Axin Protein/metabolism , Axin Protein/genetics , Wnt Signaling Pathway , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Synthetic Biology , Milk, Human/chemistry , Milk, Human/metabolism
4.
Curr Mol Pharmacol ; 17: e18761429305367, 2024.
Article in English | MEDLINE | ID: mdl-39129721

ABSTRACT

OBJECTIVES: Increasing ratio of bone fragility, and susceptibility to fractures constitutes a major health problem worldwide. Therefore, we aimed to identify new compounds with a potential to increase proliferation and differentiation of osteoblasts. METHODS: Cellular and molecular assays, such as ALP activity, alizarin staining, and flow cytometry were employed to check the effect of TMF on osteogenesis. Moreover, gene expression analysis of certain important genes and transcriptional factors was also performed. RESULTS: Our findings report for the first time that 7,3',4'-trimethoxyflavone is capable of enhancing proliferation, and differentiation in osteoblast cells. Results from flow cytometry analysis also indicated that TMF increases the number of cells in S-phase. Furthermore, treatment with TMF altered the expression of osteogenic genes, OCN and Axin-2 indicating possible activation of Wnt signaling pathway. CONCLUSION: Taken together, this study identified that 7,3',4'-trimethoxyflavone has the potential to enhance osteoblast proliferation and differentiation, possibly due to the activation of Wnt/ß-catenin pathway. Thus, demonstrating TMF as naturally occurring agent to promote osteogenesis and prevention of bone fragility, and related disorders.


Subject(s)
Cell Differentiation , Cell Proliferation , Flavones , Osteoblasts , Osteogenesis , Wnt Signaling Pathway , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/drug effects , Animals , Mice , Cell Proliferation/drug effects , Osteogenesis/drug effects , Wnt Signaling Pathway/drug effects , Flavones/pharmacology , Cell Line , Axin Protein/metabolism , Flavonoids/pharmacology , beta Catenin/metabolism
5.
Prog Orthod ; 25(1): 31, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183201

ABSTRACT

BACKGROUND: Hypodontia is the most prevalent dental anomaly in humans, and is primarily attributed to genetic factors. Although genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNP) associated with hypodontia, genetic risk assessment remains challenging due to population-specific SNP variants. Therefore, we aimed to conducted a genetic analysis and developed a machine-learning-based predictive model to examine the association between previously reported SNPs and hypodontia in the Saudi Arabian population. Our case-control study included 106 participants (aged 8-50 years; 64 females and 42 males), comprising 54 hypodontia cases and 52 controls. We utilized TaqManTM Real-Time Polymerase Chain Reaction and allelic genotyping to analyze three selected SNPs (AXIN2: rs2240308, PAX9: rs61754301, and MSX1: rs12532) in unstimulated whole saliva samples. The chi-square test, multinomial logistic regression, and machine-learning techniques were used to assess genetic risk by using odds ratios (ORs) for multiple target variables. RESULTS: Multivariate logistic regression indicated a significant association between homozygous AXIN2 rs2240308 and the hypodontia phenotype (ORs [95% confidence interval] 2.893 [1.28-6.53]). Machine-learning algorithms revealed that the AXIN2 homozygous (A/A) genotype is a genetic risk factor for hypodontia of teeth #12, #22, and #35, whereas the AXIN2 homozygous (G/G) genotype increases the risk for hypodontia of teeth #22, #35, and #45. The PAX9 homozygous (C/C) genotype is associated with an increased risk for hypodontia of teeth #22 and #35. CONCLUSIONS: Our study confirms a link between AXIN2 and hypodontia in Saudi orthodontic patients and suggests that combining machine-learning models with SNP analysis of saliva samples can effectively identify individuals with non-syndromic hypodontia.


Subject(s)
Anodontia , Axin Protein , Machine Learning , Polymorphism, Single Nucleotide , Humans , Axin Protein/genetics , Anodontia/genetics , Case-Control Studies , Female , Male , Adolescent , Child , Adult , PAX9 Transcription Factor/genetics , Middle Aged , Saudi Arabia , Genetic Testing/methods , MSX1 Transcription Factor/genetics , Genotype , Young Adult , Phenotype
6.
Genes Chromosomes Cancer ; 63(8): e23263, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39120161

ABSTRACT

A substantial number of hereditary colorectal cancer (CRC) and colonic polyposis cannot be explained by alteration in confirmed predisposition genes, such as mismatch repair (MMR) genes, APC and MUTYH. Recently, a certain number of potential predisposition genes have been suggested, involving each a small number of cases reported so far. Here, we describe the detection of rare variants in the NTLH1, AXIN2, RNF43, BUB1, and TP53 genes in nine unrelated patients who were suspected for inherited CRC and/or colonic polyposis. Seven of them were classified as pathogenic or likely pathogenic variants (PV/LPV). Clinical manifestations of carriers were largely consistent with reported cases with, nevertheless, distinct characteristics. PV/LPV in these uncommon gene can be responsible for up to 2.7% of inherited CRC or colonic polyposis syndromes. Our findings provide supporting evidence for the role of these genes in cancer predisposition, and contribute to the determination of related cancer spectrum and cancer risk for carriers, allowing for the establishment of appropriate screening strategy and genetic counseling in affected families.


Subject(s)
Adenomatous Polyposis Coli , Genetic Predisposition to Disease , Humans , Female , Male , Middle Aged , Adult , Adenomatous Polyposis Coli/genetics , Ubiquitin-Protein Ligases/genetics , Axin Protein/genetics , Colorectal Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Aged , Protein Serine-Threonine Kinases/genetics , DNA-Binding Proteins/genetics , Deoxyribonuclease (Pyrimidine Dimer)
7.
Front Endocrinol (Lausanne) ; 15: 1377755, 2024.
Article in English | MEDLINE | ID: mdl-39205680

ABSTRACT

Sepsis, a life-threatening condition, involves complex interactions among metabolic alterations, inflammatory mediators, and host responses. This study utilized a bidirectional Mendelian randomization approach to investigate the causal relationships between 1400 metabolites and sepsis, and the mediating role of inflammatory factors. We identified 36 metabolites significantly associated with sepsis (p < 0.05), with AXIN1, FGF-19, FGF-23, IL-4, and OSM showing an inverse association, suggesting a protective role, while IL-2 exhibited a positive correlation, indicating a potential risk factor. Among these metabolites, Piperine and 9-Hydroxystearate demonstrated particularly interesting protective effects against sepsis. Piperine's protective effect was mediated through its interaction with AXIN1, contributing to a 16.296% reduction in sepsis risk. This suggests a potential pathway where Piperine influences sepsis outcomes by modulating AXIN1 levels. 9-Hydroxystearate also exhibited a protective role against sepsis, mediated through its positive association with FGF-19 and negative association with IL-2, contributing 9.436% and 12.565%, respectively, to its protective effect. Experimental validation confirmed significantly elevated IL-2 levels and reduced FGF-19, AXIN1, piperine, and 9-hydroxyoctadecanoic acid levels in sepsis patients compared to healthy controls. Piperine levels positively correlated with AXIN1, while 9-hydroxyoctadecanoic acid levels negatively correlated with IL-2 and positively correlated with FGF-19, supporting the Mendelian randomization findings. Our findings provide insights into the molecular mechanisms of sepsis, highlighting the unique roles and contributions of specific metabolites and their interactions with inflammatory mediators. This study enhances our understanding of sepsis pathophysiology and opens avenues for targeted therapeutic interventions and biomarker development for sepsis management. However, further research is essential to validate these pathways across diverse populations and fully explore the roles of these metabolites in sepsis.


Subject(s)
Alkaloids , Axin Protein , Fibroblast Growth Factors , Mendelian Randomization Analysis , Polyunsaturated Alkamides , Sepsis , Humans , Sepsis/metabolism , Sepsis/genetics , Polyunsaturated Alkamides/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Axin Protein/metabolism , Axin Protein/genetics , Piperidines/therapeutic use , Benzodioxoles , Inflammation/metabolism , Interleukin-2/metabolism , Interleukin-2/genetics , Inflammation Mediators/metabolism , Fibroblast Growth Factor-23
8.
Cancer Res Commun ; 4(8): 2075-2088, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39028933

ABSTRACT

The association of BRCA1 and BRCA2 mutations with increased risk for developing epithelial ovarian cancer is well established. However, the observed clinical differences, particularly the improved therapy response and patient survival in BRCA2-mutant patients, are unexplained. Our objective is to identify molecular pathways that are differentially regulated upon the loss of BRCA1 and BRCA2 functions in ovarian cancer. Transcriptomic and pathway analyses comparing BRCA1-mutant, BRCA2-mutant, and homologous recombination wild-type ovarian tumors showed differential regulation of the Wnt/ß-catenin pathway. Using Wnt3A-treated BRCA1/2 wild-type, BRCA1-null, and BRCA2-null mouse ovarian cancer cells, we observed preferential activation of canonical Wnt/ß-catenin signaling in BRCA1/2 wild-type ovarian cancer cells, whereas noncanonical Wnt/ß-catenin signaling was preferentially activated in the BRCA1-null ovarian cancer cells. Interestingly, BRCA2-null mouse ovarian cancer cells demonstrated a unique response to Wnt3A with the preferential upregulation of the Wnt signaling inhibitor Axin2. In addition, decreased phosphorylation and enhanced stability of ß-catenin were observed in BRCA2-null mouse ovarian cancer cells, which correlated with increased inhibitory phosphorylation on GSK3ß. These findings open venues for the translation of these molecular observations into modalities that can impact patient survival. SIGNIFICANCE: We show that BRCA1 and BRCA2 mutation statuses differentially impact the regulation of the Wnt/ß-catenin signaling pathway, a major effector of cancer initiation and progression. Our findings provide a better understanding of molecular mechanisms that promote the known differential clinical profile in these patient populations.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Wnt Signaling Pathway , Animals , Female , Humans , Mice , Axin Protein/genetics , Axin Protein/metabolism , beta Catenin/metabolism , beta Catenin/genetics , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/drug effects , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1361-1369, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39051082

ABSTRACT

OBJECTIVE: To explore the causal relationship between inflammatory protein markers and the risk of colorectal cancer using a Mendelian randomization (MR) approach. METHODS: We obtained data pertaining to colorectal cancer from Genome-Wide Association Study (GWAS) datasets and used 91 inflammatory protein markers as the exposure variables. A two-sample MR analysis model was used to assess the causal link between the inflammatory markers and colorectal cancer risk. The robustness of the results was evaluated through heterogeneity, pleiotropy, and sensitivity analyses using 5 MR models: Inverse Variance Weighted (IVW), Weighted Median, MR Egger, Simple Mode, and Weighted Mode. We examined the mRNA expressions of PD-L1, AXIN1, and ß-NGF using RT-qPCR in 86 untreated patients with colorectal adenocarcinoma admitted in Nanfang Hospital between December, 2021 and December 2023, and analyzed their correlation with the clinical characteristics of the patients. RESULTS: Using the IVW model, MR analysis revealed significant causal associations between a reduced risk of colorectal cancer and lowered expressions of AXIN1 (OR=0.866, 95% CI: 0.754-0.994, P=0.040), ß-NGF (OR=0.914, 95% CI: 0.843-0.990, P=0.028; OR=0.884, 95% CI: 0.784-0.998, P=0.047 using Weighted Median model), and PD-L1 (OR=0.903, 95% CI: 0.824- 0.989, P=0.028). No significant heterogeneity or pleiotropy was observed, indicating good stability of the results. Sensitivity analysis confirmed the reliability of the findings. The clinical study demonstrated a significant correlation between PD-L1 expression and TNM staging, particularly in stage Ⅳ patients (P=0.007). AXIN1 and ß -NGF expression levels were significantly correlated with the degree of tumor differentiation, and their expressions were higher in poorly differentiated samples (P<0.001). CONCLUSION: Lowered expressions of inflammatory protein markers AXIN1, ß-NGF, and PD-L1 are causally correlated with a reduced risk of colorectal cancer and their expression levels are associated with TNM staging and tumor differentiation. These markers may thus serve as potential targets for colorectal cancer treatment and prevention.


Subject(s)
Axin Protein , Colorectal Neoplasms , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Prognosis , Axin Protein/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Male , Female , Inflammation , Middle Aged , Risk Factors
10.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38967608

ABSTRACT

Peroxisomes are membrane-bound organelles harboring metabolic enzymes. In humans, peroxisomes are required for normal development, yet the genes regulating peroxisome function remain unclear. We performed a genome-wide CRISPRi screen to identify novel factors involved in peroxisomal homeostasis. We found that inhibition of RNF146, an E3 ligase activated by poly(ADP-ribose), reduced the import of proteins into peroxisomes. RNF146-mediated loss of peroxisome import depended on the stabilization and activity of the poly(ADP-ribose) polymerases TNKS and TNKS2, which bind the peroxisomal membrane protein PEX14. We propose that RNF146 and TNKS/2 regulate peroxisome import efficiency by PARsylation of proteins at the peroxisome membrane. Interestingly, we found that the loss of peroxisomes increased TNKS/2 and RNF146-dependent degradation of non-peroxisomal substrates, including the ß-catenin destruction complex component AXIN1, which was sufficient to alter the amplitude of ß-catenin transcription. Together, these observations not only suggest previously undescribed roles for RNF146 in peroxisomal regulation but also a novel role in bridging peroxisome function with Wnt/ß-catenin signaling during development.


Subject(s)
Axin Protein , Peroxisomes , Ubiquitin-Protein Ligases , Wnt Signaling Pathway , Peroxisomes/metabolism , Peroxisomes/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Axin Protein/metabolism , Axin Protein/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , HEK293 Cells , Protein Transport , CRISPR-Cas Systems
11.
J Tradit Chin Med ; 44(4): 688-693, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066529

ABSTRACT

OBJECTIVE: To investigate the protective effect of the Chinese herbal formula of Jiedu Huayu decoction (, JHD) on oral mucosa of rats with oral submucosal fibrosis (OSF) and its potential mechanism of action. METHODS: Sprague-Dawley male OSF model rats were constructed by injection of betaine and topical rubbing and were randomly grouped and administered by gavage for 4 weeks. Mouth opening and buccal mucosa scores interleukin levels and the expression of Axin and ß-catenin proteins or genes were measured before and after drug administration. RESULTS: After treatment with JHD the buccal mucosal lesions of rats were significantly reduced Axin protein and mRNA expression were significantly increased ß-catenin protein and mRNA expression were significantly decreased interleukin-1ß and interleukin-6 levels were decreased and interleukin-10 levels were increased. CONCLUSION: The mechanism of action of JHD can effectively alleviate the pathological damage of buccal mucosa in OSF rats which may be related to the promotion of Axin expression and inhibition of ß-catenin expression.


Subject(s)
Axin Protein , Drugs, Chinese Herbal , Mouth Mucosa , Rats, Sprague-Dawley , beta Catenin , Animals , Drugs, Chinese Herbal/administration & dosage , Male , beta Catenin/metabolism , beta Catenin/genetics , Rats , Axin Protein/genetics , Axin Protein/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/drug effects , Humans , Oral Submucous Fibrosis/drug therapy , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/genetics , Disease Models, Animal
12.
Exp Eye Res ; 245: 109988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964496

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.


Subject(s)
Axin Protein , Disease Models, Animal , Evoked Potentials, Visual , Optic Nerve , Animals , Axin Protein/metabolism , Mice , Evoked Potentials, Visual/physiology , Optic Nerve/metabolism , Optic Nerve/pathology , Electroretinography , Mice, Inbred C57BL , Axons/pathology , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Male , Wnt Signaling Pathway/physiology , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/metabolism
13.
Biochem Pharmacol ; 226: 116415, 2024 08.
Article in English | MEDLINE | ID: mdl-38972426

ABSTRACT

The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.


Subject(s)
Axin Protein , Esophageal Neoplasms , Glycolysis , Mice, Nude , Humans , Axin Protein/metabolism , Axin Protein/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Glycolysis/physiology , Animals , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Cell Hypoxia/physiology
14.
PLoS One ; 19(6): e0304607, 2024.
Article in English | MEDLINE | ID: mdl-38848383

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive liver cancer with significant morbidity and mortality rates. AXIN1 is one of the top-mutated genes in HCC, but the mechanism by which AXIN1 mutations contribute to HCC development remains unclear. METHODS: In this study, we utilized CRISPR/Cas9 genome editing to repair AXIN1-truncated mutations in five HCC cell lines. RESULTS: For each cell line we successfully obtained 2-4 correctly repaired clones, which all show reduced ß-catenin signaling accompanied with reduced cell viability and colony formation. Although exposure of repaired clones to Wnt3A-conditioned medium restored ß-catenin signaling, it did not or only partially recover their growth characteristics, indicating the involvement of additional mechanisms. Through RNA-sequencing analysis, we explored the gene expression patterns associated with repaired AXIN1 clones. Except for some highly-responsive ß-catenin target genes, no consistent alteration in gene/pathway expression was observed. This observation also applies to the Notch and YAP/TAZ-Hippo signaling pathways, which have been associated with AXIN1-mutant HCCs previously. The AXIN1-repaired clones also cannot confirm a recent observation that AXIN1 is directly linked to YAP/TAZ protein stability and signaling. CONCLUSIONS: Our study provides insights into the effects of repairing AXIN1 mutations on ß-catenin signaling, cell viability, and colony formation in HCC cell lines. However, further investigations are necessary to understand the complex mechanisms underlying HCC development associated with AXIN1 mutations.


Subject(s)
Axin Protein , CRISPR-Cas Systems , Carcinoma, Hepatocellular , Liver Neoplasms , Mutation , beta Catenin , Axin Protein/genetics , Axin Protein/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Gene Expression Regulation, Neoplastic , Gene Editing , Signal Transduction/genetics
15.
J Pediatr Urol ; 20(4): 748.e1-748.e7, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880668

ABSTRACT

INTRODUCTION: Cryptorchidism is one of the most common congenital anomalies in male children, occurring in 2-5% of full-term male infants. Both genetic and environmental factors are observed to play a role in its etiology. A study conducted in Japan identified the AXIN1 gene as being associated with cryptorchidism. OBJECTIVE: We aimed to conduct a pilot study on AXIN1 gene polymorphism in Turkish children with cryptorchidism, and whether AXIN1 gene polymorphism is a risk factor for cryptorchidism. STUDY DESIGN: Between January 2023 and December 2023, we have planned a prospective controlled study including 84 boys operated for cryptorchidism as study group, and 96 boys operated for circumcision as control group. The remaining blood samples of preoperative laboratory tests in ethylenediamine tetraacetic acid (EDTA) tubes were kept at -20 Co freezer for genomic studies. Patient demographics, physical examination and operative findings were recorded, study patients were grouped according to testis localization. After collecting all samples, genomic DNA isolation procedure was done, and analysis of the 3 polymorphisms (rs12921862, rs1805105 and rs370681) of AXIN1 gene was performed using conventional Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP) method. Genotype and allele frequencies of each group was analyzed and compared. RESULTS: The most common location of cryptorchid testis was proximal inguinal (53%), followed by distal inguinal (25.3%), bilateral (13.3%), and intra-abdominal (8.4%). Regarding the 3 polymorphisms of AXIN1 gene, there was no significant difference between study and control groups, in terms of genotype and allele frequencies (P > 0.05). Eight haplotype blocks were estimated for 3 polymorphisms of AXIN1. However, no significant difference was observed between study and control groups regarding haplotype distributions (P > 0.05). In addition, the comparison of the localization of testis with AXIN1 gene polymorphism did not show any significant difference among cryptorchid testis groups (P > 0.05). DISCUSSION: The AXIN1 gene is located on chromosome 16p and its polymorphisms have been associated with various diseases. In a Chinese study, the rs370681 polymorphism was found to be associated with cryptorchidism. However, our results showed no association between the AXIN1 gene haplotypes for the studied polymorphisms and cryptorchidism. CONCLUSION: In this study we have investigated the AXIN1 gene polymorphism in Turkish children with cryptorchidism as a pilot study. Although we could not identify any difference as compared to control group, further research is necessary to uncover the underlying molecular mechanisms contributing to the development of cryptorchidism.


Subject(s)
Axin Protein , Cryptorchidism , Humans , Male , Axin Protein/genetics , Cryptorchidism/genetics , Pilot Projects , Turkey/epidemiology , Prospective Studies , Child, Preschool , Infant , Child , Polymorphism, Genetic , Case-Control Studies
16.
J Neurosurg Pediatr ; 34(3): 246-251, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38905707

ABSTRACT

OBJECTIVE: Occurring once in every 2000 live births, craniosynostosis (CS) is the most frequent cranial birth defect. Although the genetic etiologies of syndromic CS cases are well defined, the genetic cause of most nonsyndromic cases remains unknown. METHODS: The authors analyzed exome or RNA sequencing data from 876 children with nonsyndromic CS, including 291 case-parent trios and 585 additional probands. The authors also utilized the GeneMatcher platform and the Gabriella Miller Kids First genome sequencing project to identify additional CS patients with AXIN1 mutations. RESULTS: The authors describe 11 patients with nonsyndromic CS harboring rare, damaging mutations in AXIN1, an inhibitor of Wnt signaling. AXIN1 regulates signaling upstream of key mediators of osteoblast differentiation. Three of the 6 mutations identified in trios occurred de novo in the proband, while 3 were transmitted from unaffected parents. Patients with nonsyndromic CS were highly enriched for mutations in AXIN1 compared to both expectation (p = 0.0008) and exome sequencing data from > 76,000 healthy controls (p = 2.3 × 10-6), surpassing the thresholds for genome-wide significance. CONCLUSIONS: These findings describe the first phenotype associated with mutations in AXIN1, with mutations identified in approximately 1% of nonsyndromic CS cases. The results strengthen the existing link between Wnt signaling and maintenance of cranial suture patency and have implications for genetic testing in families with CS.


Subject(s)
Axin Protein , Craniosynostoses , Mutation , Humans , Axin Protein/genetics , Craniosynostoses/genetics , Male , Female , Infant , Exome Sequencing , Child, Preschool
17.
Med Oncol ; 41(6): 147, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733492

ABSTRACT

Wnt/ß-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/ß-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900-5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/ß-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/ß-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited ß-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/ß-catenin signaling pathway through the increase of Axin1 protein stability.


Subject(s)
Axin Protein , Cell Proliferation , Lung Neoplasms , Wnt Signaling Pathway , Animals , Humans , Mice , A549 Cells , Antineoplastic Agents/pharmacology , Axin Protein/drug effects , Axin Protein/metabolism , beta Catenin/metabolism , beta Catenin/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Protein Stability/drug effects , Wnt Signaling Pathway/drug effects , Wnt3A Protein/drug effects , Wnt3A Protein/metabolism , Xenograft Model Antitumor Assays
18.
Biol Direct ; 19(1): 35, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715121

ABSTRACT

BACKGROUND: Ubiquitin-conjugating enzyme E2 N (UBE2N) is recognized in the progression of some cancers; however, little research has been conducted to describe its role in prostate cancer. The purpose of this paper is to explore the function and mechanism of UBE2N in prostate cancer cells. METHODS: UBE2N expression was detected in Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data, prostate cancer tissue microarrays, and prostate cancer cell lines, respectively. UBE2N knockdown or overexpression was used to analyze its role in cell viability and glycolysis of prostate cancer cells and tumor growth. XAV939 or Axin1 overexpression was co-treated with UBE2N overexpression to detect the involvement of the Wnt/ß-catenin signaling and Axin1 in the UBE2N function. UBE2N interacting with Axin1 was analyzed by co-immunoprecipitation assay. RESULTS: UBE2N was upregulated in prostate cancer and the UBE2N-high expression correlated with the poor prognosis of prostate cancer. UBE2N knockdown inhibited cell viability and glycolysis in prostate cancer cells and restricted tumor formation in tumor-bearing mice. Wnt/ß-catenin inhibition and Axin1 overexpression reversed the promoting viability and glycolysis function of UBE2N. UBE2N promoted Axin1 ubiquitination and decreased Axin1 protein level.


Subject(s)
Axin Protein , Cell Survival , Glycolysis , Prostatic Neoplasms , Ubiquitin-Conjugating Enzymes , Ubiquitination , Animals , Humans , Male , Mice , Axin Protein/metabolism , Axin Protein/genetics , Cell Line, Tumor , Mice, Nude , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Wnt Signaling Pathway
19.
Mol Biol Cell ; 35(7): ar93, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38656801

ABSTRACT

Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic ß-catenin, and Nkd1 functions to inhibit the nuclear localization of ß-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of ß-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/ß-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.


Subject(s)
Axin Protein , Wnt Signaling Pathway , Zebrafish Proteins , Zebrafish , beta Catenin , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Axin Protein/metabolism , Axin Protein/genetics , beta Catenin/metabolism , Carrier Proteins , Mutation/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
20.
Cancer Res ; 84(9): 1443-1459, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38359148

ABSTRACT

AXIN1 is a major component of the ß-catenin destruction complex and is frequently mutated in various cancer types, particularly liver cancers. Truncating AXIN1 mutations are recognized to encode a defective protein that leads to ß-catenin stabilization, but the functional consequences of missense mutations are not well characterized. Here, we first identified the GSK3ß, ß-catenin, and RGS/APC interaction domains of AXIN1 that are the most critical for proper ß-catenin regulation. Analysis of 80 tumor-associated variants in these domains identified 18 that significantly affected ß-catenin signaling. Coimmunoprecipitation experiments revealed that most of them lost binding to the binding partner corresponding to the mutated domain. A comprehensive protein structure analysis predicted the consequences of these mutations, which largely overlapped with the observed effects on ß-catenin signaling in functional experiments. The structure analysis also predicted that loss-of-function mutations within the RGS/APC interaction domain either directly affected the interface for APC binding or were located within the hydrophobic core and destabilized the entire structure. In addition, truncated AXIN1 length inversely correlated with the ß-catenin regulatory function, with longer proteins retaining more functionality. These analyses suggest that all AXIN1-truncating mutations at least partially affect ß-catenin regulation, whereas this is only the case for a subset of missense mutations. Consistently, most colorectal and liver cancers carrying missense variants acquire mutations in other ß-catenin regulatory genes such as APC and CTNNB1. These results will aid the functional annotation of AXIN1 mutations identified in large-scale sequencing efforts or in individual patients. SIGNIFICANCE: Characterization of 80 tumor-associated missense variants of AXIN1 reveals a subset of 18 mutations that disrupt its ß-catenin regulatory function, whereas the majority are passenger mutations.


Subject(s)
Axin Protein , Mutation, Missense , beta Catenin , Axin Protein/genetics , Axin Protein/metabolism , Humans , beta Catenin/genetics , beta Catenin/metabolism , Signal Transduction/genetics , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , HEK293 Cells , Cell Line, Tumor , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL