Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 629
Filter
1.
Nature ; 622(7983): 611-618, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37699522

ABSTRACT

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Neurogenic Inflammation , Neurons, Afferent , Pericytes , Animals , Mice , Bacterial Toxins/administration & dosage , Bacterial Toxins/pharmacology , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Calcitonin Gene-Related Peptide/metabolism , Clostridioides difficile/pathogenicity , Clostridium Infections/microbiology , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/microbiology , Neurogenic Inflammation/pathology , Pericytes/drug effects , Pericytes/microbiology , Pericytes/pathology , Receptors, Neurokinin-1/metabolism , Substance P/antagonists & inhibitors , Substance P/metabolism , Neurons, Afferent/drug effects , Neurons, Afferent/microbiology , Neurons, Afferent/pathology , Inflammation Mediators/metabolism , Cecum/drug effects , Cecum/metabolism , Signal Transduction/drug effects
2.
Proc Natl Acad Sci U S A ; 119(24): e2200200119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35675429

ABSTRACT

The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 µg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 µg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.


Subject(s)
ADP Ribose Transferases , Bacterial Toxins , Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Exotoxins , Immunotoxins , Molecular Targeted Therapy , Receptors, Transferrin , Virulence Factors , ADP Ribose Transferases/administration & dosage , ADP Ribose Transferases/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Bacterial Toxins/administration & dosage , Breast Neoplasms/therapy , Carcinoma, Intraductal, Noninfiltrating/therapy , Exotoxins/administration & dosage , Female , Humans , Immunotoxins/administration & dosage , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Transferrin/metabolism , Virulence Factors/administration & dosage , Pseudomonas aeruginosa Exotoxin A
3.
Anaerobe ; 72: 102465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34662696

ABSTRACT

Herd vaccination is an important preventive measure against enterotoxemia in ruminants. Vaccination in goats should be performed every four months, and recent studies have shown that immunity in cattle lasts for less than one year. One of the mechanisms for increasing the duration of the immune response is to use purified toxoids as immunogens. The aim of the present study was to evaluate the humoral response in cattle and goats after vaccination with purified and semi-purified Clostridium perfringens type D epsilon toxoid. The following three different vaccines were used: vaccine 1 (V1), a semi-purified toxoid adsorbed to aluminum hydroxide; vaccine 2 (V2), a purified toxoid adsorbed to aluminum hydroxide; and vaccine (V3), a purified toxoid adsorbed on chitosan microparticles. Groups of cattle (n = 6-7) and goats (n = 6-7) were vaccinated on days 0 and 30, and serum samples for antitoxin titration were collected every 30 days for one-year post-vaccination. Goats were revaccinated on day 360, and their serum was evaluated on days 367 and 374. The antibody peaks ranged between 6.90 and 11.47 IU/mL in cattle and from 1.11 to 4.40 IU/mL in goats. In cattle administered with the V1 and V2 vaccines, we observed that the antibody titers were maintained above 0.2 IU/mL until the end of the experiment. In goats, V2 elicited long-lasting antibodies, and all animals maintained the protective titers for 210 days after the first dose. In conclusion, the purified toxoid vaccine with aluminum hydroxide adjuvant was able to induce strong and long-lasting humoral responses in both species and could be an alternative for improving the immunization schedule against enterotoxemia in goats and cattle.


Subject(s)
Bacterial Toxins/immunology , Cattle Diseases/immunology , Cattle Diseases/microbiology , Clostridium Infections/veterinary , Clostridium perfringens/immunology , Goat Diseases/microbiology , Goat Diseases/prevention & control , Toxoids/administration & dosage , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Toxins/administration & dosage , Bacterial Toxins/chemistry , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/chemistry , Bacterial Vaccines/immunology , Cattle , Clostridium perfringens/classification , Enterotoxemia/prevention & control , Goats , Immunity, Humoral , Immunization , Rabbits
4.
Int Immunopharmacol ; 100: 107927, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34500284

ABSTRACT

OBJECTIVE: One of the vital signaling pathways in cancer development and metastasis is mitogen-activated protein kinases (MAPKs). Bacillus anthracis Lethal Toxin (LT) is a potent MAPK signaling inhibitor. This toxin is comprised of two distinct domains, Lethal Factor (LF), MAPK inhibitor, and Protective Antigen (PA). To enter various cell lines, LF must be associated with the protective antigen (PA), which facilitates LF delivery. In the current study, to block MAPK signaling, LF was loaded into anti-CD19 immunoliposomes nanoparticle to deliver the cargo to Raji B cells. METHODS: The liposome nanoparticle was prepared using classical lipid film formation, then conjugated to anti-CD19 VHH. The binding efficiency was measured through flow cytometry. The targeted cytotoxicity of LF immunoliposome was confirmed by BrdU lymphoproliferation assay. This was followed by Real-Time PCR to assess the effect of formulation on pro-apoptotic genes. The inhibitory effect of LF on MAPK signaling was confirmed by western blot. RESULTS: Liposome nano-formulation was optimized to reach the maximum LF encapsulation and targeted delivery. Next, phosphorylation of MAPK pathway mediators like MEK1/2, P38 and JNK were inhibited following the treatment of Raji cells with LF-immunoliposome. The treatment also upregulated caspase genes, clearly illustrating cell death induced by LF through pyroptosis and caspase-dependent apoptosis. CONCLUSIONS: In conclusion, anti-CD19 VHH immunoliposome was loaded with LF, a potent MAPK inhibitor targeting B cells, which curbs proliferation and ushers B cells toward apoptosis. Thus, immunoliposome presents as a versatile nanoparticle for delivery of LF to block aberrant MAPK activation. To use LF as a therapy, it would be necessary to materialize LF without PA. In the current study, PA was substituted with anti-CD19 immunoliposome to make it targeted to CD19+ while keeping the normal cells intact.


Subject(s)
Antigens, Bacterial/administration & dosage , Bacterial Toxins/administration & dosage , Nanoparticle Drug Delivery System/chemistry , Neoplasms/drug therapy , Single-Domain Antibodies/administration & dosage , Antigens, CD19/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Liposomes , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Neoplasms/immunology , Neoplasms/pathology
5.
Sci Rep ; 11(1): 17101, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429446

ABSTRACT

The rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fixed and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied every 2 weeks in all standing water collection points. The anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14-0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.


Subject(s)
Anopheles/drug effects , Bacterial Toxins/toxicity , Insecticides/toxicity , Malaria/prevention & control , Mosquito Vectors/drug effects , Animals , Anopheles/growth & development , Anopheles/physiology , Bacterial Toxins/administration & dosage , Biomass , Cameroon , Housing/statistics & numerical data , Humans , Insect Bites and Stings/epidemiology , Insecticides/administration & dosage , Larva/drug effects , Mosquito Vectors/growth & development , Mosquito Vectors/physiology , Urban Population/statistics & numerical data
6.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201747

ABSTRACT

Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.


Subject(s)
Bacterial Toxins/pharmacology , Brain/drug effects , Escherichia coli Proteins/pharmacology , Methyl-CpG-Binding Protein 2/genetics , Mitochondria/drug effects , Rett Syndrome/drug therapy , Animals , Bacterial Toxins/administration & dosage , Brain/metabolism , Disease Models, Animal , Escherichia coli Proteins/administration & dosage , Fear/drug effects , Female , Infusions, Intraventricular , Loss of Function Mutation , Male , Memory Disorders/drug therapy , Memory Disorders/etiology , Mice, Mutant Strains , Microfilament Proteins/metabolism , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Rett Syndrome/etiology , TOR Serine-Threonine Kinases/metabolism
7.
Commun Biol ; 4(1): 585, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990686

ABSTRACT

G protein-coupled receptor (GPR)35 is highly expressed in the gastro-intestinal tract, predominantly in colon epithelial cells (CEC), and has been associated with inflammatory bowel diseases (IBD), suggesting a role in gastrointestinal inflammation. The enterotoxigenic Bacteroides fragilis (ETBF) toxin (BFT) is an important virulence factor causing gut inflammation in humans and animal models. We identified that BFT signals through GPR35. Blocking GPR35 function in CECs using the GPR35 antagonist ML145, in conjunction with shRNA knock-down and CRISPRcas-mediated knock-out, resulted in reduced CEC-response to BFT as measured by E-cadherin cleavage, beta-arrestin recruitment and IL-8 secretion. Importantly, GPR35 is required for the rapid onset of ETBF-induced colitis in mouse models. GPR35-deficient mice showed reduced death and disease severity compared to wild-type C57Bl6 mice. Our data support a role for GPR35 in the CEC and mucosal response to BFT and underscore the importance of this molecule for sensing ETBF in the colon.


Subject(s)
Bacterial Toxins/administration & dosage , Bacteroides fragilis/pathogenicity , Colitis/pathology , Colon/pathology , Epithelial Cells/pathology , Gastrointestinal Tract/pathology , Metalloendopeptidases/administration & dosage , Receptors, G-Protein-Coupled/physiology , Animals , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Colitis/etiology , Colitis/metabolism , Colon/drug effects , Colon/metabolism , Colon/microbiology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Mice , Mice, Inbred C57BL
8.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468584

ABSTRACT

Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.


Subject(s)
Clostridioides difficile/pathogenicity , Disease Susceptibility , Enterocolitis, Pseudomembranous/microbiology , Enterotoxins/administration & dosage , Recombinant Proteins/administration & dosage , Animals , Bacterial Proteins/administration & dosage , Bacterial Proteins/genetics , Bacterial Toxins/administration & dosage , Bacterial Toxins/genetics , Colon , Disease Models, Animal , Enterotoxins/genetics , Humans , Immunohistochemistry , Intestinal Mucosa/pathology , Mice , Mutant Proteins
9.
Carbohydr Polym ; 254: 117312, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357875

ABSTRACT

Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compaction of nanoparticles with PEG minimized vitexin release in the stomach, with stearic acid loaded nanoparticles exhibiting a higher vitexin release in the intestine. The introduction of stearic acid reduced vitexin-alginate interaction, conferred alginate-stearic acid mismatch, and dispersive stearic acid-induced particle breakdown with intestinal vitexin release. Use of PEG 10,000 in compaction brought about PEG-nanoparticles interaction that negated initial vitexin release. The PEG dissolution in intestinal phase subsequently enabled particle breakdown and vitexin release. The PEG compacted nanoparticles exhibited oral intestinal-specific vitexin release, with positive blood glucose lowering and enhanced intestinal vitexin content in vivo.


Subject(s)
Alginates/chemistry , Apigenin/administration & dosage , Bacterial Proteins/administration & dosage , Bacterial Toxins/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Drug Carriers/chemistry , Glycoside Hydrolase Inhibitors/administration & dosage , Hemolysin Proteins/administration & dosage , Hypoglycemic Agents/administration & dosage , Nanoparticles/chemistry , Administration, Oral , Alginates/metabolism , Animals , Apigenin/chemistry , Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , Diabetes Mellitus, Experimental/chemically induced , Drug Liberation , Ficus/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hemolysin Proteins/chemistry , Hydrogen Bonding , Hypoglycemic Agents/chemistry , Male , Particle Size , Polyethylene Glycols/metabolism , Rats , Rats, Sprague-Dawley , Stearic Acids/chemistry , Streptozocin/adverse effects , alpha-Glucosidases/metabolism
10.
Methods Mol Biol ; 2223: 1-17, 2021.
Article in English | MEDLINE | ID: mdl-33226583

ABSTRACT

Mouse models of allergic disease offer numerous advantages when compared to the models of other animals. However, selection of appropriate mouse models is critical to advance the field of food allergy by revealing mechanisms of allergy and for testing novel therapeutic approaches. All current mouse models for food allergy have weaknesses that may limit their applicability to human disease. Aspects such as the genetic predisposition to allergy or tolerance from the strain of mouse used, allergen dose, route of exposure (oral, intranasal, intraperitoneal, or epicutaneous), damage of the epithelial barrier, use of adjuvants, food matrix effects, or composition of the microbiota should be considered prior to the selection of a specific murine model and contemplated according to the intended purpose of the study. This chapter reviews our current knowledge on the application of mouse models to food allergy research and the variables that may influence the successful development of each type of model.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Allergens/administration & dosage , Disease Models, Animal , Food Hypersensitivity/immunology , Gene Expression Regulation/immunology , Allergens/chemistry , Animals , Bacterial Toxins/administration & dosage , Complex Mixtures/administration & dosage , Complex Mixtures/chemistry , Drug Administration Routes , Food Hypersensitivity/etiology , Food Hypersensitivity/genetics , Food Hypersensitivity/pathology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Knockout , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Species Specificity , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
11.
J Vet Med Sci ; 83(2): 187-194, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33342969

ABSTRACT

The necrotic enteritis toxin B-like (NetB) toxin secreted by Clostridium perfringens is a key virulence agent in the pathogenesis of avian necrotic enteritis, a disease that causes significant economic loss to the poultry industry worldwide. NetB was purified from Clostridium perfringens type G (CNEOP004) that was isolated from chickens with necrotic enteritis in Japan. EC50 of this purified NetB toward chicken liver-derived LMH cells was 0.63 µg/ml. In vivo pathogenicity of NetB to chicks produced characteristic lesions of necrotic enteritis. Analysis of the localization of the NetB monomer and oligomer molecules on LMH cells showed that both molecules of the toxin were localized in non-lipid raft regions. Moreover, removal of cholesterol with the cholesterol depletion assay carried out in LMH cells detected both oligomers and monomers of the NetB molecule. These data suggest that the NetB toxin may recognize membrane molecules different from cholesterol in non-raft region. Furthermore, NetB-binding molecules on LMH cell membranes using the toxin overlay assay with immunoblotting showed that protein molecules of different molecular sizes were bound to NetB on non-lipid raft fractions. Further studies are necessary to characterize these protein molecules to examine their specific association with NetB binding and oligomerization.


Subject(s)
Bacterial Toxins/toxicity , Chickens , Clostridium Infections/veterinary , Clostridium perfringens/pathogenicity , Enteritis/veterinary , Poultry Diseases/etiology , Animals , Bacterial Toxins/administration & dosage , Bacterial Toxins/genetics , Cell Line , Clostridium Infections/etiology , Clostridium Infections/microbiology , Clostridium perfringens/metabolism , Enteritis/etiology , Enteritis/microbiology , Injections, Intraperitoneal/veterinary , Japan , Poultry Diseases/microbiology
12.
PLoS Negl Trop Dis ; 14(12): e0008878, 2020 12.
Article in English | MEDLINE | ID: mdl-33264290

ABSTRACT

Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU) disease, is unique amongst human pathogens in its capacity to produce a lipid toxin called mycolactone. While previous studies have demonstrated that bacterially-released mycolactone diffuses beyond infection foci, the spatiotemporal distribution of mycolactone remained largely unknown. Here, we used the zebrafish model to provide the first global kinetic analysis of mycolactone's diffusion in vivo, and multicellular co-culture systems to address the critical question of the toxin's access to the brain. Zebrafish larvae were injected with a fluorescent-derivative of mycolactone to visualize the in vivo diffusion of the toxin from the peripheral circulation. A rapid, body-wide distribution of mycolactone was observed, with selective accumulation in tissues near the injection site and brain, together with an important excretion through the gastro-intestinal tract. Our conclusion that mycolactone reached the central nervous system was reinforced by an in cellulo model of human blood brain barrier and a mouse model of M. ulcerans-infection. Here we show that mycolactone has a broad but heterogenous profile of distribution in vivo. Our investigations in vitro and in vivo support the view that a fraction of bacterially-produced mycolactone gains access to the central nervous system. The relative persistence of mycolactone in the bloodstream suggests that assays of circulating mycolactone are relevant for BU disease monitoring and treatment optimization.


Subject(s)
Bacterial Toxins/pharmacokinetics , Central Nervous System/metabolism , Macrolides/pharmacokinetics , Animals , Astrocytes/physiology , Bacterial Toxins/administration & dosage , Blood-Brain Barrier , Cell Line , Endothelial Cells/physiology , Humans , Larva , Macrolides/administration & dosage , Mycobacterium ulcerans , Optical Imaging , Spatio-Temporal Analysis , Zebrafish
13.
Infect Dis Poverty ; 9(1): 162, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243294

ABSTRACT

The issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.


Subject(s)
Culicidae/parasitology , Insecticides/administration & dosage , Larva/drug effects , Malaria/prevention & control , Mosquito Control/methods , Animals , Bacillus thuringiensis , Bacterial Toxins/administration & dosage , Cost-Benefit Analysis , Culicidae/microbiology , Humans , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/economics , Larva/microbiology , Larva/parasitology , Malaria/transmission , Mosquito Control/economics , Mosquito Vectors/drug effects , Pyrethrins/administration & dosage
14.
J Breath Res ; 15(1): 016003, 2020 10 24.
Article in English | MEDLINE | ID: mdl-33103661

ABSTRACT

Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.


Subject(s)
Bacterial Toxins/administration & dosage , Hemolysin Proteins/administration & dosage , Inflammation/pathology , Pulmonary Ventilation , Volatile Organic Compounds/analysis , Animals , Blood Chemical Analysis , Breath Tests , Cytokines/blood , Exhalation , Hemodynamics , Kaplan-Meier Estimate , Lipopolysaccharides/administration & dosage , Male , Rats, Sprague-Dawley , Survival Analysis
15.
Toxins (Basel) ; 12(10)2020 10 02.
Article in English | MEDLINE | ID: mdl-33023185

ABSTRACT

Staphylococcal superantigen toxins lead to a devastating cytokine storm resulting in shock and multi-organ failure. We have previously assessed the safety and immunogenicity of a recombinant toxic shock syndrome toxin 1 variant vaccine (rTSST-1v) in clinical trials (NCT02971670 and NCT02340338). The current study assessed neutralizing antibody titers after repeated vaccination with escalating doses of rTSST-1v. At study entry, 23 out of 34 subjects (67.6%) had neutralizing antibody titers inhibiting T cell activation as determined by 3H-thymidine incorporation at a serum dilution of ≤1:100 with similar figures for inhibition of IL-2 activation (19 of 34 subjects, 55.9%) as assessed by quantitative PCR. After the first vaccination, numbers of subjects with neutralization titers inhibiting T cell activation (61.7% ≥ 1:1000) and inhibiting IL-2 gene induction (88.2% ≥ 1:1000) increased. The immune response was augmented after the second vaccination (inhibiting T cell activation: 78.8% ≥ 1:1000; inhibiting IL-2 induction: 93.9% ≥ 1:1000) corroborated with a third immunization months later in a small subgroup of subjects. Assessment of IFNγ, TNFα and IL-6 inhibition revealed similar results, whereas neutralization titers did not change in placebo participants. Antibody titer studies show that vaccination with rTSST-1v in subjects with no/low neutralizing antibodies can rapidly induce high titer neutralizing antibodies persisting over months.


Subject(s)
Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Bacterial Toxins/administration & dosage , Cytokine Release Syndrome/prevention & control , Enterotoxins/administration & dosage , Immunogenicity, Vaccine , Shock, Septic/prevention & control , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/administration & dosage , Staphylococcus aureus/drug effects , Superantigens/administration & dosage , Bacterial Toxins/genetics , Bacterial Toxins/immunology , Cells, Cultured , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/microbiology , Cytokines/genetics , Cytokines/metabolism , Double-Blind Method , Enterotoxins/genetics , Enterotoxins/immunology , Humans , Lymphocyte Activation/drug effects , Prospective Studies , Shock, Septic/immunology , Shock, Septic/microbiology , Single-Blind Method , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Vaccines/genetics , Staphylococcal Vaccines/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Superantigens/genetics , Superantigens/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Time Factors , Treatment Outcome , Vaccination , Vaccines, Synthetic/administration & dosage
16.
J Immunol ; 205(10): 2778-2785, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32989095

ABSTRACT

Mutations in MEFV, the gene encoding pyrin in humans, are associated with the autoinflammatory disorder familial Mediterranean fever. Pyrin is an innate sensor that assembles into an inflammasome complex in response to Rho-modifying toxins, including Clostridium difficile toxins A and B. Cell death pathways have been shown to intersect with and modulate inflammasome activation, thereby affecting host defense. Using bone marrow-derived macrophages and a murine model of peritonitis, we show in this study that receptor-interacting protein kinase (RIPK) 3 impacts pyrin inflammasome activation independent of its role in necroptosis. RIPK3 was instead required for transcriptional upregulation of Mefv through negative control of the mechanistic target of rapamycin (mTOR) pathway and independent of alterations in MAPK and NF-κB signaling. RIPK3 did not affect pyrin dephosphorylation associated with inflammasome activation. We further demonstrate that inhibition of mTOR was sufficient to promote Mefv expression and pyrin inflammasome activation, highlighting the cross-talk between the mTOR pathway and regulation of the pyrin inflammasome. Our study reveals a novel interaction between molecules involved in cell death and the mTOR pathway to regulate the pyrin inflammasome, which can be harnessed for therapeutic interventions.


Subject(s)
Inflammasomes/immunology , Peritonitis/immunology , Pyrin/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/immunology , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Toxins/administration & dosage , Bacterial Toxins/immunology , Cells, Cultured , Disease Models, Animal , Enterotoxins/administration & dosage , Enterotoxins/immunology , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/immunology , Humans , Inflammasomes/drug effects , Inflammasomes/metabolism , Macrophages , Mice , Mice, Knockout , Mutation , Necroptosis/immunology , Peritonitis/microbiology , Phosphorylation/immunology , Primary Cell Culture , Pyrin/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/immunology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Transcriptional Activation/immunology , Up-Regulation
17.
Nutrients ; 12(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932980

ABSTRACT

Bacterial gastroenteritis forms a burden on a global scale, both socially and economically. The Gram-positive bacterium Clostridium difficile is an inducer of gastrointestinal bacterial infections, often triggered following disruption of the microbiota by broad-spectrum antibiotics to treat other conditions. The clinical manifestatiaons, e.g., diarrhea, are driven by its toxins secretion, toxin A (TcdA) and toxin B (TcdB). Current therapies are focused on discontinuing patient medication, including antibiotics. However, relapse rates upon therapy are high (20-25%). Here, eighteen dietary proteins were evaluated for their capacity to restore gut health upon C. difficile-derived TcdA exposure. We used bioengineered intestinal tubules to assess proteins for their beneficial effects by examining the epithelial barrier, cell viability, brush-border enzyme activity, IL-6 secretion, IL-8 secretion and nitric oxide (NO) levels upon TcdA challenge. TcdA effectively disrupted the epithelial barrier, increased mitochondrial activity, but did not affect alkaline phosphatase activity, IL-6, IL-8 and NO levels. Intervention with dietary proteins did not show a protective effect on epithelial barrier integrity or mitochondrial activity. However, bovine plasma and potato protein increased alkaline phosphatase activity, egg-white protein increased IL-6 and IL-8 release and wheat, lesser mealworm and yeast protein increased NO levels after TcdA exposure. Hence, dietary proteins can influence parameters involved in intestinal physiology and immune activation suggesting that supplementation with specific dietary proteins may be of benefit during C. difficile infections.


Subject(s)
Bacterial Toxins/administration & dosage , Dietary Proteins/pharmacology , Intestines/drug effects , Intestines/physiopathology , Caco-2 Cells , Cell Survival/drug effects , Cells, Cultured , Clostridioides difficile , Humans , In Vitro Techniques
18.
PLoS Pathog ; 16(8): e1008836, 2020 08.
Article in English | MEDLINE | ID: mdl-32866212

ABSTRACT

Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.


Subject(s)
Anthrax Vaccines/administration & dosage , Anthrax/drug therapy , Antigens, Bacterial/administration & dosage , Bacillus anthracis/drug effects , Bacterial Toxins/administration & dosage , Drosophila melanogaster/growth & development , Mosquito Vectors/microbiology , Protective Agents/administration & dosage , Animals , Anthrax/microbiology , Culex , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Female , Male
19.
Proc Natl Acad Sci U S A ; 117(36): 22090-22100, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839344

ABSTRACT

The application of proteinaceous toxins for cell ablation is limited by their high on- and off-target toxicity, severe side effects, and a narrow therapeutic window. The selectivity of targeting can be improved by intein-based toxin reconstitution from two dysfunctional fragments provided their cytoplasmic delivery via independent, selective pathways. While the reconstitution of proteins from genetically encoded elements has been explored, exploiting cell-surface receptors for boosting selectivity has not been attained. We designed a robust splitting algorithm and achieved reliable cytoplasmic reconstitution of functional diphtheria toxin from engineered intein-flanked fragments upon receptor-mediated delivery of one of them to the cells expressing the counterpart. Retargeting the delivery machinery toward different receptors overexpressed in cancer cells enables selective ablation of specific subpopulations in mixed cell cultures. In a mouse model, the transmembrane delivery of a split-toxin construct potently inhibits the growth of xenograft tumors expressing the split counterpart. Receptor-mediated delivery of engineered split proteins provides a platform for precise therapeutic and experimental ablation of tumors or desired cell populations while also greatly expanding the applicability of the intein-based protein transsplicing.


Subject(s)
Bacterial Toxins/administration & dosage , Bacterial Toxins/chemistry , Cytoplasm/metabolism , Drug Delivery Systems/methods , Inteins , Neoplasms/drug therapy , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cell Line, Tumor , Cytoplasm/genetics , Diphtheria Toxin/administration & dosage , Diphtheria Toxin/chemistry , Diphtheria Toxin/genetics , Diphtheria Toxin/metabolism , Female , Heterografts , Humans , Immunotoxins/administration & dosage , Immunotoxins/chemistry , Immunotoxins/genetics , Immunotoxins/metabolism , Mice , Mice, Nude , Neoplasms/genetics , Neoplasms/metabolism , Protein Domains , Protein Transport , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
20.
Arch Toxicol ; 94(8): 2799-2808, 2020 08.
Article in English | MEDLINE | ID: mdl-32435914

ABSTRACT

Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood-brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron-glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.


Subject(s)
Amino Acids, Diamino/toxicity , Bacterial Toxins/toxicity , Cyanobacteria/metabolism , Neuroglia/drug effects , Neurons/drug effects , Olfactory Bulb/drug effects , Administration, Intranasal , Amino Acids, Diamino/administration & dosage , Amino Acids, Diamino/metabolism , Animals , Bacterial Toxins/administration & dosage , Bacterial Toxins/metabolism , Cell Survival/drug effects , Cells, Cultured , Cyanobacteria Toxins , Glutamic Acid/metabolism , Male , Mice, Inbred C57BL , Neuroglia/metabolism , Neuroglia/pathology , Neuronal Outgrowth/drug effects , Neurons/metabolism , Neurons/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL