Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Helicobacter ; 29(4): e13128, 2024.
Article in English | MEDLINE | ID: mdl-39177204

ABSTRACT

BACKGROUND: Infection with Helicobacter pylori (Hp) mostly occurs during childhood, and persistent infection may lead to severe gastric diseases and even gastric cancer. Currently, the primary method for eradicating Hp is through antibiotic treatment. However, the increasing multidrug resistance in Hp strains has diminished the effectiveness of antibiotic treatments. Vaccination could potentially serve as an effective intervention to resolve this issue. AIMS: Through extensive research and analysis of the vital protein characteristics involved in Hp infection, we aim to provide references for subsequent vaccine antigen selection. Additionally, we summarize the current research and development of Hp vaccines in order to provide assistance for future research. MATERIALS AND METHODS: Utilizing the databases PubMed and the Web of Science, a comprehensive search was conducted to compile articles pertaining to Hp antigens and vaccines. The salient aspects of these articles were then summarized to provide a detailed overview of the current research landscape in this field. RESULTS: Several potential antigens have been identified and introduced through a thorough understanding of the infection process and pathogenic mechanisms of Hp. The conserved and widely distributed candidate antigens in Hp, such as UreB, HpaA, GGT, and NAP, are discussed. Proteins such as CagA and VacA, which have significant virulence effects but relatively poor conservatism, require further evaluation. Emerging antigens like HtrA and dupA have significant research value. In addition, vaccines based on these candidate antigens have been compiled and summarized. CONCLUSIONS: Vaccines are a promising method for preventing and treating Hp. While some Hp vaccines have achieved promising results, mature products are not yet available on the market. Great efforts have been directed toward developing various types of vaccines, underscoring the need for developers to select appropriate antigens and vaccine formulations to improve success rates.


Subject(s)
Antigens, Bacterial , Bacterial Vaccines , Helicobacter Infections , Helicobacter pylori , Vaccine Development , Helicobacter pylori/immunology , Bacterial Vaccines/immunology , Helicobacter Infections/prevention & control , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Humans , Antigens, Bacterial/immunology , Animals
2.
BMC Genomics ; 25(1): 791, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160492

ABSTRACT

Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.


Subject(s)
Acinetobacter baumannii , Bacterial Vaccines , Computational Biology , Acinetobacter baumannii/immunology , Acinetobacter baumannii/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Computational Biology/methods , Epitopes/immunology , Epitopes/chemistry , Molecular Docking Simulation , Acinetobacter Infections/prevention & control , Acinetobacter Infections/immunology , Epitope Mapping , mRNA Vaccines , Molecular Dynamics Simulation , Humans , RNA, Messenger/genetics , RNA, Messenger/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
3.
Sci Rep ; 14(1): 17910, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095538

ABSTRACT

Helicobacter pylori (H. pylori) is responsible for various chronic or acute diseases, such as stomach ulcers, dyspepsia, peptic ulcers, gastroesophageal reflux, gastritis, lymphoma, and stomach cancers. Although specific drugs are available to treat the bacterium's harmful effects, there is an urgent need to develop a preventive or therapeutic vaccine. Therefore, the current study aims to create a multi-epitope vaccine against H. pylori using lipid nanoparticles. Five epitopes from five target proteins of H. pylori, namely, Urease, CagA, HopE, SabA, and BabA, were used. Immunogenicity, MHC (Major Histocompatibility Complex) bonding, allergenicity, toxicity, physicochemical analysis, and global population coverage of the entire epitopes and final construct were carefully examined. The study involved using various bioinformatic web tools to accomplish the following tasks: modeling the three-dimensional structure of a set of epitopes and the final construct and docking them with Toll-Like Receptor 4 (TLR4). In the experimental phase, the final multi-epitope construct was synthesized using the solid phase method, and it was then enclosed in lipid nanoparticles. After synthesizing the construct, its loading, average size distribution, and nanoliposome shape were checked using Nanodrop at 280 nm, dynamic light scattering (DLS), and atomic force microscope (AFM). The designed vaccine has been confirmed to be non-toxic and anti-allergic. It can bind with different MHC alleles at a rate of 99.05%. The construct loading was determined to be about 91%, with an average size of 54 nm. Spherical shapes were also observed in the AFM images. Further laboratory tests are necessary to confirm the safety and immunogenicity of the multi-epitope vaccine.


Subject(s)
Bacterial Vaccines , Computational Biology , Helicobacter pylori , Nanoparticles , Helicobacter pylori/immunology , Nanoparticles/chemistry , Bacterial Vaccines/immunology , Bacterial Vaccines/chemistry , Computational Biology/methods , Humans , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Epitopes/immunology , Epitopes/chemistry , Molecular Docking Simulation , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Helicobacter Infections/prevention & control , Helicobacter Infections/immunology , Toll-Like Receptor 4/immunology , Urease/immunology , Urease/chemistry , Immunoinformatics , Liposomes
5.
J Infect Dis ; 230(Supplement_1): S82-S86, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140718

ABSTRACT

Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease Vaccines , Lyme Disease , Lyme Disease/prevention & control , Lyme Disease/immunology , Humans , Animals , Borrelia burgdorferi/immunology , Lyme Disease Vaccines/immunology , Ixodes/microbiology , Vaccination , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Antigens, Surface/immunology , Lipoproteins/immunology
6.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39133098

ABSTRACT

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.


Subject(s)
Computational Biology , Pseudomonas Infections , Pseudomonas aeruginosa , Sepsis , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/genetics , Humans , Pseudomonas Infections/prevention & control , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Sepsis/prevention & control , Sepsis/immunology , Sepsis/microbiology , Computational Biology/methods , Epitopes/immunology , Epitopes/chemistry , Pneumonia/prevention & control , Pneumonia/immunology , Pneumonia/microbiology , Pseudomonas Vaccines/immunology , Bacterial Vaccines/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics
7.
Helicobacter ; 29(4): e13119, 2024.
Article in English | MEDLINE | ID: mdl-39108210

ABSTRACT

Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.


Subject(s)
Bacterial Vaccines , Disease Models, Animal , Helicobacter Infections , Helicobacter pylori , Helicobacter Infections/prevention & control , Helicobacter Infections/microbiology , Helicobacter Infections/immunology , Animals , Bacterial Vaccines/immunology , Helicobacter pylori/immunology , Humans
8.
Methods Mol Biol ; 2843: 163-175, 2024.
Article in English | MEDLINE | ID: mdl-39141300

ABSTRACT

Extracellular vesicles are nanosized lipid-bilayered spheres secreted from every living cell and they serve physiological and pathophysiological functions. Bacterial membrane vesicles are shed from both Gram-negative and Gram-positive bacteria and harbor many virulence factors, nuclear material, polysaccharides, proteins, and antigenic determinants, which are essential for immune recognition and evasion. Hence, bacterial membrane vesicles are very promising vaccine candidates. Spray drying is a well-established pharmaceutical technique to produce inhalable dry powders with enhanced stability for formulations of vaccines. In this chapter, we illustrate general guidelines for spray drying of bacterial extracellular vesicles to improve their stability without compromising their immunogenic protective effect. We discuss some of the most important experiments to characterize the generated spray-dried bacterial membrane vesicle powder vaccine.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/chemistry , Spray Drying , Powders/chemistry , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Animals
9.
Methods Mol Biol ; 2843: 195-216, 2024.
Article in English | MEDLINE | ID: mdl-39141302

ABSTRACT

Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising vaccine technology for developing immunity against diverse pathogens. However, antigen display on OMVs can be challenging to control and highly variable due to bottlenecks in protein expression and localization to the bacterial host cell's outer membrane, especially for bulky and complex antigens. Here, we describe methods related to a universal vaccine technology called AvidVax (avidin-based vaccine antigen crosslinking) for rapid and simplified assembly of antigens on the exterior of OMVs during vaccine development. The AvidVax platform involves remodeling the OMV surface with multiple copies of a synthetic antigen-binding protein (SNAP), which is an engineered fusion protein comprised of an outer membrane scaffold protein linked to a biotin-binding protein. The resulting SNAPs enable efficient decoration of OMVs with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, nucleic acids, and short peptides. We detail the key steps in the AvidVax vaccine production pipeline including preparation and isolation of SNAP-OMVs, biotinylation and enrichment of vaccine antigens, and formulation and characterization of antigen-loaded SNAP-OMVs.


Subject(s)
Antigens, Bacterial , Biotinylation , Extracellular Vesicles , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Vaccines/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Vaccine Development , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/immunology
10.
PLoS One ; 19(7): e0307600, 2024.
Article in English | MEDLINE | ID: mdl-39028747

ABSTRACT

BACKGROUND: Venereal syphilis, caused by the spirochete Treponema pallidum subsp. pallidum (TPA), is surging worldwide, underscoring the need for a vaccine with global efficacy. Vaccine development requires an understanding of syphilis epidemiology and clinical presentation as well as genomic characterization of TPA strains circulating within at-risk populations. The aim of this study was to describe the clinical, demographic, and molecular features of early syphilis cases in Cali, Colombia. METHODS AND FINDINGS: We conducted a cross-sectional study to identify individuals with early syphilis (ES) in Cali, Colombia through a city-wide network of public health centers, private sector HIV clinics and laboratory databases from public health institutions. Whole blood (WB), skin biopsies (SB), and genital and oral lesion swabs were obtained for measurement of treponemal burdens by polA quantitative polymerase chain reaction (qPCR) and for whole-genome sequencing (WGS). Among 1,966 individuals screened, 128 participants met enrollment criteria: 112 (87%) with secondary (SS), 15 (12%) with primary (PS) and one with early latent syphilis; 66/128 (52%) self-reported as heterosexual, while 48 (38%) were men who have sex with men (MSM). Genital ulcer swabs had the highest polA copy numbers (67 copies/µl) by qPCR with a positivity rate (PR) of 73%, while SS lesions had 42 polA copies/µl with PR of 62%. WB polA positivity was more frequent in SS than PS (42% vs 7%, respectively; p = 0.009). Isolation of TPA from WB by rabbit infectivity testing (RIT) was achieved in 5 (56%) of 9 ES WB samples tested. WGS from 33 Cali patient samples, along with 10 other genomic sequences from South America (9 from Peru, 1 from Argentina) used as comparators, confirmed that SS14 was the predominant clade, and that half of all samples had mutations associated with macrolide (i.e., azithromycin) resistance. Variability in the outer membrane protein (OMP) and vaccine candidate BamA (TP0326) was mapped onto the protein's predicted structure from AlphaFold. Despite the presence of mutations in several extracellular loops (ECLs), ECL4, an immunodominant loop and proven opsonic target, was highly conserved in this group of Colombian and South American TPA isolates. CONCLUSIONS: This study offers new insights into the sociodemographic and clinical features of venereal syphilis in a highly endemic area of Colombia and illustrates how genomic sequencing of regionally prevalent TPA strains can inform vaccine development.


Subject(s)
Syphilis , Treponema pallidum , Humans , Treponema pallidum/genetics , Treponema pallidum/immunology , Treponema pallidum/isolation & purification , Colombia/epidemiology , Syphilis/epidemiology , Syphilis/microbiology , Cross-Sectional Studies , Male , Adult , Female , Bacterial Vaccines/immunology , Genetic Variation , Vaccine Development , Young Adult , Middle Aged , Whole Genome Sequencing , Animals
11.
Sci Rep ; 14(1): 15262, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961116

ABSTRACT

Infectious coryza (IC) is an acute upper respiratory disease of chicken caused by Avibacterium (A.) paragallinarum. This disease results in an increased culling rate in meat chicken and a marked decrease in egg production (10% to more than 40%) in laying and breeding hens. Vaccines were first used against IC and effectively controlled the disease. Nanotechnology provides an excellent way to develop a new generation of vaccines. NPs have been widely used in vaccine design as adjuvants and antigen delivery vehicles and as antibacterial agents; thus, they can be used as inactivators for bacterial culture. In this research, the antibacterial effects of several nanoparticles (NPs), such as silicon dioxide with chitosan (SiO2-CS), oleoyl-chitosan (O.CS), silicon dioxide (SiO2), and iron oxide (Fe3O4), on A. paragallinarum were studied. Additionally, different A. paragallinarum vaccines were made using the same nanomaterials at a concentration of 400 µg/ml to help control infectious coryza disease in chicken. A concentration of 400 µg/ml of all the NPs tested was the best concentration for the inactivation of A. paragallinarum. Additionally, this study showed that the infectious coryza vaccine adjuvanted with SiO2 NPs had the highest immune response, followed by the infectious coryza vaccine adjuvanted with Fe3O4 NPs, the infectious coryza vaccine adjuvanted with SiO2-CS NPs, and the infectious coryza vaccine adjuvanted with O.CS NPs in comparison with the infectious coryza vaccine adjuvanted with liquid paraffin (a commercial vaccine).


Subject(s)
Adjuvants, Immunologic , Chickens , Chitosan , Nanoparticles , Poultry Diseases , Animals , Chickens/immunology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Nanoparticles/chemistry , Chitosan/chemistry , Adjuvants, Immunologic/pharmacology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Silicon Dioxide/chemistry , Adjuvants, Vaccine , Polymers/chemistry , Drug Carriers/chemistry , Pasteurellaceae/immunology
12.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977999

ABSTRACT

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Subject(s)
Actinomycetales Infections , Bacterial Vaccines , Disease Models, Animal , Immunity, Humoral , Mice, Inbred BALB C , Rhodococcus equi , Animals , Rhodococcus equi/immunology , Rhodococcus equi/genetics , Mice , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Actinomycetales Infections/prevention & control , Actinomycetales Infections/immunology , Actinomycetales Infections/microbiology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Immunity, Cellular , Female , Lung/microbiology , Lung/immunology , Lung/pathology , Bacterial Load , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism
13.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38989625

ABSTRACT

Staphylococcus aureus, Escherichia coli and Mycoplasma bovis are the most commonly isolated mastitis pathogens. The aim of this study was to evaluate the efficacy of a new mixed vaccine against mastitis caused by  Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis. For this purpose, a mixed inactivated vaccine was administered subcutaneously to 24 heifers as one dose (2 mL) on the 45th day before birth and the second dose 21 days later. In 9 heifers, 2 mL of PBS was administered as placebo instead of vaccine. Then, heifers were divided into 3 groups as 7 vaccinated and 3 unvaccinated animals. Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis were administered to the groups through intramammary route. Three vaccinated heifers were considered the common control without bacteria in all groups. The parameters considered to assess the effect of vaccination were clinical findings, bacterial count in milk, somatic cell count, and antibody titers. Clinical signs were observed only in the unvaccinated placebo group. Bacteria count and somatic cell count in milk increased in vaccinated and unvaccinated heifers. However, this increase was less in vaccinated animals and gradually returned to the normal level. In the unvaccinated heifers, it was ever high. Serum antibody titers were measured before and after vaccination. Antibody titers were high in vaccinated heifers after vaccination and were negative in unvaccinated heifers. In conclusion, the mixed vaccine had beneficial effect against Staphylococcus aureus, Escherichia coli, and Mycoplasma bovis mastitis and stimulated the immune response of vaccinated heifers.


Subject(s)
Escherichia coli , Mastitis, Bovine , Mycoplasma Infections , Mycoplasma bovis , Staphylococcal Infections , Staphylococcus aureus , Vaccines, Inactivated , Animals , Cattle , Mycoplasma bovis/immunology , Female , Mastitis, Bovine/prevention & control , Mastitis, Bovine/microbiology , Mastitis, Bovine/immunology , Staphylococcus aureus/immunology , Mycoplasma Infections/veterinary , Mycoplasma Infections/prevention & control , Vaccines, Inactivated/immunology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Escherichia coli Infections/immunology
14.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-39043447

ABSTRACT

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.


Subject(s)
Bacterial Vaccines , Chlamydia Infections , Chlamydia trachomatis , Vaccine Development , Chlamydia trachomatis/immunology , Humans , Bacterial Vaccines/immunology , Chlamydia Infections/immunology , Chlamydia Infections/prevention & control , Animals , Disease Models, Animal , Adjuvants, Immunologic , Female , Th1 Cells/immunology
15.
Int J Biol Macromol ; 275(Pt 2): 133671, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971274

ABSTRACT

Vaccination is the most effective method for preventing infectious diseases. Oral vaccinations have attracted much attention due to the ability to boost intestinal and systemic immunity. The focus of this study was to develop a poly (lactide-co-glycolide) acid (PLGA)-based ternary polyelectrolyte complex (PEC) with chitosan, sodium alginate, and transmembrane peptides R8 for the delivery of antigen proteins. In this study, the antigen protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis (MAP) antigens HBHA, Ag85B, and Bfra, was combined with R8 to generate self-assembled conjugates. The results showed that PEC presented a cross-linked reticular structure to protect the encapsulated proteins in the simulated gastric fluid. Then, the nanocomposite separated into individual nanoparticles after entering the simulated intestinal fluid. The ternary PEC with R8 promoted the in vivo uptake of antigens by intestinal lymphoid tissue. Moreover, the ternary PEC administered orally to mice promoted the secretion of specific antibodies and intestinal mucosal IgA. In addition, in the mouse models of MAP infection, the ternary PEC enhanced splenic T cell responses, thus reducing bacterial load and liver pathology score. These results suggested that this ternary electrolyte complex could be a promising delivery platform for oral subunit vaccine candidates, not limited to MAP infection.


Subject(s)
Alginates , Chitosan , Immunity, Mucosal , Chitosan/chemistry , Alginates/chemistry , Animals , Immunity, Mucosal/drug effects , Mice , Administration, Oral , Polyelectrolytes/chemistry , Female , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/chemistry
16.
Fish Shellfish Immunol ; 151: 109751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971349

ABSTRACT

Egg yolk antibodies (IgY) can be prepared in large quantities and economically, and have potential value as polyvalent passive vaccines (against multiple bacteria) in aquaculture. This study prepared live and inactivated Vibrio fluvialis IgY and immunized Carassius auratus prior to infection with V. fluvialis and Aeromonas hydrophila. The results showed that the two IgY antibodies hold effective passive protective rates against V. fluvialis and A. hydrophila in C. auratus. Further, the serum of C. auratus recognized the two bacteria in vitro, with a decrease in the bacteria content of the kidney. The phagocytic activity of C. auratus plasma was enhanced, with a decrease in the expression of inflammatory and antioxidant factors. Pathological sections showed that the kidney, spleen, and intestinal tissue structures were intact, and apoptosis and DNA damage decreased in kidney cells. Moreover, the immunoprotection conferred by the live V. fluvialis IgY was higher than that of the inactivated IgY. Addition, live V. fluvialis immunity induced IgY antibodies against outer membrane proteins of V. fluvialis were more than inactivated V. fluvialis immunity. Furthermore, heterologous immune bacteria will not cause infection, so V. fluvialis can be used to immunize chickens to obtain a large amount of IgY antibody. These findings suggest that the passive immunization effect of live bacterial IgY antibody on fish is significantly better than that of inactivated bacterial antibody, and the live V. fluvialis IgY hold potential value as polyvalent passive vaccines in aquaculture.


Subject(s)
Aeromonas hydrophila , Egg Yolk , Fish Diseases , Immunoglobulins , Vibrio Infections , Vibrio , Animals , Immunoglobulins/immunology , Immunoglobulins/blood , Vibrio Infections/veterinary , Vibrio Infections/immunology , Vibrio Infections/prevention & control , Vibrio/immunology , Fish Diseases/immunology , Fish Diseases/prevention & control , Egg Yolk/immunology , Aeromonas hydrophila/immunology , Goldfish/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Immunization, Passive/veterinary , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage
17.
J Appl Microbiol ; 135(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39020252

ABSTRACT

AIMS: Currently, immunoinformatic approaches have shown promise in rapidly and cost-effectively identifying new antigens from the Leptospira proteome. Chimeric multiepitope proteins offer a strategy with significant potential for implementation in diagnosis and vaccines development. METHODS AND RESULTS: In this study, we detail the immunoinformatic analyses and design of a new recombinant chimeric protein constructed with epitopes identified from the sequences of ErpY-like and LemA proteins, previously identified as potential antigens for controlling leptospirosis. We expressed the chimeric protein using Escherichia coli heterologous systems, evaluated its antigenicity using serum from naturally infected patients, and its immunogenicity in mice as an animal model, with Freund as an adjuvant. The resulting recombinant chimeric protein, named rErpY-LemA, was successfully expressed and purified using a prokaryotic system, with an expected mass of 35 kDa. Serologic assays using serum samples from naturally infected patients demonstrated recognition of the chimera protein by antibodies present in sera. Animals immunized with the chimera exhibited a significant IgG antibody response from the 7th day (P < 0.001), persisting until day 49 of experimentation, with a titer of 1:12,800 (P < 0.05). Notably, significant production of IgA, IgM, and IgG subclasses was observed in animals immunized with the chimera. CONCLUSIONS: These results highlight the promising role of immunoinformatics in rapidly identifying antigens and the potential of chimeric multiepitope proteins in developing effective strategies for leptospirosis control.


Subject(s)
Antigens, Bacterial , Leptospirosis , Recombinant Fusion Proteins , Leptospirosis/immunology , Leptospirosis/prevention & control , Animals , Mice , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Humans , Antibodies, Bacterial/blood , Leptospira/immunology , Leptospira/genetics , Computational Biology , Epitopes/immunology , Epitopes/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Escherichia coli/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics
18.
Microbiol Res ; 287: 127837, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059097

ABSTRACT

Klebsiella pneumoniae, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against K. pneumoniae. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by K. pneumoniae. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of K. pneumoniae vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR K. pneumoniae.


Subject(s)
Bacterial Vaccines , Klebsiella Infections , Klebsiella pneumoniae , Vaccine Development , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/genetics , Humans , Bacterial Vaccines/immunology , Klebsiella Infections/prevention & control , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Animals , Vaccines, DNA/immunology , Artificial Intelligence , Extracellular Vesicles/immunology , Antigens, Bacterial/immunology
19.
Mol Immunol ; 173: 30-39, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018745

ABSTRACT

PURPOSE: The etiology of asthma remains elusive, with no known cure. Based on accumulating evidence, autophagy, a self-degradation process that maintains cellular metabolism and homeostasis, participates in the development of asthma. Mycobacterium vaccae vaccine (M. vaccae), an immunomodulatory agent, has previously been shown to effectively alleviate airway inflammation and airway remodeling. However, its therapeutic effect on asthma via the regulation of autophagy remains unknown. Therefore, this study aimed to investigate the impact of M. vaccae in attenuating asthma airway inflammation via autophagy-mediated pathways. METHODS: Balb/c mice were used to generate an ovalbumin (OVA)-immunized allergic airway model and were subsequently administered either M. vaccae or M. vaccae + rapamycin (an autophagy activator) prior to each challenge. Next, airway inflammation, mucus secretion, and airway remodeling in mouse lung tissue were assessed via histological analyses. Lastly, the expression level of autophagy proteins LC3B, Beclin1, p62, and autolysosome was determined both in vivo and in vitro, along with the expression level of p-PI3K, PI3K, p-Akt, and Akt in mouse lung tissue. RESULTS: The findings indicated that aerosol inhalation of M. vaccae in an asthma mouse model has the potential to decrease eosinophil counts, alleviate airway inflammation, mucus secretion, and airway remodeling through the inhibition of autophagy. Likewise, M. vaccae could reduce the levels of OVA-specific lgE, IL-5, IL-13, and TNF-α in asthma mouse models by inhibiting autophagy. Furthermore, this study revealed that M. vaccae also suppressed autophagy in IL-13-stimulated BEAS-2B cells. Moreover, M. vaccae may activate the PI3K/Akt signaling pathway in the lung tissue of asthmatic mice. CONCLUSION: In summary, the present study suggests that M. vaccae may contribute to alleviating airway inflammation and remodeling in allergic asthma by potentially modulating autophagy and the PI3K/Akt signaling pathway. These discoveries offer a promising avenue for the development of therapeutic interventions targeting allergic airway inflammation.


Subject(s)
Asthma , Autophagy , Disease Models, Animal , Inflammation , Mice, Inbred BALB C , Mycobacteriaceae , Ovalbumin , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/immunology , Phosphatidylinositol 3-Kinases/metabolism , Ovalbumin/immunology , Asthma/immunology , Asthma/therapy , Mice , Inflammation/immunology , Mycobacteriaceae/immunology , Female , Airway Remodeling/immunology , Lung/pathology , Lung/immunology , Bacterial Vaccines/immunology
20.
Vet Microbiol ; 296: 110169, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032443

ABSTRACT

A simple IgG-specific ELISA for Leptospira spp. was compared with the microscopic agglutination test (MAT) to detect IgG antibody responses to a commercial vaccine in cattle. We used an enzyme-linked immunosorbent assay (ELISA) with sonicated Leptospira interrogans serovar copenhageni M 20. After initial vaccination, specific antibodies against Leptospira spp. were detected in 90 % of the animals by IgG-ELISA and 60 % by MAT, while after booster, antibodies were detected in 100 % and 80 % of the animals by IgG-ELISA and MAT, respectively. Both serological MAT and ELISA tests revealed interferences of vaccine antibodies. Disease diagnosis with ELISA and MAT methods should be made two and a half months and four months, respectively, after vaccination to avoid interference of vaccine antibodies. On the other hand, our results suggest that IgG-ELISA may be a useful method to assess the development of IgG antibodies induced by Leptospira vaccine.


Subject(s)
Agglutination Tests , Antibodies, Bacterial , Bacterial Vaccines , Cattle Diseases , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Leptospirosis , Animals , Leptospirosis/veterinary , Leptospirosis/diagnosis , Leptospirosis/immunology , Cattle , Cattle Diseases/microbiology , Cattle Diseases/diagnosis , Cattle Diseases/immunology , Cattle Diseases/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Bacterial/blood , Bacterial Vaccines/immunology , Immunoglobulin G/blood , Agglutination Tests/veterinary , Leptospira interrogans/immunology , Leptospira/immunology , Vaccination/veterinary , Serologic Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL