Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.185
1.
Front Endocrinol (Lausanne) ; 15: 1393111, 2024.
Article En | MEDLINE | ID: mdl-38846492

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.


Azoospermia , Fanconi Anemia , Signal Transduction , Humans , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , Male , Fanconi Anemia/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/pathology , DNA Repair , Animals , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , DNA Damage , Spermatogenesis
2.
Zool Res ; 45(3): 601-616, 2024 May 18.
Article En | MEDLINE | ID: mdl-38766744

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Cell Communication , Meiosis , Animals , Male , Mice , Meiosis/physiology , Humans , Sertoli Cells/metabolism , Sertoli Cells/physiology , Testis/metabolism , Testis/cytology , Spermatogenesis/physiology , Gene Expression Regulation , Azoospermia/genetics , Transcription, Genetic , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , Single-Cell Gene Expression Analysis
3.
Cells ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38786072

Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes. AR and CDYL were found to co-localize and interact in Sertoli cells. The AR-CDYL complex bound to the promoter regions of TNP1 and modulated their transcriptional activity. CDYL acts as a co-regulator of AR transactivation, and its expression is decreased in the Sertoli cells of human testes from patients with azoospermia. The androgen receptor-chromodomain Y-like protein axis plays a crucial role in regulating a network of genes essential for spermatogenesis in Sertoli cells. Disruption of this AR-CDYL regulatory axis may contribute to spermatogenic failure. These findings provide insights into novel molecular mechanisms targeting the AR-CDYL signaling pathway, which may have implications for developing new therapeutic strategies for male infertility.


Receptors, Androgen , Sertoli Cells , Signal Transduction , Spermatogenesis , Male , Sertoli Cells/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Spermatogenesis/genetics , Animals , Humans , Mice , Mice, Knockout , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Mice, Inbred C57BL , Transcription Factors , Homeodomain Proteins
4.
Cell Mol Life Sci ; 81(1): 211, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722330

Spermatogonial stem cells (SSCs) are capable of transmitting genetic information to the next generations and they are the initial cells for spermatogenesis. Nevertheless, it remains largely unknown about key genes and signaling pathways that regulate fate determinations of human SSCs and male infertility. In this study, we explored the expression, function, and mechanism of USP11 in controlling the proliferation and apoptosis of human SSCs as well as the association between its abnormality and azoospermia. We found that USP11 was predominantly expressed in human SSCs as shown by database analysis and immunohistochemistry. USP11 silencing led to decreases in proliferation and DNA synthesis and an enhancement in apoptosis of human SSCs. RNA-sequencing identified HOXC5 as a target of USP11 in human SSCs. Double immunofluorescence, Co-immunoprecipitation (Co-IP), and molecular docking demonstrated an interaction between USP11 and HOXC5 in human SSCs. HOXC5 knockdown suppressed the growth of human SSCs and increased apoptosis via the classical WNT/ß-catenin pathway. In contrast, HOXC5 overexpression reversed the effect of proliferation and apoptosis induced by USP11 silencing. Significantly, lower levels of USP11 expression were observed in the testicular tissues of patients with spermatogenic disorders. Collectively, these results implicate that USP11 regulates the fate decisions of human SSCs through the HOXC5/WNT/ß-catenin pathway. This study thus provides novel insights into understanding molecular mechanisms underlying human spermatogenesis and the etiology of azoospermia and it offers new targets for gene therapy of male infertility.


Apoptosis , Cell Proliferation , Homeodomain Proteins , Wnt Signaling Pathway , Humans , Male , Apoptosis/genetics , Cell Proliferation/genetics , Wnt Signaling Pathway/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Azoospermia/metabolism , Azoospermia/genetics , Azoospermia/pathology , Spermatogonia/metabolism , Spermatogonia/cytology , Spermatogenesis/genetics , Adult Germline Stem Cells/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Testis/metabolism , Testis/cytology , Thiolester Hydrolases
5.
Reprod Biol ; 24(2): 100891, 2024 Jun.
Article En | MEDLINE | ID: mdl-38733656

Azoospermia constitutes a significant factor in male infertility, defined by the absence of spermatozoa in the ejaculate, afflicting 15% of infertile men. However, a subset of azoospermic cases remains unattributed to known genetic variants. Prior investigations have identified the chibby family member 2 (CBY2) as prominently and specifically expressed in the testes of both humans and mice, implicating its potential involvement in spermatogenesis. In this study, we conducted whole exome sequencing (WES) on an infertile family to uncover novel genetic factors contributing to azoospermia. Our analysis revealed a homozygous c .355 C>A variant of CBY2 in a non-obstructive azoospermic patient. This deleterious variant significantly diminished the protein expression of CBY2 both in vivo and in vitro, leading to a pronounced disruption of spermatogenesis at the early round spermatid stage post-meiosis. This disruption was characterized by a nearly complete loss of elongating and elongated spermatids. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation assays demonstrated the interaction between CBY2 and Piwi-like protein 1 (PIWIL1). Immunofluorescence staining further confirmed the co-localization of CBY2 and PIWIL1 in the testes during the spermatogenic process in both humans and mice. Additionally, diminished PIWIL1 expression was observed in the testicular tissue from the affected patient. Our findings suggest that the homozygous c .355 C>A variant of CBY2 compromises CBY2 function, contributing to defective spermatogenesis at the round spermiogenic stage and implicating its role in the pathogenesis of azoospermia.


Azoospermia , Spermatogenesis , Male , Azoospermia/genetics , Humans , Spermatogenesis/genetics , Mutation , Animals , Mice , Testis/metabolism , Testis/pathology , Adult , Exome Sequencing , Pedigree , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 513-518, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684293

OBJECTIVE: To determine the frequency and characteristics of AZF microdeletions of Y chromosome and karyotypic abnormalities among infertile male patients from southwest China. METHODS: 4 278 infertile male patients treated at West China Second University Hospital of Sichuan University from September 2018 to July 2023 were selected as the study subjects. Results of Y chromosome microdeletion detection and G-banded karyotyping analysis were retrospectively reviewed. RESULTS: Clinical data of the patients were collected, which have included 2 048 patients with azoospermia, 1 536 patients with oligozoospermia, 310 patients with mild to moderate oligozoospermia, and 384 patients with infertility but normal sperm concentration. An abnormal karyotype was found in 213 (8.80%) of 2 421 patients who had undergone karyotyping analysis. The frequency of Y chromosome microdeletions was 9.86% (422/4 278), which had occurred in 10.4%, 13.28%, 0.97% and 0.52% of the cases with azoospermia, severe oligozoospermia, mild to moderate oligozoospermia, and infertility with normal sperm concentration, respectively. CONCLUSION: Y chromosome microdeletion detection and karyotyping analysis are crucial for assessing the cause of male infertility. Early diagnosis can facilitate the selection of reproductive methods.


Azoospermia , Chromosome Deletion , Chromosomes, Human, Y , Infertility, Male , Karyotyping , Oligospermia , Sex Chromosome Aberrations , Sex Chromosome Disorders of Sex Development , Humans , Male , Chromosomes, Human, Y/genetics , Infertility, Male/genetics , China , Adult , Oligospermia/genetics , Azoospermia/genetics , Sex Chromosome Disorders of Sex Development/genetics , Retrospective Studies , Abnormal Karyotype , Young Adult
7.
Am J Hum Genet ; 111(5): 877-895, 2024 May 02.
Article En | MEDLINE | ID: mdl-38614076

Infertility, affecting ∼10% of men, is predominantly caused by primary spermatogenic failure (SPGF). We screened likely pathogenic and pathogenic (LP/P) variants in 638 candidate genes for male infertility in 521 individuals presenting idiopathic SPGF and 323 normozoospermic men in the ESTAND cohort. Molecular diagnosis was reached for 64 men with SPGF (12%), with findings in 39 genes (6%). The yield did not differ significantly between the subgroups with azoospermia (20/185, 11%), oligozoospermia (18/181, 10%), and primary cryptorchidism with SPGF (26/155, 17%). Notably, 19 of 64 LP/P variants (30%) identified in 28 subjects represented recurrent findings in this study and/or with other male infertility cohorts. NR5A1 was the most frequently affected gene, with seven LP/P variants in six SPGF-affected men and two normozoospermic men. The link to SPGF was validated for recently proposed candidate genes ACTRT1, ASZ1, GLUD2, GREB1L, LEO1, RBM5, ROS1, and TGIF2LY. Heterozygous truncating variants in BNC1, reported in female infertility, emerged as plausible causes of severe oligozoospermia. Data suggested that several infertile men may present congenital conditions with less pronounced or pleiotropic phenotypes affecting the development and function of the reproductive system. Genes regulating the hypothalamic-pituitary-gonadal axis were affected in >30% of subjects with LP/P variants. Six individuals had more than one LP/P variant, including five with two findings from the gene panel. A 4-fold increased prevalence of cancer was observed in men with genetic infertility compared to the general male population (8% vs. 2%; p = 4.4 × 10-3). Expanding genetic testing in andrology will contribute to the multidisciplinary management of SPGF.


Infertility, Male , Humans , Male , Infertility, Male/genetics , Adult , Exome Sequencing , Steroidogenic Factor 1/genetics , Azoospermia/genetics , Oligospermia/genetics , Mutation , Spermatogenesis/genetics , Cohort Studies
8.
BMC Res Notes ; 17(1): 77, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486279

BACKGROUND: Spermatogenesis is the process of producing mature sperm from Spermatogonial stem cells (SSCs) and this process requires a complex cooperation of different types of somatic and germ cells. Undifferentiated spermatogonia initiate the spermatogenesis and Sertoli cells as the only somatic cells inside of the seminiferous tubule play a key role in providing chemical and physical requirements for normal spermatogenesis, here, we investigated the dysfunction of these cells in non-obstructive azoospermia. MATERIAL AND METHOD: In this study, we analyzed the expression of sox9 and UTF1 in the non-obstructive human testis by immunohistochemistry. Moreover, we used the KEGG pathway and bioinformatics analysis to reveal the connection between our object genes and protein. RESULTS: The immunohistochemistry analysis of the non-obstructive human seminiferous tubule showed low expression of Sox9 and UTF1 that was detected out of the main location of the responsible cells for these expressions. Our bioinformatics analysis clearly and strongly indicated the relation between UTF1 in undifferentiated spermatogonia and Sox9 in Sertoli cells mediated by POU5F1. CONCLUSION: Generally, this study showed the negative effect of POU5F1 as a mediator between Sertoli cells as the somatic cells within seminiferous tubules and undifferentiated spermatogonia as the spermatogenesis initiator germ cells in non-obstructive conditions.


Azoospermia , Testis , Humans , Male , Azoospermia/genetics , Down-Regulation , Nuclear Proteins/metabolism , Octamer Transcription Factor-3 , Semen , Spermatogonia/metabolism , Testis/metabolism , Trans-Activators
9.
J Assist Reprod Genet ; 41(5): 1307-1317, 2024 May.
Article En | MEDLINE | ID: mdl-38430325

PURPOSE: To identify the genetic cause of a cryptorchidism patient carrying a non-canonical splicing variant highlighted by SPCards platform in RXFP2 and to provide a comprehensive overview of RXFP2 variants with cryptorchidism correlation. METHODS: We identified a homozygous non-canonical splicing variant by whole-exome sequencing and Sanger sequencing in a case with cryptorchidism and non-obstructive azoospermia (NOA). As the pathogenicity of this non-canonical splicing variant remained unclear, we initially utilized the SPCards platform to predict its pathogenicity. Subsequently, we employed a minigene splicing assay to further evaluate the influence of the identified splicing variant. Microdissection testicular sperm extraction (micro-TESE) combined with intracytoplasmic sperm injection (ICSI) was performed. PubMed and Human Genome Variant Database (HGMD) were queried to search for RXFP2 variants. RESULTS: We identified a homozygous non-canonical splicing variant (NM_130806: c.1376-12A > G) in RXFP2, and confirmed this variant caused aberrant splicing of exons 15 and 16 of the RXFP2 gene: 11 bases were added in front of exon 16, leading to an abnormal transcript initiation and a frameshift. Fortunately, the patient successfully obtained his biological offspring through micro-TESE combined with ICSI. Four cryptorchidism-associated variants in RXFP2 from 90 patients with cryptorchidism were identified through a literature search in PubMed and HGMD, with different inheritance patterns. CONCLUSION: This is the first cryptorchidism case carrying a novel causative non-canonical splicing RXFP2 variant. The combined approach of micro-TESE and ICSI contributed to an optimal pregnancy outcome. Our literature review demonstrated that RXFP2 variants caused cryptorchidism in a recessive inheritance pattern, rather than a dominant pattern.


Cryptorchidism , Pregnancy Outcome , Receptors, G-Protein-Coupled , Sperm Injections, Intracytoplasmic , Humans , Cryptorchidism/genetics , Cryptorchidism/pathology , Male , Sperm Injections, Intracytoplasmic/methods , Pregnancy , Female , Receptors, G-Protein-Coupled/genetics , Pregnancy Outcome/genetics , Adult , Azoospermia/genetics , Azoospermia/pathology , Sperm Retrieval , Exome Sequencing , RNA Splicing/genetics
10.
Hum Reprod ; 39(5): 1131-1140, 2024 May 02.
Article En | MEDLINE | ID: mdl-38511217

STUDY QUESTION: Do copy-number variations (CNVs) in the azoospermia factor (AZF) regions and monogenic mutations play a major role in the development of isolated (non-syndromic) non-obstructive azoospermia (NOA) in Japanese men with a normal 46, XY karyotype? SUMMARY ANSWER: Deleterious CNVs in the AZF regions and damaging sequence variants in eight genes likely constitute at least 8% and approximately 8% of the genetic causes, respectively, while variants in other genes play only a minor role. WHAT IS KNOWN ALREADY: Sex chromosomal abnormalities, AZF-linked microdeletions, and monogenic mutations have been implicated in isolated NOA. More than 160 genes have been reported as causative/susceptibility/candidate genes for NOA. STUDY DESIGN, SIZE, DURATION: Systematic molecular analyses were conducted for 115 patients with isolated NOA and a normal 46, XY karyotype, who visited our hospital between 2017 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied 115 unrelated Japanese patients. AZF-linked CNVs were examined using sequence-tagged PCR and multiplex ligation-dependent probe amplification, and nucleotide variants were screened using whole exome sequencing (WES). An optimized sequence kernel association test (SKAT-O), a gene-based association study using WES data, was performed to identify novel disease-associated genes in the genome. The results were compared to those of previous studies and our in-house control data. MAIN RESULTS AND THE ROLE OF CHANCE: Thirteen types of AZF-linked CNVs, including the hitherto unreported gr/gr triplication and partial AZFb deletion, were identified in 63 (54.8%) cases. When the gr/gr deletion, a common polymorphism in Japan, was excluded from data analyses, the total frequency of CNVs was 23/75 (30.7%). This frequency is higher than that of the reference data in Japan and China (11.1% and 14.7%, respectively). Known NOA-causative AZF-linked CNVs were found in nine (7.8%) cases. Rare damaging variants in known causative genes (DMRT1, PLK4, SYCP2, TEX11, and USP26) and hemizygous/multiple-heterozygous damaging variants in known spermatogenesis-associated genes (TAF7L, DNAH2, and DNAH17) were identified in nine cases (7.8% in total). Some patients carried rare damaging variants in multiple genes. SKAT-O detected no genes whose rare damaging variants were significantly accumulated in the patient group. LIMITATIONS, REASONS FOR CAUTION: The number of participants was relatively small, and the clinical information of each patient was fragmentary. Moreover, the pathogenicity of identified variants was assessed only by in silico analyses. WIDER IMPLICATIONS OF THE FINDINGS: This study showed that various AZF-linked CNVs are present in more than half of Japanese NOA patients. These results broadened the structural variations of AZF-linked CNVs, which should be considered for the molecular diagnosis of spermatogenic failure. Furthermore, the results of this study highlight the etiological heterogeneity and possible oligogenicity of isolated NOA. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Grants from the Japan Society for the Promotion of Science (21K19283 and 21H0246), the Japan Agency for Medical Research and Development (22ek0109464h0003), the National Center for Child Health and Development, the Canon Foundation, the Japan Endocrine Society, and the Takeda Science Foundation. The results of this study were based on samples and patient data obtained from the International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.


Azoospermia , Cell Cycle Proteins , DNA Copy Number Variations , Humans , Azoospermia/genetics , Male , Exome Sequencing , Adult , Mutation , Japan , Karyotyping
11.
Ann Biol Clin (Paris) ; 81(6): 657-659, 2024 02 24.
Article Fr | MEDLINE | ID: mdl-38391171

Following a year of regular unprotected intercourse with his partner, and without achieving pregnancy, Mr. L. turned to his general practitioner. A semen analysis was carried out and no spermatozoa was found. After being referred to a male infertility specialist, the patient underwent a second test and a comprehensive assessment of his azoospermia. The azoospermia was confirmed and the genetic investigation revealed aneuploidy..


Azoospermia , Infertility, Male , Humans , Male , Azoospermia/diagnosis , Azoospermia/genetics , Infertility, Male/diagnosis , Infertility, Male/genetics , Semen Analysis , Spermatozoa
12.
Hum Reprod ; 39(3): 612-622, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38305414

STUDY QUESTION: Do the genetic determinants of idiopathic severe spermatogenic failure (SPGF) differ between generations? SUMMARY ANSWER: Our data support that the genetic component of idiopathic SPGF is impacted by dynamic changes in environmental exposures over decades. WHAT IS KNOWN ALREADY: The idiopathic form of SPGF has a multifactorial etiology wherein an interaction between genetic, epigenetic, and environmental factors leads to the disease onset and progression. At the genetic level, genome-wide association studies (GWASs) allow the analysis of millions of genetic variants across the genome in a hypothesis-free manner, as a valuable tool for identifying susceptibility risk loci. However, little is known about the specific role of non-genetic factors and their influence on the genetic determinants in this type of conditions. STUDY DESIGN, SIZE, DURATION: Case-control genetic association analyses were performed including a total of 912 SPGF cases and 1360 unaffected controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: All participants had European ancestry (Iberian and German). SPGF cases were diagnosed during the last decade either with idiopathic non-obstructive azoospermia (n = 547) or with idiopathic non-obstructive oligozoospermia (n = 365). Case-control genetic association analyses were performed by logistic regression models considering the generation as a covariate and by in silico functional characterization of the susceptibility genomic regions. MAIN RESULTS AND THE ROLE OF CHANCE: This analysis revealed 13 novel genetic association signals with SPGF, with eight of them being independent. The observed associations were mostly explained by the interaction between each lead variant and the age-group. Additionally, we established links between these loci and diverse non-genetic factors, such as toxic or dietary habits, respiratory disorders, and autoimmune diseases, which might potentially influence the genetic architecture of idiopathic SPGF. LARGE SCALE DATA: GWAS data are available from the authors upon reasonable request. LIMITATIONS, REASONS FOR CAUTION: Additional independent studies involving large cohorts in ethnically diverse populations are warranted to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Overall, this study proposes an innovative strategy to achieve a more precise understanding of conditions such as SPGF by considering the interactions between a variable exposome through different generations and genetic predisposition to complex diseases. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the "Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)" (ref. PY20_00212, P20_00583), the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. PID2020-120157RB-I00 funded by MCIN/ AEI/10.13039/501100011033), and the 'Proyectos I+D+i del Programa Operativo FEDER 2020' (ref. B-CTS-584-UGR20). ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, is also partially supported by the Portuguese Foundation for Science and Technology (Projects: UIDB/00009/2020; UIDP/00009/2020). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Azoospermia , Oligospermia , Male , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Azoospermia/genetics , Oligospermia/genetics , Environmental Exposure
13.
Cell Mol Life Sci ; 81(1): 92, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38363375

The maintenance of genome integrity in the germline is crucial for mammalian development. Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element that makes up about 17% of the human genome and poses a threat to genome integrity. N6-methyl-adenosine (m6A) plays an essential role in regulating various biological processes. However, the function of m6A modification in L1 retrotransposons and human germline development remains largely unknown. Here we knocked out the m6A methyltransferase METTL3 or the m6A reader YTHDF2 in human embryonic stem cells (hESCs) and discovered that METTL3 and YTHDF2 are crucial for inducing human spermatogonial stem cells (hSSCs) from hESCs in vitro. The removal of METTL3 or YTHDF2 resulted in increased L1 retrotransposition and reduced the efficiency of SSC differentiation in vitro. Further analysis showed that YTHDF2 recognizes the METTL3-catalyzed m6A modification of L1 retrotransposons and degrades L1 mRNA through autophagy, thereby blocking L1 retrotransposition. Moreover, the study confirmed that m6A modification in human fetal germ cells promotes the degradation of L1 retrotransposon RNA, preventing the insertion of new L1 retrotransposons into the genome. Interestingly, L1 retrotransposon RNA was highly expressed while METTL3 was significantly downregulated in the seminal plasma of azoospermic patients with meiotic arrest compared to males with normal fertility. Additionally, we identified some potentially pathogenic variants in m6A-related genes in azoospermic men with meiotic arrest. In summary, our study suggests that m6A modification serves as a guardian of genome stability during human germline development and provides novel insights into the function and regulatory mechanisms of m6A modification in restricting L1 retrotransposition.


Azoospermia , Retroelements , Male , Animals , Humans , Retroelements/genetics , RNA , Azoospermia/genetics , Cell Differentiation/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , Mammals/metabolism
14.
Hum Reprod ; 39(4): 822-833, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38383051

STUDY QUESTION: Can we simultaneously assess risk for multiple cancers to identify familial multicancer patterns in families of azoospermic and severely oligozoospermic men? SUMMARY ANSWER: Distinct familial cancer patterns were observed in the azoospermia and severe oligozoospermia cohorts, suggesting heterogeneity in familial cancer risk by both type of subfertility and within subfertility type. WHAT IS KNOWN ALREADY: Subfertile men and their relatives show increased risk for certain cancers including testicular, thyroid, and pediatric. STUDY DESIGN, SIZE, DURATION: A retrospective cohort of subfertile men (N = 786) was identified and matched to fertile population controls (N = 5674). Family members out to third-degree relatives were identified for both subfertile men and fertile population controls (N = 337 754). The study period was 1966-2017. Individuals were censored at death or loss to follow-up, loss to follow-up occurred if they left Utah during the study period. PARTICIPANTS/MATERIALS, SETTING, METHODS: Azoospermic (0 × 106/mL) and severely oligozoospermic (<1.5 × 106/mL) men were identified in the Subfertility Health and Assisted Reproduction and the Environment cohort (SHARE). Subfertile men were age- and sex-matched 5:1 to fertile population controls and family members out to third-degree relatives were identified using the Utah Population Database (UPDB). Cancer diagnoses were identified through the Utah Cancer Registry. Families containing ≥10 members with ≥1 year of follow-up 1966-2017 were included (azoospermic: N = 426 families, 21 361 individuals; oligozoospermic: N = 360 families, 18 818 individuals). Unsupervised clustering based on standardized incidence ratios for 34 cancer phenotypes in the families was used to identify familial multicancer patterns; azoospermia and severe oligospermia families were assessed separately. MAIN RESULTS AND THE ROLE OF CHANCE: Compared to control families, significant increases in cancer risks were observed in the azoospermia cohort for five cancer types: bone and joint cancers hazard ratio (HR) = 2.56 (95% CI = 1.48-4.42), soft tissue cancers HR = 1.56 (95% CI = 1.01-2.39), uterine cancers HR = 1.27 (95% CI = 1.03-1.56), Hodgkin lymphomas HR = 1.60 (95% CI = 1.07-2.39), and thyroid cancer HR = 1.54 (95% CI = 1.21-1.97). Among severe oligozoospermia families, increased risk was seen for three cancer types: colon cancer HR = 1.16 (95% CI = 1.01-1.32), bone and joint cancers HR = 2.43 (95% CI = 1.30-4.54), and testis cancer HR = 2.34 (95% CI = 1.60-3.42) along with a significant decrease in esophageal cancer risk HR = 0.39 (95% CI = 0.16-0.97). Thirteen clusters of familial multicancer patterns were identified in families of azoospermic men, 66% of families in the azoospermia cohort showed population-level cancer risks, however, the remaining 12 clusters showed elevated risk for 2-7 cancer types. Several of the clusters with elevated cancer risks also showed increased odds of cancer diagnoses at young ages with six clusters showing increased odds of adolescent and young adult (AYA) diagnosis [odds ratio (OR) = 1.96-2.88] and two clusters showing increased odds of pediatric cancer diagnosis (OR = 3.64-12.63). Within the severe oligozoospermia cohort, 12 distinct familial multicancer clusters were identified. All 12 clusters showed elevated risk for 1-3 cancer types. An increase in odds of cancer diagnoses at young ages was also seen in five of the severe oligozoospermia familial multicancer clusters, three clusters showed increased odds of AYA diagnosis (OR = 2.19-2.78) with an additional two clusters showing increased odds of a pediatric diagnosis (OR = 3.84-9.32). LIMITATIONS, REASONS FOR CAUTION: Although this study has many strengths, including population data for family structure, cancer diagnoses and subfertility, there are limitations. First, semen measures are not available for the sample of fertile men. Second, there is no information on medical comorbidities or lifestyle risk factors such as smoking status, BMI, or environmental exposures. Third, all of the subfertile men included in this study were seen at a fertility clinic for evaluation. These men were therefore a subset of the overall population experiencing fertility problems and likely represent those with the socioeconomic means for evaluation by a physician. WIDER IMPLICATIONS OF THE FINDINGS: This analysis leveraged unique population-level data resources, SHARE and the UPDB, to describe novel multicancer clusters among the families of azoospermic and severely oligozoospermic men. Distinct overall multicancer risk and familial multicancer patterns were observed in the azoospermia and severe oligozoospermia cohorts, suggesting heterogeneity in cancer risk by type of subfertility and within subfertility type. Describing families with similar cancer risk patterns provides a new avenue to increase homogeneity for focused gene discovery and environmental risk factor studies. Such discoveries will lead to more accurate risk predictions and improved counseling for patients and their families. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by GEMS: Genomic approach to connecting Elevated germline Mutation rates with male infertility and Somatic health (Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD): R01 HD106112). The authors have no conflicts of interest relevant to this work. TRIAL REGISTRATION NUMBER: N/A.


Azoospermia , Oligospermia , Testicular Neoplasms , Adolescent , Young Adult , Humans , Male , Child , Azoospermia/epidemiology , Azoospermia/genetics , Azoospermia/diagnosis , Oligospermia/epidemiology , Oligospermia/genetics , Retrospective Studies , Pedigree , Risk Factors , Testicular Neoplasms/epidemiology , Testicular Neoplasms/genetics
15.
Clin Genet ; 106(1): 27-36, 2024 Jul.
Article En | MEDLINE | ID: mdl-38342987

Oligoasthenoteratozoospermia (OAT) is a common type of male infertility; however, its genetic causes remain largely unknown. Some of the genetic determinants of OAT are gene defects affecting spermatogenesis. BCORL1 (BCL6 corepressor like 1) is a transcriptional corepressor that exhibits the OAT phenotype in a knockout mouse model. A hemizygous missense variant of BCORL1 (c.2615T > G:p.Val872Gly) was reported in an infertile male patient with non-obstructive azoospermia (NOA). Nevertheless, the correlation between BCORL1 variants and OAT in humans remains unknown. In this study, we used whole-exome sequencing to identify a novel hemizygous nonsense variant of BCORL1 (c.1564G > T:p.Glu522*) in a male patient with OAT from a Han Chinese family. Functional analysis showed that the variant produced a truncated protein with altered cellular localization and a dysfunctional interaction with SKP1 (S-phase kinase-associated protein 1). Further population screening identified four BCORL1 missense variants in subjects with both OAT (1 of 325, 0.31%) and NOA (4 of 355, 1.13%), but no pathogenic BCORL1 variants among 362 fertile subjects. In conclusion, our findings indicate that BCORL1 is a potential candidate gene in the pathogenesis of OAT and NOA, expanded its disease spectrum and suggested that BCORL1 may play a role in spermatogenesis by interacting with SKP1.


Exome Sequencing , Infertility, Male , Repressor Proteins , Male , Humans , Repressor Proteins/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Oligospermia/genetics , Oligospermia/pathology , Adult , Pedigree , Azoospermia/genetics , Azoospermia/pathology , Loss of Function Mutation/genetics , Genetic Predisposition to Disease , Protein-Arginine N-Methyltransferases/genetics , Mutation, Missense/genetics , Spermatogenesis/genetics
16.
F S Sci ; 5(2): 130-140, 2024 May.
Article En | MEDLINE | ID: mdl-38369016

OBJECTIVE: To determine if early spermatocytes can be enriched from a human testis biopsy using fluorescence-activated cell sorting (FACS). DESIGN: Potential surface markers for early spermatocytes were identified using bioinformatics analysis of single-cell RNA-sequenced human testis tissue. Testicular sperm extraction samples from three participants with normal spermatogenesis were digested into single-cell suspensions and cryopreserved. Two to four million cells were obtained from each and sorted by FACS as separate biologic replicates using antibodies for the identified surface markers. A portion from each biopsy remained unsorted to serve as controls. The sorted cells were then characterized for enrichment of early spermatocytes. SETTING: A laboratory study. PATIENTS: Three men with a diagnosis of obstructive azoospermia (age range, 30-40 years). INTERVENTION: None. MAIN OUTCOME MEASURES: Sorted cells were characterized for RNA expression of markers encompassing the stages of spermatogenesis. Sorting markers were validated by their reactivity on human testis formalin-fixed paraffin-embedded tissue. RESULTS: Serine protease 50 (TSP50) and SWI5-dependent homologous recombination repair protein 1 were identified as potential surface proteins specific for early spermatocytes. After FACS sorting, the TSP50-sorted populations accounted for 1.6%-8.9% of total populations and exhibited the greatest average-fold increases in RNA expression for the premeiotic marker stimulated by retinoic acid (STRA8), by 23-fold. Immunohistochemistry showed the staining pattern for TSP50 to be strong in premeiotic undifferentiated embryonic cell transcription factor 1-/doublesex and Mab-3 related transcription factor 1-/STRA8+ spermatogonia as well as SYCP3+/protamine 2- spermatocytes. CONCLUSION: This work shows that TSP50 can be used to enrich early STRA8-expressing spermatocytes from human testicular biopsies, providing a means for targeted single-cell RNA sequencing analysis and in vitro functional interrogation of germ cells during the onset of meiosis. This could enable investigation into details of the regulatory pathways underlying this critical stage of spermatogenesis, previously difficult to enrich from whole tissue samples.


Flow Cytometry , Spermatocytes , Humans , Male , Spermatocytes/metabolism , Spermatocytes/pathology , Adult , Flow Cytometry/methods , Biopsy/methods , Spermatogenesis/physiology , Testis/pathology , Testis/metabolism , Azoospermia/pathology , Azoospermia/diagnosis , Azoospermia/metabolism , Azoospermia/genetics , Cell Separation/methods , Single-Cell Analysis/methods
17.
J Assist Reprod Genet ; 41(4): 1111-1124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38403804

PURPOSE: To identify germline mutations related to azoospermia etiology and reproductive potential of surgically retrieved spermatozoa, and to investigate the feasibility of predicting seminiferous tubule function of nonobstructive azoospermic men by transcriptomic profiling of ejaculates. MATERIALS AND METHODS: Sperm specimens were obtained from 30 men (38.4 ± 6 years) undergoing epididymal sperm aspiration for obstructive azoospermia (OA, n = 19) acquired by vasectomy, or testicular biopsy for nonobstructive azoospermia (NOA, n = 11). To evaluate for a correlation with azoospermia etiology, DNAseq was performed on surgically retrieved spermatozoa, and cell-free RNAseq on seminal fluid (n = 23) was performed to predict spermatogenesis in the seminiferous tubule. RESULTS: Overall, surgically retrieved sperm aneuploidy rates were 1.7% and 1.8% among OA and NOA cohorts, respectively. OA men carried housekeeping-related gene mutations, while NOA men displayed mutations on genes involved in crucial spermiogenic functions (AP1S2, AP1G2, APOE). We categorized couples within each cohort according to ICSI clinical outcomes to investigate genetic causes that may affect reproductive potential. All OA-fertile men (n = 9) carried mutations in ZNF749 (sperm production), whereas OA-infertile men (n = 10) harbored mutations in PRB1, which is essential for DNA replication. NOA-fertile men (n = 8) carried mutations in MPIG6B (stem cell lineage differentiation), whereas NOA-infertile individuals (n = 3) harbored mutations in genes involved in spermato/spermio-genesis (ADAM29, SPATA31E1, MAK, POLG, IFT43, ATG9B) and early embryonic development (MBD5, CCAR1, PMEPA1, POLK, REC8, REPIN1, MAPRE3, ARL4C). Transcriptomic assessment of cell-free RNAs in seminal fluid from NOA men allowed the prediction of residual spermatogenic foci. CONCLUSIONS: Sperm genome profiling provides invaluable information on azoospermia etiology and identifies gene-related mechanistic links to reproductive performance. Moreover, RNAseq assessment of seminal fluid from NOA men can help predict sperm retrieval during testicular biopsies.


Azoospermia , Sperm Retrieval , Spermatogenesis , Spermatozoa , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Adult , Spermatozoa/pathology , Spermatogenesis/genetics , Infertility, Male/genetics , Infertility, Male/pathology , Testis/pathology , Mutation/genetics , Middle Aged , Genetic Profile
18.
Mol Hum Reprod ; 30(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38258527

Oligozoospermia and azoospermia are two common phenotypes of male infertility characterized by massive sperm defects owing to failure of spermatogenesis. The deleterious impact of candidate variants with male infertility is to be explored. In our study, we identified three hemizygous missense variants (c.388G>A: p.V130M, c.272C>T: p.A91V, and c.467C>T: p.A156V) and one hemizygous nonsense variant (c.478C>T: p.R160X) in the Rhox homeobox family member 1 gene (RHOXF1) in four unrelated cases from a cohort of 1201 infertile Chinese men with oligo- and azoospermia using whole-exome sequencing and Sanger sequencing. RHOXF1 was absent in the testicular biopsy of one patient (c.388G>A: p.V130M) whose histological analysis showed a phenotype of Sertoli cell-only syndrome. In vitro experiments indicated that RHOXF1 mutations significantly reduced the content of RHOXF1 protein in HEK293T cells. Specifically, the p.V130M, p.A156V, and p.R160X mutants of RHOXF1 also led to increased RHOXF1 accumulation in cytoplasmic particles. Luciferase assays revealed that p.V130M and p.R160X mutants may disrupt downstream spermatogenesis by perturbing the regulation of doublesex and mab-3 related transcription factor 1 (DMRT1) promoter activity. Furthermore, ICSI treatment could be beneficial in the context of oligozoospermia caused by RHOXF1 mutations. In conclusion, our findings collectively identified mutated RHOXF1 to be a disease-causing X-linked gene in human oligo- and azoospermia.


Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Azoospermia/genetics , Azoospermia/pathology , Genes, X-Linked , HEK293 Cells , Infertility, Male/genetics , Oligospermia/genetics , Semen
19.
J Assist Reprod Genet ; 41(3): 757-765, 2024 Mar.
Article En | MEDLINE | ID: mdl-38270748

PURPOSE: To investigate the prevalence of Y chromosome polymorphisms in Chinese men and analyze their associations with male infertility and female adverse pregnancy outcomes. METHODS: The clinical data of 32,055 Chinese men who underwent karyotype analysis from October 2014 to September 2019 were collected. Fisher's exact test, chi-square test, or Kruskal-Wallis test was used to analyze the effects of Y chromosome polymorphism on semen parameters, azoospermia factor (AZF) microdeletions, and female adverse pregnancy outcomes. RESULTS: The incidence of Y chromosome polymorphic variants was 1.19% (381/32,055) in Chinese men. The incidence of non-obstructive azoospermia (NOA) was significantly higher in men with the Yqh- variant than that in men with normal karyotype and other Y chromosome polymorphic variants (p < 0.050). The incidence of AZF microdeletions was significantly different among the normal karyotype and different Y chromosome polymorphic variant groups (p < 0.001). The detection rate of AZF microdeletions was 28.92% (24/83) in the Yqh- group and 2.50% (3/120) in the Y ≤ 21 group. The AZFb + c region was the most common AZF microdeletion (78.57%, 22/28), followed by AZFc microdeletion (7.14%,2/28) in NOA patients with Yqh- variants. There was no significant difference in the distribution of female adverse pregnancy outcomes among the normal karyotype and different Y chromosome polymorphic variant groups (p = 0.528). CONCLUSIONS: Patients with 46,XYqh- variant have a higher incidence of NOA and AZF microdeletions than patients with normal karyotype and other Y chromosome polymorphic variants. Y chromosome polymorphic variants do not affect female adverse pregnancy outcomes.


Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Female , Azoospermia/epidemiology , Azoospermia/genetics , Retrospective Studies , Chromosome Deletion , Infertility, Male/genetics , Chromosomes, Human, Y/genetics , China/epidemiology , Oligospermia/genetics
20.
J Assist Reprod Genet ; 41(3): 751-756, 2024 Mar.
Article En | MEDLINE | ID: mdl-38277113

PURPOSE: To investigate the genetic etiology of patients with female infertility. METHODS: Whole Exome Sequencing was performed on genomic DNA extracted from the patient's blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members. RESULTS: A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant. CONCLUSIONS: Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.


Azoospermia , Cell Cycle Proteins , DNA-Binding Proteins , Infertility, Male , Female , Humans , Azoospermia/genetics , Cell Cycle Proteins/genetics , Homozygote , Infertility, Male/genetics , Meiosis , DNA-Binding Proteins/genetics
...