Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 576
Filter
1.
Parasite ; 31: 42, 2024.
Article in English | MEDLINE | ID: mdl-39052012

ABSTRACT

Babesia species are intraerythrocytic protozoan parasites that infect a variety of hosts. The goal of this study was to evaluate the piroplasm species present in skunks in various states in the United States and determine whether there was any geographic variation. Spleen, whole blood, or blood on filter paper were received from Pennsylvania, Kentucky, North Carolina, South Carolina, Georgia, Missouri, Louisiana, Texas, Kansas, and California, and were tested for Babesia sp. We tested four species of skunks including striped skunk (Mephitis mephitis, n = 72), eastern spotted skunk (Spilogale putorius, n = 28), western spotted skunk (Spilogale gracilis, n = 15), and hog-nosed skunk (Conepatus leuconotus, n = 11). A PCR assay targeting the 18S rRNA region and cox1 region were used to determine if skunks were infected with piroplasms and for phylogenetic analyses. A total of 48.4% (61/126) of skunks tested positive for a Babesia species. Both the 18S and cox1 analysis supported a skunk-specific Babesia microti-like sp. of carnivores as well as a species in the B. microti complex that is phylogenetically unique from both B. microti of humans and the B. microti-like sp. of carnivores. In the 18S analysis, there was a third species of Babesia in hog-nosed skunks in the western piroplasm group. This study shows that at least three species of piroplasms occur in skunk species in the United States and further highlights the importance of phylogenetic analyses and the use of multiple gene targets when studying piroplasms.


Title: Diversité des Babesia spp. chez des mouffettes provenant d'États sélectionnés des États-Unis. Abstract: Les espèces de Babesia sont des protozoaires parasites intraérythrocytaires qui infectent divers hôtes. Le but de cette étude était d'évaluer les espèces de piroplasmes présentes chez les mouffettes dans divers états des États-Unis et de déterminer s'il existait une variation géographique. Des rates, du sang total ou du sang sur papier filtre ont été reçus de Pennsylvanie, du Kentucky, de Caroline du Nord, de Caroline du Sud, de Géorgie, du Missouri, de Louisiane, du Texas, du Kansas et de Californie, et ont été testés pour Babesia sp. Nous avons testé quatre espèces de mouffettes, dont la mouffette rayée (Mephitis mephitis, n = 72), la mouffette tachetée de l'Est (Spilogale putorius, n = 28), la mouffette tachetée de l'Ouest (Spilogale gracilis, n = 15) et la mouffette à nez plat (Conepatus leuconotus, n = 11). Un test PCR ciblant la région de l'ARNr 18S et la région cox1 a été utilisé pour déterminer si les mouffettes étaient infectées par des piroplasmes et pour des analyses phylogénétiques. Au total, 48,4 % (61/126) des mouffettes ont été testées positives pour une espèce de Babesia. Les analyses du 18S et du cox1 ont toutes deux confirmé une espèce de type Babesia microti de carnivores spécifique aux mouffettes ainsi qu'une espèce du complexe B. microti qui est phylogénétiquement unique à la fois par rapport à B. microti de l'homme et à l'espèce des carnivores. Dans l'analyse 18S, il y avait une troisième espèce de Babesia chez les mouffettes à nez plat du groupe des piroplasmes de l'ouest. Cette étude montre qu'au moins trois espèces de piroplasmes sont présentes chez les espèces de mouffettes aux États-Unis et souligne en outre l'importance des analyses phylogénétiques et de l'utilisation de plusieurs cibles génétiques lors de l'étude des piroplasmes.


Subject(s)
Babesia , Babesiosis , Mephitidae , Phylogeny , RNA, Ribosomal, 18S , Babesiosis/epidemiology , Babesiosis/parasitology , Babesia/classification , Babesia/isolation & purification , Babesia/genetics , Animals , United States/epidemiology , RNA, Ribosomal, 18S/genetics , Mephitidae/parasitology , DNA, Protozoan , Genetic Variation , Polymerase Chain Reaction
2.
Sci Rep ; 14(1): 16888, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043715

ABSTRACT

Tick-borne diseases in animals are increasing rapidly worldwide, but there is insufficient information about tick-borne diseases infecting dogs in southern Egypt. Thus, in the current study, we detected the presence of Anaplasma marginale (A. marginale) and Babesia canis vogeli (B. canis vogeli) in the blood of dogs. The results revealed that 4/100 (4%) were positive, and a higher infection rate was found in males (75%), than females (25%). The phylogenetic analysis for the major surface protein 4 (msp4) gene in this study was compared with amplicons separate from other reported isolates with alignment by identity 100% with cattle and camels from Egypt, and the phylogenetic analysis for the B. canis vogeli small subunit ribosomal RNA (SSU rRNA) gene in this study identified identity by 99.89% with dogs from Egypt. This report is considered the first report in southern Egypt about A. marginale in dogs based on the sequence analysis of the msp4 gene, providing new data for the classification and identification of A. marginale in dogs compared to A. marginale isolated from other animals in southern Egypt.


Subject(s)
Anaplasma marginale , Anaplasmosis , Babesia , Babesiosis , Dog Diseases , Phylogeny , Animals , Dogs , Egypt/epidemiology , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Anaplasmosis/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/diagnosis , Anaplasma marginale/genetics , Anaplasma marginale/isolation & purification , Dog Diseases/parasitology , Dog Diseases/microbiology , Dog Diseases/diagnosis , Babesiosis/parasitology , Babesiosis/epidemiology , Babesiosis/diagnosis , Female , Male
3.
Parasit Vectors ; 17(1): 315, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033131

ABSTRACT

BACKGROUND: Babesia spp. are protozoan parasites that infect the red blood cells of domesticated animals, wildlife and humans. A few cases of giant pandas (a flagship species in terms of wildlife conservation) infected with a putative novel Babesia sp. have been reported. However, comprehensive research on the morphological and molecular taxonomic classification of this novel Babesia sp. is still lacking. This study was designed to close this gap and formally describe this new Babesia sp. infecting giant pandas. METHODS: Detailed morphological, molecular and phylogenetic analyses were conducted to characterise this Babesia sp. and to assess its systematic relationships with other Babesia spp. Blood samples from giant pandas infected with Babesia were subjected to microscopic examination. The 18S ribosomal RNA (18S rRNA), cytochrome b (cytb) and mitochondrial genome (mitogenome) of the new Babesia sp. were amplified, sequenced and assembled using DNA purified from blood samples taken from infected giant pandas. Based on the newly generated 18S rRNA, cytb and mitogenome sequences, phylogenetic trees were constructed. RESULTS: Morphologically, the Babesia sp. from giant pandas exhibited various forms, including round to oval ring-shaped morphologies, resembling those found in other small canine Babesia spp. and displaying typical tetrads. Phylogenetic analyses with the 18S rRNA, cytb and mitogenome sequences revealed that the new Babesia sp. forms a monophyletic group, with a close phylogenetic relationship with the Babesia spp. that infect bears (Ursidae), raccoons (Procyonidae) and canids (Canidae). Notably, the mitogenome structure consisted of six ribosomal large subunit-coding genes (LSU1-6) and three protein-coding genes (cytb, cox3 and cox1) arranged linearly. CONCLUSIONS: Based on coupled morphological and genetic analyses, we describe a novel species of the genus Babesia, namely, Babesia ailuropodae n. sp., which infects giant pandas.


Subject(s)
Babesia , Babesiosis , Cytochromes b , Phylogeny , RNA, Ribosomal, 18S , Ursidae , Animals , Babesia/genetics , Babesia/classification , Babesia/isolation & purification , Ursidae/parasitology , RNA, Ribosomal, 18S/genetics , Babesiosis/parasitology , Cytochromes b/genetics , Genome, Mitochondrial , DNA, Protozoan/genetics
4.
Vet Parasitol Reg Stud Reports ; 53: 101071, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025542

ABSTRACT

Blood samples from fifteen captive Indian wolves (Canis lupus pallipes) maintained at Arignar Anna Zoological Park, Vandalur, Chennai were screened for the presence of Babesia spp., Ehrlichia canis and Trypnosoma evansi DNA by PCR. Out of 15 wolf samples, 3 samples were found positive for Babesia spp. The amplified 18S rRNA gene fragments from 3 wolves were sequenced and confirmed as Babesia gibsoni. A maximum likelihood tree was constructed using the three sequences along with other Babesia spp. sequences derived from GenBank adopting HKY nucleotide substitution model based on the Bayesian Information Criterion. The phylogenetic analysis confirmed that the three sequences were of Babesia gibsoni and highly divergent from Babesia canis, B. vogeli and B. vulpes. This might be a possible spill over event of B. gibsoni from community dogs through blood feeding dog ticks. This is the first report and molecular confirmation of B. gibsoni infection in captive Indian wolves.


Subject(s)
Babesia , Babesiosis , Phylogeny , RNA, Ribosomal, 18S , Wolves , Animals , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Babesiosis/parasitology , Babesiosis/epidemiology , India/epidemiology , Wolves/parasitology , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Animals, Zoo , Polymerase Chain Reaction/veterinary , DNA, Protozoan/genetics , Female , Male
5.
Parasitol Res ; 123(7): 279, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031213

ABSTRACT

Equine piroplasmosis (EP) is a global worldwide infection, which can lead to the death of animals. Despite the causative agents of EP being well studied, there are no data on the distribution and genetic characteristics of EP agents in any region of Russia. In this study, blood samples from 750 horses from Novosibirsk province, Irkutsk province, and Altai region of Russian Siberia were examined for the presence of EP agents. Theileria equi and Babesia caballi were detected in all examined regions, with mean prevalence rates of 60.4% and 7.2%, respectively. The identified pathogens were genetically characterized by the 18S rRNA gene. The determined T. equi sequences were highly conserved and belonged to genotypes A and E, with genotype E being found in 88.6% of genotyped samples. In contrast to T. equi, B. caballi sequences were genetically diverse. Seven sequence variants of B. caballi were identified, and only two of them matched known sequences from the GenBank database. The determined B. caballi sequences belonged to four distinct branches within genotype A. Mixed infections with several variants of B. caballi or with T. equi and B. caballi were common. The conducted phylogenetic analysis based on all available B. caballi sequences of the 18S rRNA gene (> 900 bp) from GenBank and from this study first demonstrated the presence of five monophyletic clusters within genotype A and three clusters within genotype B. Thus, the genetic study of B. caballi from Siberia has significantly expanded the data on the genetic diversity of this pathogen.


Subject(s)
Babesia , Babesiosis , Genetic Variation , Genotype , Horse Diseases , Phylogeny , RNA, Ribosomal, 18S , Theileria , Theileriasis , Animals , Theileria/genetics , Theileria/classification , Theileria/isolation & purification , Babesia/genetics , Babesia/classification , Babesia/isolation & purification , Babesiosis/epidemiology , Babesiosis/parasitology , Horses/parasitology , Horse Diseases/parasitology , Horse Diseases/epidemiology , Theileriasis/epidemiology , Theileriasis/parasitology , RNA, Ribosomal, 18S/genetics , Prevalence , Russia/epidemiology , DNA, Protozoan/genetics , Siberia/epidemiology , Sequence Analysis, DNA , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
6.
Parasitol Res ; 123(7): 261, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967653

ABSTRACT

Ticks are blood-sucking arthropods that can transmit pathogens to their host. As insular ecosystems can enhance tick-host interactions, this study aimed to understand tick diversity, pathogen presence, and their respective associations in the Azores and Madeira archipelagos. Unfed or partially engorged ticks (n = 120) were collected from 58 cats and dogs in the Azores (n = 41 specimens) and Madeira (n = 79 specimens) from November 2018 to March 2019. Vector identification was based on morphology and molecular criteria. For pathogen sequencing, 18S gene fragment for Babesia/Hepatozoon and gltA for Rickettsia were performed. Sequence data was explored using BLAST and BLAST and phylogenetic inference tools. In the Azores, Ixodes hexagonus, I. ventalloi, and Rhipicephalus sanguineus (n = 6; 14.6%, n = 6; 14.6%, and n = 29; 70.7% respectively) were found and in Madeira I. ricinus and R. sanguineus (n = 78, 98.7%; and n = 1, 1.3%; respectively) were identified. Tick COI markers confirmed species highlighting confirmation of R. sanguineus s.s. and genotype A of I. ventalloi. In the Azores Islands, the detected Rickettsia massiliae was linked to R. sanguineus (dogs and cats) and I. hexagonus (dogs), and in Madeira Island, R. monacensis (dogs) and Hepatozoon silvestris (cats) were found associated with I. ricinus. Further, I. ventalloi presence in the Azores expands west its known range, and Hepatozoon silvestris in Madeira may suggest that I. ricinus could have a role as a potential vector. Finally, as R. massiliae and R. monacensis presence underlines public health risks, surveillance by health authorities is crucial as pathogen-tick interactions may drive disease spread, therefore monitoring remains pivotal for disease prevention.


Subject(s)
Babesia , Rickettsia , Animals , Azores , Cats , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Dogs , Dog Diseases/parasitology , Dog Diseases/microbiology , Phylogeny , Cat Diseases/parasitology , Cat Diseases/microbiology , Ixodes/microbiology , Ixodes/parasitology , Tick Infestations/veterinary , Tick Infestations/parasitology , Rhipicephalus sanguineus/microbiology , Rhipicephalus sanguineus/parasitology , Coccidia/genetics , Coccidia/isolation & purification , Coccidia/classification , Eucoccidiida/genetics , Eucoccidiida/isolation & purification , Eucoccidiida/classification
7.
BMC Vet Res ; 20(1): 302, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978113

ABSTRACT

Babesia spp. and Theileria spp. are tick-borne protozoan parasites with veterinary importance. In China, epidemiological and genetic investigations on many Babesia and Theileria species were still absent in many areas and many tick species. From Aug 2021 to May 2023, 645 ticks were collected from the body surface of domestic animals (camels, goats, sheep, and cattle) using tweezers in seven counties in three provinces including Xinjiang (Qitai, Mulei, Hutubi, and Shihezi counties), Chongqing (Youyang and Yunyang counties), and Qinghai (Huangzhong county). Three tick species were morphologically and molecularly identified (334 Hyalomma asiaticum from Xinjiang, 245 Rhipicephalus microplus from Chongqing, and 66 Haemaphysalis qinghaiensis from Qinghai). A total of three Babesia species and two Theileria species were detected targeting the 18S gene. The COI and cytb sequences were also recovered from Babesia strains for further identification. In R. microplus from Chongqing, Babesia bigemina, the agent of bovine babesiosis, was detected. Notably, in H. asiaticum ticks from Xinjiang, a putative novel genotype of Babesia caballi was identified (0.90%, 3/334), whose COI and cytb genes have as low as 85.82% and 90.64-90.91% nucleotide identities to currently available sequences. It is noteworthy whether the sequence differences of its cytb contribute to the drug resistance of this variant due to the involvement of cytb in the drug resistance of Babesia. In addition, Theileria orientalis and Theileria annulata were detected in R. microplus from Chongqing (12.20%, 31/245) and H. asiaticum from Xinjiang (1.50%, 5/334), respectively. These results suggest that these protozoan parasites may be circulating in domestic animals in these areas. The pathogenicity of the novel genotype of B. caballi also warrants further investigation.


Subject(s)
Babesia , Genotype , Theileria , Animals , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Theileria/genetics , Theileria/isolation & purification , China/epidemiology , Cattle , Phylogeny , Ixodidae/parasitology , Sheep , Babesiosis/parasitology , Babesiosis/epidemiology , Theileriasis/epidemiology , Theileriasis/parasitology , Goats
8.
Parasit Vectors ; 17(1): 297, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982467

ABSTRACT

BACKGROUND: Babesiosis is a tick-borne infection caused by piroplasmid protozoa and associated with anemia and severe disease in humans, domestic animals and wildlife. Domestic cats are infected by at least six Babesia spp. that cause clinical disease. METHODS: Infection with a piroplasmid species was detected by microscopy of stained blood smears in three sick cats from Israel. Genetic characterization of the piroplasmid was performed by PCR amplification of the 18S rRNA, cytochorme B (CytB) and heat shock protein 70 (HSP70) genes and the internal transcribed spacer (ITS) locus, DNA sequencing and phylogenetic analysis. In addition, Haemaphysalis adleri ticks collected from two cats were analyzed by PCR for piroplasmids. RESULTS: The infected cats presented with anemia and thrombocytopenia (3/3), fever (2/3) and icterus (1/3). Comparison of gene and loci sequences found 99-100% identity between sequences amplified from different cats and ticks. Constructed phylogenetic trees and DNA sequence comparisons demonstrated a previously undescribed Babesia sp. belonging to the Babesia sensu stricto (clade X). The piroplasm forms detected included pear-shaped merozoite and round-to-oval trophozoite stages with average sizes larger than those of Babesia felis, B. leo and B. lengau and smaller than canine Babesia s.s. spp. Four of 11 H. adleri adult ticks analyzed from cat # 3 were PCR positive for Babesia sp. with a DNA sequence identical to that found in the cats. Of these, two ticks were PCR positive in their salivary glands, suggesting that the parasite reached these glands and could possibly be transmitted by H. adleri. CONCLUSIONS: This study describes genetic and morphological findings of a new Babesia sp. which we propose to name Babesia galileei sp. nov. after the Galilee region in northern Israel where two of the infected cats originated from. The salivary gland PCR suggests that this Babesia sp. may be transmitted by H. adleri. However, incriminating this tick sp. as the vector of B. galilee sp. nov. would require further studies.


Subject(s)
Babesia , Babesiosis , Cat Diseases , Phylogeny , Animals , Cats , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Babesiosis/parasitology , Babesiosis/epidemiology , Cat Diseases/parasitology , Israel/epidemiology , RNA, Ribosomal, 18S/genetics , Male , DNA, Protozoan/genetics , Female , Sequence Analysis, DNA
9.
Parasitol Int ; 102: 102915, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38914218

ABSTRACT

Equine piroplasmosis is caused by Theileria equi and Babesia caballi, which are hemoprotozoan parasites. Understanding the epidemiology and genotypes of T. equi and B. caballi is crucial for developing effective control strategies in endemic countries. However, the endemic status of these two parasite species remains uncertain in Kyrgyzstan due to lack of surveys. Our study, therefore, aimed to detect T. equi and B. caballi infections in Kyrgyzstan and identify their genotypes. Blood samples were collected from 226 horses across all seven provinces of Kyrgyzstan, namely Chuy, Issyk-Kul, Naryn, Talas, Jalal-Abad, Osh, and Batken. These blood samples were subjected to DNA extraction, followed by specific PCR assays targeting T. equi and B. caballi. We found that 56 (24.8%, confidence interval (CI): 19.6-30.8%) and 7 (3.1%, CI: 1.5-6.3%) of the tested horses were positive for T. equi and B. caballi infections, respectively. Theileria equi was detected in all surveyed provinces, whereas B. caballi was found in five provinces, except for Talas and Osh. Subsequent genotype-specific PCR assays showed that T. equi-positive horses harbored all five genotypes: A, B, C (also known as Theileria haneyi), D, and E. On the other hand, phylogenetic analysis of B. caballi rap-1 sequences detected the genotypes A and B1. The prevalence of T. equi and B. caballi suggests a potential risk of clinical equine piroplasmosis among horses in Kyrgyzstan, and the observed genotypic diversity underscores the challenges in managing the disease. Our findings emphasize the need for comprehensive control measures to effectively address equine piroplasmosis in Kyrgyzstan.


Subject(s)
Babesia , Babesiosis , Genetic Variation , Genotype , Horse Diseases , Theileria , Theileriasis , Animals , Horses , Theileria/genetics , Theileria/isolation & purification , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Theileriasis/epidemiology , Theileriasis/parasitology , Babesiosis/epidemiology , Babesiosis/parasitology , Horse Diseases/parasitology , Horse Diseases/epidemiology , Kyrgyzstan/epidemiology , Prevalence , Phylogeny
10.
Vet Parasitol ; 329: 110214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823187

ABSTRACT

Babesia caballi is an intra-erythrocytic parasite causing equine piroplasmosis. Three B. caballi genotypes (A, B, and C) have been identified based on the 18 S rRNA and rhoptry-associated protein (rap-1) gene sequences. These variant parasite genotypes compromise the diagnostic utility of the WOAH-recommended serological assays in declaring horses free of equine piroplasmosis. Although a gene encoding a spherical body protein 4 (sbp4) has recently been identified as a potential antigen for the serological detection of B. caballi, the ability of this antigen to detect the different geographical strains has not been determined. The molecular distinction between variant B. caballi genotypes is limited and therefore we developed molecular typing assays for the rapid detection and quantification of distinct parasite genotypes. Field samples were screened for the presence of B. caballi using an established multiplex equine piroplasmosis qPCR assay. In this study, B. caballi genotype A was not detected in any field samples screened. However, phylogenetic analysis of the amplified sbp4 and 18 S rRNA genes confirmed the phylogenetic groupings of the South African isolates into either B. caballi genotypes B or C. A multiple sequence alignment of the sbp4 gene sequences obtained in this study together with the published sbp4 sequences representing B. caballi genotype A, were used to identify conserved regions within the gene to design three primer pairs and three genotype-specific TaqMan minor-groove binder (MGB™) probes. The qPCR assays were shown to be specific and efficient in the detection and differentiation between B. caballi genotypes A, B, and C and could be used as a diagnostic assay to prevent the unintentional spread of variant B. caballi genotypes globally.


Subject(s)
Babesia , Babesiosis , Genotype , Horse Diseases , Phylogeny , Babesia/genetics , Babesia/classification , Animals , Horses , Babesiosis/parasitology , Babesiosis/diagnosis , Horse Diseases/parasitology , Horse Diseases/diagnosis , RNA, Ribosomal, 18S/genetics , Protozoan Proteins/genetics , South Africa , DNA, Protozoan/genetics
11.
Vet Parasitol Reg Stud Reports ; 52: 101044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880575

ABSTRACT

Soft ticks pose significant health risks as vectors of various pathogens. This study explored the spatio-temporal distribution and genetic relationships of the soft tick species Argas persicus infesting domestic hens (Gallus gallus domesticus) across different districts in Pakistan. An examination of 778 hens revealed a notable tick infestation prevalence of 70.82%, with a total of 1299 ticks collected from 551 hens. The overall mean intensity was 2.19 soft ticks per infested chicken, and the overall mean abundance was 1.61 soft ticks per examined hen. Morphological identification confirmed all collected ticks (n = 1210) as A. persicus, comprising 719 males, 333 females, 121 nymphs, and 38 larvae. The Haveli, Muzaffarabad, and Kotli districts had the highest infestation rates, while Bagh had the lowest. Molecular analyses of tick DNA, focusing on 16S rDNA and 12S rDNA sequences, revealed genetic similarities among A. persicus soft ticks from Pakistan and other regions, providing insights into their evolutionary history. Importantly, no Babesia, Rickettsia, or Anaplasma infections were detected in the examined samples. These findings enhance the understanding of soft tick infestation patterns and the genetic diversity of A. persicus in the studied region.


Subject(s)
Argas , Chickens , Phylogeny , Poultry Diseases , Tick Infestations , Animals , Pakistan/epidemiology , Chickens/parasitology , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Female , Prevalence , Male , Spatio-Temporal Analysis , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Nymph , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Larva/classification
12.
Vet Med Sci ; 10(4): e1468, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879882

ABSTRACT

BACKGROUND: Piroplasmosis is a common and prevalent tick-borne disease that affects equids. OBJECTIVES: To determine the infection and molecular characteristics of the piroplasms in donkeys from Xinjiang, northwestern China, we undertook a cross sectional study by collecting representative samples across several counties within the region. METHODS: A total of 344 blood samples were collected from adult domestic donkeys from 13 counties in Xinjiang. PCR was conducted to test for T. equi and B. caballi in the blood samples based on the equine merozoite antigen-1 (Ema-1) gene and the 48 kDa rhoptry protein (BC48) gene, respectively. RESULTS: Sixteen blood samples tested positive for piroplasms and the overall infection rate was 4.7% (16/344). Seven of the 13 counties were positive for piroplasms. Among the 16 piroplasm-positive samples, 15 were singly infected with T. equi with an infection rate of 4.4% (15/344), and coinfection with T. equi and B. caballi was detected in one sample (0.3%, 1/344) from Wushi. Four T. equi sequence genotypes were identified and grouped into different branches of the evolutionary trees. CONCLUSION: These findings suggest that the infection rate of piroplasms is low in domestic donkeys in southern Xinjiang and that T. equi genotypes have a regional distribution.


Subject(s)
Babesia , Babesiosis , Equidae , Theileria , Animals , Equidae/parasitology , China/epidemiology , Babesiosis/epidemiology , Babesiosis/parasitology , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Theileria/genetics , Theileria/isolation & purification , Cross-Sectional Studies , Female , Male , Prevalence , Theileriasis/epidemiology , Theileriasis/parasitology
13.
J Vector Borne Dis ; 61(2): 259-266, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922661

ABSTRACT

BACKGROUND OBJECTIVES: Vector-borne haemoprotozoan diseases comprise diverse group of single celled organism transmitted by haematophagus invertebrates. The current study was aimed at the identification of major haemoprotozoan (Babesia, Theileria and Trypanosoma) in dromedary camel of North Gujarat region in India using microscopy and Polymerase Chain Reaction (PCR). METHODS: A total of 234 blood samples were screened by the microscopic and molecular detection assays. Molecular prevalence studies of Theileria, Trypanosoma spp and Babesia was undertaken using 18s ribosomal DNA, RoTat 1.2 and SS rRNA gene respectively. The data relating to microscopic and molecular prevalence along with associated risk factors were analysed by statistical methods. RESULTS: The overall prevalence of hamoprotozoan disease based on microscopic and molecular investigation was 23.50%. The sensitivity and specificity (95% Confidence Interval) of PCR assay was 100% in comparison to microscopy (45.45 % sensitive and 100 % specific). The kappa coefficient between PCR and microscopy indicated good level of agreement with a value of 0.704 and SE of 0.159. INTERPRETATION CONCLUSION: Despite holding much significance to the animal sector, little work has been undertaken in regional parts of India regarding camel parasites. The present study offers first preliminary research data investigating haemoprotozoan disease using parasitological and molecular methods in camels in the region.


Subject(s)
Babesia , Camelus , Microscopy , Polymerase Chain Reaction , RNA, Ribosomal, 18S , Theileria , Theileriasis , Trypanosoma , Animals , Camelus/parasitology , India/epidemiology , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Theileria/genetics , Theileria/isolation & purification , Theileria/classification , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Theileriasis/epidemiology , Theileriasis/parasitology , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , Babesiosis/epidemiology , Babesiosis/parasitology , Prevalence , Male , Sensitivity and Specificity , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Trypanosomiasis/parasitology , Female , Vector Borne Diseases/epidemiology , Vector Borne Diseases/parasitology , DNA, Ribosomal/genetics
14.
Exp Parasitol ; 262: 108786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762200

ABSTRACT

Piroplasmids and Hepatozoon spp. Are apicomplexan protozoa that may cause disease in several canid species. The present study aimed to expand the knowledge on the diversity of piroplasmids and Hepatozoon in crab-eating foxes (Cerdocyon thous; n = 12) sampled in the Pantanal of Mato Grosso do Sul State, central-western Brazil. PCR assays based on the 18S rRNA were used as screening. Three (25%) and 11 (91.7%) were positive for piroplasmids and Hepatozoon spp., respectively. Co-infection was found in three C. thous. Phylogenetic analyses based on the near-complete 18S rRNA, cox-1 and hsp70 genes evidenced the occurrence of a novel of Babesia spp. (namely Babesia pantanalensis nov. sp.) closely related to Rangelia vitalii and Babesia sp. 'Coco'. This finding was supported by the genetic divergence analysis which showed (i) high divergence, ranging from 4.17 to 5.62% for 18 S rRNA, 6.16% for hps70 and 4.91-9.25% for cox-1 and (ii) the genotype network (which displayed sequences separated from the previously described Piroplasmida species by median vectors and several mutational events). Also, phylogenetic analysis based on the 18S rRNA gene of Hepatozoon spp. positioned the sequences obtained herein in a clade phylogenetically related to Hepatozoon sp. 'Curupira 2', Hepatozoon sp. detected in domestic and wild canids from Uruguay and Hepatozoon americanum. The present study described Babesia pantanalensis nov sp. and Hepatozoon closely related to H. americanum in crab-eating foxes from Brazil. Moreover, the coinfection by piroplasmids and Hepatozoon sp. for the first time in crab-eating foxes strongly suggesting that this wild canid species potentially acts as a bio-accumulate of hemoprotozoan in wild environment.


Subject(s)
Babesia , Babesiosis , Coccidiosis , DNA, Protozoan , Genotype , Phylogeny , RNA, Ribosomal, 18S , Animals , Babesia/genetics , Babesia/classification , Babesia/isolation & purification , RNA, Ribosomal, 18S/genetics , Babesiosis/parasitology , Babesiosis/epidemiology , Brazil/epidemiology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/epidemiology , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Eucoccidiida/genetics , Eucoccidiida/classification , Eucoccidiida/isolation & purification , Cyclooxygenase 1/genetics , Polymerase Chain Reaction/veterinary , HSP70 Heat-Shock Proteins/genetics , Coinfection/veterinary , Coinfection/parasitology , Foxes/parasitology , Canidae/parasitology , Electron Transport Complex IV/genetics
15.
Acta Trop ; 256: 107252, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801911

ABSTRACT

Piroplasmosis, a tick-borne disease affecting livestock, including camels, is caused by intracellular apicomplexan parasites belonging to the order Piroplasmida. Despite its importance, there's limited research on piroplasmosis among Egyptian camels. This study aimed to fill this gap by investigating tick-borne piroplasmids in camels from Cairo and Giza Governorates. Out of 181 blood samples collected between October 2021 and March 2022 from apparently healthy one-humped camels (Camelus dromedarius), PCR assays revealed a 41.4 % infection rate with various piroplasmids. Detected species included B. bovis (17.7 %), B. bigemina (12.2 %), B. caballi (8.3 %), B. naoakii (11.6 %), B. microti (1.7 %), T. equi (4.4 %), and Theileria spp. (28.7 %). Phylogenetic analysis revealed the first detection of T. equi genotype E in Egypt and identified a novel B. caballi genotype. Additionally, B. microti isolates were identified as the US-type. These findings shed lights on piroplasmosis among Egyptian camels, and provide valuable information for devising effective control strategies, especially B. microti, a pathogen with potential human health risks.


Subject(s)
Babesia , Babesiosis , Camelus , Phylogeny , Theileria , Tick-Borne Diseases , Animals , Camelus/parasitology , Egypt/epidemiology , Babesiosis/parasitology , Babesiosis/blood , Babesiosis/epidemiology , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Tick-Borne Diseases/parasitology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/epidemiology , Theileria/genetics , Theileria/isolation & purification , Theileria/classification , Genotype , Ticks/parasitology , Piroplasmida/genetics , Piroplasmida/isolation & purification , Piroplasmida/classification , Polymerase Chain Reaction , Theileriasis/parasitology , Theileriasis/epidemiology , Theileriasis/blood , Male
16.
Microb Pathog ; 192: 106721, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815776

ABSTRACT

Ticks play an important role in the transmission of parasitic diseases, especially pathogenic protozoa in canine hosts, and it is very important to determine the role and extent of their infection with these pathogens in order to determine important control strategies. This study assessed the molecular prevalence of three protozoan pathogens including Hepatozoon canis, Leishmania spp. and Babesia spp., in ticks using PCR. A total 300 stray dogs were investigated and 691 ticks (171 male, 377 female and 143 nymph) were detected directly from 45 infested dogs. Species, stage of growth, and gender were determined for each tick. DNA extracted from 224 ticks (26 male, 165 female and 33 nymph). The molecular presence of three protozoan pathogens including Hepatozoon spp. (18S rRNA gene), Leishmania infantum (kinetoplastid minicircle DNA) and Babesia spp. (ssrRNA gene) were investigated using PCR method. One species of ticks, Rhipicephalus sanguineus was identified. Two of the target pathogens, Hepatozoon spp. (7/83; 8.43 %) and Babesia spp. (1/83; 1.2 %), were detected by PCR method. Sequence analysis of the ssrRNA gene of detected Babesia spp. showed a close relationship to the deposited strains of Babesia vulpis in the gene bank. To the best of our knowledge, this is the first study to undertake a phylogenetic analysis of H. canis and Babesia spp. in stray dogs in Alborz province, Iran and the first report about molecular detection of Babesia vulpis from tick infesting dogs in Iran. According to the above results, it seems necessary to implement tick control programs in dogs.


Subject(s)
Babesia , Dog Diseases , Phylogeny , RNA, Ribosomal, 18S , Animals , Dogs , Iran/epidemiology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Female , Male , RNA, Ribosomal, 18S/genetics , DNA, Protozoan/genetics , Polymerase Chain Reaction , Rhipicephalus sanguineus/parasitology , Ticks/parasitology , Eucoccidiida/genetics , Eucoccidiida/isolation & purification , Eucoccidiida/classification , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Leishmania infantum/classification , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Leishmania/genetics , Leishmania/classification , Leishmania/isolation & purification
17.
Vet Parasitol ; 328: 110188, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653059

ABSTRACT

Canine babesiosis is a rapidly spreading tick-borne disease in Europe, which entails protozoan parasites invading red blood cells. Small extracellular vesicles (EVs) (< 200 nm) were isolated from the serum of 15 healthy and 15 by Babesia canis naturally infected dogs aimed to distinguish EV characteristics and protein profiles. There were no significant differences (P = 0.05) observed in the mean sizes and concentrations of serum EVs between the healthy and canine babesiosis groups. Despite a higher number of Canis lupus proteins detected in EVs from serum of diseased dogs, there were no statistically significant differences (P < 0.05) in the number of protein IDs between the experimental groups. We successfully identified 211 Canis lupus proteins across both experimental groups, of which 147 Canis lupus proteins were validated as being EV-associated. This data set is accessible via the ProteomeXchange PXD047647. EVs isolated from serum of B. canis infected dogs were Cd9+, Cd63+, Cd81+, and Cd82+. Furthermore, 73 Canis lupus proteins were validated as EV-associated and specific for EVs isolated from serum of B. canis-infected dogs. These were predominantly membrane and cytosolic proteins, and innate and adaptive immune system-related proteins, especially those involved in adhesion and proteoglycan mechanisms like integrins. Enrichment was also observed for proteins involved in vascular and cellular responses, including signalling pathways such as VEGF, VEGFR, and the LKB1 network. When only blood-related sites of EV expression were evaluated, the origins of EV proteins were mostly cells of immune system. These were dendritic cells, neutrophils, B cells, monocytes and platelets. In general, proteins were enriched in pathways that collectively regulate various cellular processes, including immune responses, communication, signal transduction, membrane trafficking, and apoptosis. Serum EVs and their protein cargo may have an important role in both the invasion of B. canis and the host's response to the parasitic infection, nevertheless, additional experimental research is warranted. The overall count of identified EV proteins of parasitic origin, meeting cut off criteria of two peptides and 1 % FDR, was relatively low.


Subject(s)
Babesia , Babesiosis , Dog Diseases , Extracellular Vesicles , Proteomics , Animals , Dogs , Babesia/classification , Babesia/isolation & purification , Babesiosis/parasitology , Babesiosis/blood , Dog Diseases/parasitology , Dog Diseases/blood , Extracellular Vesicles/chemistry , Liquid Chromatography-Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/veterinary
18.
Vet Parasitol Reg Stud Reports ; 50: 101011, 2024 05.
Article in English | MEDLINE | ID: mdl-38644043

ABSTRACT

Anaplasmosis and babesiosis are globally distributed arthropod-borne diseases known for causing substantial economic losses due to their high morbidity and mortality rates. This study aims to assess the frequency and epidemiological features associated with the infection of Anaplasma marginale, Babesia bigemina, and Babesia bovis in three Creole cattle breeds (Chino Santandereano (Chino), Casanareño (CAS), and Sanmartinero (SM)) in northeastern Colombia. Between June 2019 and March 2020, a total of 252 Creole cattle were sampled, with Chino, CAS, and SM accounting for 42.8%, 29.5%, and 29.5% of the samples, respectively. Blood samples were subjected to molecular analysis to detect the DNA of A. marginale, B. bigemina, and B. bovis, using species-specific primers. Additionally, Packed Cell Volume (PCV), total serum proteins, and body condition were evaluated. Molecular analyses revealed the presence of B. bigemina, A. marginale, and B. bovis in 83.7% (211/252; 95% CI = 79.1%-88.3%), 59.9% (151/252; 95% CI = 53.8%-66.1%), and 40.9% (103/252; 95% CI = 34.7%-46.9%) of the samples, respectively, with 69% (174/252; 95% CI = 57.8%-80.3%) exhibiting coinfections. Notably, in infected animals, no significant alterations in PCV, total serum proteins, or body condition were observed. Multivariate analyses indicated a statistically significant association between the frequency of A. marginale infection and the breed and season, with a higher frequency in SM during the rainy season (P < 0.05). To our knowledge, this is the first molecular survey that evaluates multiple arthropod-borne pathogens in Colombian Creole breeds. The results revel a high frequency of B. bigemina and A. marginale infections, coupled with a notable frequency of coinfections, all without significant alteration in the PCV, total serum proteins and body conditions. Our findings enhance the understanding of the epidemiological aspects of arthropod-borne pathogens in Colombian Creole breed and contribute to the improvement of sanitary programs for these animals.


Subject(s)
Anaplasma marginale , Anaplasmosis , Babesia bovis , Babesia , Babesiosis , Cattle Diseases , Animals , Cattle , Colombia/epidemiology , Babesiosis/epidemiology , Babesiosis/parasitology , Anaplasma marginale/genetics , Anaplasma marginale/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/microbiology , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Babesia bovis/genetics , Babesia bovis/isolation & purification , Female , Male , Prevalence
19.
Acta Parasitol ; 69(1): 813-818, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424400

ABSTRACT

PURPOSE: Piroplasmosis is responsible for anemia, fever, loss of physical activity and even death in equines. In epidemiological studies, accurate diagnostic tests are essential for detecting asymptomatic carriers. This study aimed to investigate the prevalence of infection in asymptomatic horses from Lorestan province, western Iran by developing a multiplex PCR. METHODS AND RESULTS: Blood samples were examined by microscopy and multiplex PCR targeting the SSU rRNA gene of Theileria equi and Babesia caballi. Out of the total of 165 horses, 19 (11.51%) and 31 (18.78%) cases were positive for piroplasms by microscopy and PCR, respectively. The detection rates of both genera were significantly higher in multiplex PCR compared to microscopy (p < 0.0001). Compared with multiplex PCR, the sensitivities of microscopy for the detection of Babesia were only 28.5%. The prevalence of T. equi infection was significantly higher in summer (p = 0.035). The prevalence of B. caballi was significantly higher in males (p = 0.038). CONCLUSION: Findings indicate that the multiplex PCR described here is a sensitive technique for the detection of piroplasm DNA in carriers. Furthermore, asymptomatic carriers must be considered as an important source of infection for equids living in this region.


Subject(s)
Babesia , Babesiosis , Horse Diseases , Microscopy , Multiplex Polymerase Chain Reaction , Theileria , Animals , Horses , Horse Diseases/parasitology , Horse Diseases/diagnosis , Horse Diseases/epidemiology , Iran/epidemiology , Babesiosis/epidemiology , Babesiosis/diagnosis , Babesiosis/parasitology , Babesia/genetics , Babesia/isolation & purification , Babesia/classification , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Theileria/genetics , Theileria/isolation & purification , Theileria/classification , Male , Female , Microscopy/methods , Prevalence , DNA, Protozoan/genetics , Theileriasis/epidemiology , Theileriasis/diagnosis , Theileriasis/parasitology , Sensitivity and Specificity
20.
Acta Parasitol ; 69(1): 375-383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38133744

ABSTRACT

PURPOSE: The study aimed to investigate genetic diversity in Babesia gibsoni, the causative agent of canine babesiosis, and to assess the presence of atovaquone-resistant isolates in naturally infected dogs. METHODS: A total of 24 blood samples confirmed for B. gibsoni infection was subjected to PCR amplification and sequencing based on cytb gene. Genetic characterization of B. gibsoni as well as attempts to detect the point mutation rendering atovaquone resistance was carried out based on the analysis of nucleotide sequence of cytb gene using bioinformatics software. RESULTS: The findings indicated that the B. gibsoni isolates in the investigation exhibited a high nucleotide identity with the Asian genotype, ranging from 98.41 to 98.69%. Notably, none of the isolates carried cytb gene variants associated with atovaquone resistance. Phylogenetic analysis revealed clustering of most isolates with those from Japan and China, except for one isolate forming a distinct subclade. Haplotype network analysis indicated a high diversity with 22 distinct haplotypes among the B. gibsoni isolates, emphasizing the genetic variability within the studied population. CONCLUSION: In conclusion, the cytb gene exhibited remarkable conservation among the twenty-four B. gibsoni isolates studied and the study represents the first genetic diversity assessment of B. gibsoni using the cytb gene in dogs from India. These findings shed light on the genetic characteristics of B. gibsoni in the region and provide valuable insight for addressing the challenges posed by this life-threatening disease in dogs.


Subject(s)
Babesia , Babesiosis , Cytochromes b , Dog Diseases , Genetic Variation , Phylogeny , Dogs , Animals , Babesia/genetics , Babesia/classification , Babesia/isolation & purification , Babesiosis/parasitology , Dog Diseases/parasitology , India , Cytochromes b/genetics , Haplotypes , Atovaquone/pharmacology , Drug Resistance/genetics , Genotype , Polymerase Chain Reaction/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL