Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 776
Filter
1.
BMC Vet Res ; 20(1): 365, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143614

ABSTRACT

BACKGROUND: Cats are hosts and reservoirs for many haemopathogens such as piroplasms, Rickettsia, hemotropic Mycoplasma, Bartonella, Ehrlichia, and Anaplasma, which are transmitted by various vector arthropods and some of which have a zoonotic concern. Although it is noteworthy that the rate of ownership of companion animals has increased in Türkiye in recent years and that cats account for a large proportion of these animals, there is limited research on the vector-borne infectious agents carried by them. The present study aimed to provide a comprehensive molecular epidemiological data and molecular characterization of feline vector-borne haemopathogens (FVBHs), including piroplasms, anaplasmataceae, rickettsias, haemoplasmas, and Bartonella species in Türkiye. In total, 250 feline blood samples were collected from client-owned cats (n = 203) and shelter cats (n = 47) brought to the Small Animal Hospital of Selcuk University, Veterinary Faculty. RESULTS: Overall, 40 (16%) cats were found to be infected with at least one of the investigated haemopathogens and piroplasm, Mycoplasma spp. and Bartonella spp. prevalence was 1.6%, 11.2%, and 4.8%, respectively. No Anaplasma/Ehrlichia spp. and Rickettsia spp. DNA was detected in the investigated feline samples. Sequence analysis revealed that all four piroplasms belonged to Babesia ovis with a 97.93-99.82% nucleotide sequence identity to 18S rRNA gene sequences from Spain and Türkiye, while some sequenced hemoplasmas were Mycoplasma haemofelis (Mhf), Candidatus Mycoplasma haemominutum (CMhm) and Mycoplasma wenyonii, and Bartonella spp. were Bartonella henselae and Bartonella koehlerae species. Co-infections with Mycoplasma spp. and Bartonella spp. were also detected in 4 cats (1.6%) in this study, where single infections were predominant. CONCLUSION: This study provides valuable information on zoonotically important feline vector-borne hemopathogens in Türkiye, some of which have received attention under the One Health perspective, and is the first molecular epidemiological study to demonstrate the presence of Babesia ovis, the causative agent of ovine babesiosis, and Mycoplasma wenyonii DNA, the causative agent of bovine haemotropic mycoplasmosis, in cats. Further studies on the roles of such pathogens detected in unspecific hosts and the host specificity of the vectors that transmit them will contribute to the elucidation of this situation.


Subject(s)
Babesia , Cat Diseases , Mycoplasma , Animals , Cats , Cat Diseases/parasitology , Cat Diseases/microbiology , Cat Diseases/epidemiology , Mycoplasma/isolation & purification , Mycoplasma/genetics , Babesia/isolation & purification , Babesia/genetics , Mycoplasma Infections/veterinary , Mycoplasma Infections/epidemiology , Female , Male , Bartonella/isolation & purification , Bartonella/genetics , Babesiosis/epidemiology , DNA, Bacterial , DNA, Protozoan
2.
Parasit Vectors ; 17(1): 302, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992682

ABSTRACT

BACKGROUND: In recent years, Babesia and Bartonella species co-infections in patients with chronic, nonspecific illnesses have continued to challenge and change the collective medical understanding of "individual pathogen" vector-borne infectious disease dynamics, pathogenesis and epidemiology. The objective of this case series is to provide additional molecular documentation of Babesia odocoilei infection in humans in the Americas and to emphasize the potential for co-infection with a Bartonella species. METHODS: The development of improved and more sensitive molecular diagnostic techniques, as confirmatory methods to assess active infection, has provided increasing clarity to the healthcare community. RESULTS: Using a combination of different molecular diagnostic approaches, infection with Babesia odocoilei was confirmed in seven people suffering chronic non-specific symptoms, of whom six were co-infected with one or more Bartonella species. CONCLUSIONS: We conclude that infection with Babesia odocoilei is more frequent than previously documented and can occur in association with co-infection with Bartonella spp.


Subject(s)
Babesia , Babesiosis , Bartonella Infections , Bartonella , Coinfection , Humans , Babesiosis/epidemiology , Babesiosis/complications , Babesiosis/parasitology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/parasitology , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/complications , Babesia/isolation & purification , Babesia/genetics , Bartonella/isolation & purification , Bartonella/genetics , Male , Female , Middle Aged , Adult , Americas/epidemiology , Aged , Molecular Diagnostic Techniques
3.
BMC Res Notes ; 17(1): 184, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956715

ABSTRACT

OBJECTIVE: Bartonella are emerging bacterial zoonotic pathogens. Utilization of clotted blood samples for surveillance of these bacteria in wildlife has begun to supersede the use of tissues; however, the efficacy of these samples has not been fully investigated. Our objective was to compare the efficacy of spleen and blood samples for DNA extraction and direct detection of Bartonella spp. via qPCR. In addition, we present a protocol for improved DNA extraction from clotted, pelleted (i.e., centrifuged) blood samples obtained from wild small mammals. RESULTS: DNA concentrations from kit-extracted blood clot samples were low and A260/A280 absorbance ratios indicated high impurity. Kit-based DNA extraction of spleen samples was efficient and produced ample DNA concentrations of good quality. We developed an in-house extraction method for the blood clots which resulted in apposite DNA quality when compared to spleen samples extracted via MagMAX DNA Ultra 2.0 kit. We detected Bartonella in 9/30 (30.0%) kit-extracted spleen DNA samples and 11/30 (36.7%) in-house-extracted blood clot samples using PCR. Our results suggest that kit-based methods may be less suitable for DNA extraction from blood clots, and that blood clot samples may be superior to tissues for Bartonella detection.


Subject(s)
Animals, Wild , Bartonella Infections , Bartonella , DNA, Bacterial , Spleen , Animals , Bartonella/isolation & purification , Bartonella/genetics , DNA, Bacterial/blood , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Spleen/microbiology , Bartonella Infections/diagnosis , Bartonella Infections/blood , Bartonella Infections/microbiology , Animals, Wild/microbiology , Real-Time Polymerase Chain Reaction/methods
4.
PLoS Negl Trop Dis ; 18(7): e0012306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976750

ABSTRACT

BACKGROUND: Rodents are recognized as major reservoirs of numerous zoonotic pathogens and are involved in the transmission and maintenance of infectious diseases. Furthermore, despite their importance, diseases transmitted by rodents have been neglected. To date, there have been limited epidemiological studies on rodents, and information regarding their involvement in infectious diseases in the Republic of Korea (ROK) is still scarce. METHODOLOGY/PRINCIPAL FINDINGS: We investigated rodent-borne pathogens using nested PCR/RT-PCR from 156 rodents including 151 Apodemus agrarius and 5 Rattus norvegicus from 27 regions in eight provinces across the ROK between March 2019 and November 2020. Spleen, kidney, and blood samples were used to detect Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato group, Coxiella burnetii, Leptospira interrogans, and severe fever with thrombocytopenia syndrome virus (SFTSV). Of the 156 rodents, 73 (46.8%) were infected with Bartonella spp., 25 (16.0%) with C. burnetii, 24 (15.4%) with L. interrogans, 21 (13.5%) with A. phagocytophilum, 9 (5.8%) with SFTSV, and 5 (3.2%) with Borrelia afzelii. Co-infections with two and three pathogens were detected in 33 (21.1%) and 11 rodents (7.1%), respectively. A. phagocytophilum was detected in all regions, showing a widespread occurrence in the ROK. The infection rates of Bartonella spp. were 83.3% for B. grahamii and 16.7% for B. taylorii. CONCLUSIONS/SIGNIFICANCE: To the best of our knowledge, this is the first report of C. burnetii and SFTSV infections in rodents in the ROK. This study also provides the first description of various rodent-borne pathogens through an extensive epidemiological survey in the ROK. These results suggest that rodents harbor various pathogens that pose a potential threat to public health in the ROK. Our findings provide useful information on the occurrence and distribution of zoonotic pathogens disseminated among rodents and emphasize the urgent need for rapid diagnosis, prevention, and control strategies for these zoonotic diseases.


Subject(s)
Anaplasma phagocytophilum , Bartonella , Coxiella burnetii , Zoonoses , Animals , Republic of Korea/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology , Rats , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Bartonella/isolation & purification , Bartonella/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Rodentia/microbiology , Murinae/microbiology , Animals, Wild/microbiology , Animals, Wild/virology , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/virology , Phlebovirus/genetics , Phlebovirus/isolation & purification , Disease Reservoirs/microbiology , Leptospira interrogans/isolation & purification , Leptospira interrogans/genetics
5.
Trop Biomed ; 41(1): 52-63, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852134

ABSTRACT

In tropical regions, numerous tick-borne pathogens (TBPs) play a crucial role as causative agents of infectious diseases in humans and animals. Recently, the population of companion and pet dogs has significantly increased in Vietnam; however, information on the occurrence of TBPs is still limited. The objectives of this investigation were to determine the occurrence rate, risk factors, and phylogenetic characteristics of TBPs in dogs from northern Vietnam. Of 341 blood samples tested by PCR, the total infection of TBPs was 73.9% (252/341). Babesia vogeli (18SrRNA gene - 30.5%) was detected most frequently in studied dogs followed by Rickettsia spp. (OmpA gene - 27%), Anaplasma platys (groEL gene - 22%), Bartonella spp. (16SrRNA - 18.8%), Mycoplasma haemocanis (16SrRNA - 9.4%) and Hepatozoon canis (18SrRNA gene - 1.2%), respectively. All samples were negative for Ehrlichia canis and Anaplasma phagocytophylum. Co-infection was detected in 31.4% of the samples (107/341) of which, A. platys/Bartonella spp. (34/94,10%), Rickettsia spp./B. vogeli (19/94, 5.6%), and M. haemocanis/B. vogeli (19/94, 5.6%) were recorded as the three most frequent two species of co-infection types. Statistical analysis revealed a significant correlation between TBP infection and several host variables regarding age, breed, and living area in the current study. The recent findings reported herein, for the first time in Vietnam, are essential for local veterinarians when considering the appropriate approaches for diagnosing these diseases. Furthermore, this data can be used to establish control measures for future surveillance and prevention strategies against canine TBPs in Vietnam.


Subject(s)
Anaplasma , Babesia , Dog Diseases , Phylogeny , Tick-Borne Diseases , Animals , Dogs , Vietnam/epidemiology , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/microbiology , Risk Factors , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Anaplasma/genetics , Anaplasma/isolation & purification , Babesia/genetics , Babesia/isolation & purification , Male , Female , Rickettsia/genetics , Rickettsia/isolation & purification , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Mycoplasma/genetics , Mycoplasma/isolation & purification , Mycoplasma/classification , Coinfection/veterinary , Coinfection/epidemiology , Coinfection/parasitology , Coinfection/microbiology
6.
Parasit Vectors ; 17(1): 264, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890667

ABSTRACT

BACKGROUND: Fleas, considered to be the main transmission vectors of Bartonella, are highly prevalent and show great diversity. To date, no investigations have focused on Bartonella vectors in Southeast China. The aim of this study was to investigate the epidemiological and molecular characteristics of Bartonella in fleas in Southeast China. METHODS: From 2016 to 2022, flea samples (n = 1119) were collected from 863 rodent individuals in seven inland and coastal cities in Southeast China. Flea species, region, gender, host species and habitat were recorded. The DNA samples from each individual flea were screened by real-time PCR for the Bartonella ssrA gene. All positive samples were confirmed by PCR based on the presence of the gltA gene and sequenced. The factors associated with Bartonella infection were analyzed by the Chi-square test and Fisher's exact test. ANOVA and the t-test were used to compare Bartonella DNA load. RESULTS: Bartonella DNA was detected in 26.2% (293/1119) of the flea samples, including in 27.1% (284/1047) of Xenopsylla cheopis samples, 13.2% (5/38) of Monopsyllus anisus samples, 8.3% (2/24) of Leptopsylla segnis samples and 20.0% (2/10) of other fleas (Nosopsyllus nicanus, Ctenocephalides felis, Stivalius klossi bispiniformis and Neopsylla dispar fukienensis). There was a significant difference in the prevalence of Bartonella among flea species, sex, hosts, regions and habitats. Five species of Bartonella fleas were identified based on sequencing and phylogenetic analyses targeting the gltA gene: B. tribocorum, B. queenslandensis, B. elizabethae, B. rochalimae and B. coopersplainsensis. CONCLUSIONS: There is a high prevalence and diversity of Bartonella infection in the seven species of fleas collected in Southeast China. The detection of zoonotic Bartonella species in this study, including B. tribocorum, B. elizabethae and B. rochalimae, raises public health concerns.


Subject(s)
Bartonella Infections , Bartonella , Flea Infestations , Genetic Variation , Insect Vectors , Rodentia , Siphonaptera , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , China/epidemiology , Siphonaptera/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Bartonella Infections/transmission , Rodentia/microbiology , Female , Flea Infestations/epidemiology , Flea Infestations/veterinary , Flea Infestations/parasitology , Insect Vectors/microbiology , Male , Phylogeny , DNA, Bacterial/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , Prevalence
7.
Acta Trop ; 257: 107278, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38851625

ABSTRACT

INTRODUCTION: The genus Bartonella includes species and subspecies of fastidious, facultative intracellular Gram-negative bacilli that infect a wide variety of mammalian reservoirs including cats and humans. In 2022, the Ecuadorian Ministry of Health reported an outbreak of cat scratch disease caused by B. henselae in the city of Guayaquil. Therefore, we aimed to characterize the presence of Bartonella spp. in domestic and stray cats from the area of Guayaquil where the outbreak happened in 2022. METHODS: Whole blood samples of 100 domestic and stray cats were collected. Riboflavin synthase (ribC) and 16S rRNA genes detection was performed by PCR using Bartonella spp. specific primers, followed by Sanger sequencing and phylogenetic analysis. RESULTS: 14 cats were positive for Bartonella spp. carriage. Phylogenetic analysis confirmed the presence of 12 cats infected with B. henselae and 2 cats with B. clarridgeiae. CONCLUSIONS: There is a high prevalence of Bartonella spp. carriage in cats in the city of Guayaquil within the area where a recent cat scratch disease outbreak happened. Considering the high presence of cats and other domestic and stray animals in the city of Guayaquil, a One Health approach for surveillance and prevention of zoonotic diseases like cat scratch disease is needed.


Subject(s)
Bartonella Infections , Bartonella henselae , Bartonella , Cat Diseases , Cat-Scratch Disease , Disease Outbreaks , Phylogeny , RNA, Ribosomal, 16S , Animals , Cats , Ecuador/epidemiology , Disease Outbreaks/veterinary , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Cat-Scratch Disease/epidemiology , Cat-Scratch Disease/microbiology , Cat Diseases/microbiology , Cat Diseases/epidemiology , Bartonella henselae/genetics , Bartonella henselae/isolation & purification , RNA, Ribosomal, 16S/genetics , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , Carrier State/microbiology , Carrier State/epidemiology , Carrier State/veterinary , Male , Female , Prevalence
8.
Zoonoses Public Health ; 71(5): 568-577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816921

ABSTRACT

BACKGROUND: Bartonellosis, caused by bacteria of the genus Bartonella, is a zoonotic disease with several mammalian reservoir hosts. In Somalia, a country heavily reliant on livestock, zoonotic diseases pose significant public health and economic challenges. To the best of our knowledge, no study has been performed aiming to verify the occurrence of Bartonella spp. in Somalia. This study investigated the occurrence and molecular characterization of Bartonella in dromedary (Camelus dromedarius, Linnaeus, 1758), cattle, sheep, and goats from Somalia. MATERIALS AND METHODS: 530 blood samples were collected from various animals (155 dromedary, 199 goat, 131 cattle, and 45 sheep) in Benadir and Lower Shabelle regions. DNA was extracted for molecular analysis, and a qPCR assay targeting the NADH dehydrogenase gamma subunit (nuoG) gene was used for Bartonella screening. Positive samples were also subjected to PCR assays targeting seven molecular markers including: nuoG, citrate synthase gene (gltA), RNA polymerase beta-subunit gene (rpoB), riboflavin synthase gene (ribC), 60 kDa heat-shock protein gene (groEL), cell division protein gene (ftsZ), and pap31 and qPCR targeting the 16-23S rRNA internal transcribed spacer (ITS) followed by Sanger sequencing, BLASTn and phylogenetic analysis. RESULTS: Out of 530 tested animals, 5.1% were positive for Bartonella spp. by the nuoG qPCR assay. Goats showed the highest Bartonella occurrence (17/199, 8.5%), followed by sheep (6/44, 6.8%), cattle (4/131, 3.1%), and dromedary (1/155, 1.9%). Goats, sheep, and cattle had higher odds of infection compared to dromedary. Among nuoG qPCR-positive samples, 11.1%, 14.8%, 11.1%, and 25.9% were positive in PCR assays based on nuoG, gltA, and pap31 genes, and in the qPCR based on the ITS region, respectively. On the other hand, nuoG qPCR-positive samples were negative in the PCR assays targeting the ribC, rpoB, ftsZ, and groEL genes. While Bartonella bovis sequences were detected in cattle (nuoG and ITS) and goats (gltA), Bartonella henselae ITS sequences were detected in dromedary, goat, and sheep. Phylogenetic analysis placed gltA Bartonella sequence from a goat in the same clade of B. bovis. CONCLUSION: The present study showed, for the first time, molecular evidence of Bartonella spp. in dromedary and ruminants from Somalia and B. henselae in sheep and goats globally. These findings contribute valuable insights into Bartonella spp. occurrence in Somali livestock, highlighting the need for comprehensive surveillance and control measures under the One Health approach.


Subject(s)
Bartonella Infections , Bartonella , Camelus , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Camelus/microbiology , Ruminants/microbiology , Goats , Sheep , Goat Diseases/microbiology , Goat Diseases/epidemiology , Phylogeny , Cattle , DNA, Bacterial/genetics
9.
Microbiol Spectr ; 12(7): e0412023, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38785439

ABSTRACT

In this study, we investigated the prevalence of Bartonella in deer from Qilian County, Qinghai Province, China. Blood samples were collected from 69 red deer, 40 white-lipped deer, and 27 sika deer. The detection of Bartonella spp. has been conducted. The overall prevalence of Bartonella was 33.6% (46/135). Species-specific prevalence was 50.72% in red deer (35/69), 20.00% in white-lipped deer (8/40), and 11.11% in sika deer (3/27). There were significant differences in the prevalence rates among the different species of deer. The amplicon sequence comparison revealed a high homology of the ruminant-associated Bartonella spp. Nanopore sequencing further confirmed the results. Bartonella reads were presented in each of the qPCR-positive samples. Phylogenetic analysis indicated that the Bartonella sequences detected in deer blood were closely related to ruminant-borne Bartonella spp. In summary, we reported the Bartonella prevalence of different deer species in Qinghai, and there were at least one species of ruminant-associated Bartonella, B. schoenbuchensis. IMPORTANCE: This is the first report about Bartonella infections in the deer population from China. We found that there were two species of Bartonella and an unidentified species of Bartonella among the unculturing strains carried by these deer populations. We first used Nanopore sequencing to detect Bartonella from deer blood samples and indicated that Nanopore sequencing is beneficial to detect pathogens due to its advantage of real-time and high sensitivity.


Subject(s)
Bartonella Infections , Bartonella , Deer , Phylogeny , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Deer/microbiology , Bartonella Infections/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/microbiology , China/epidemiology , Prevalence , Tibet/epidemiology , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , DNA, Bacterial/genetics
10.
PLoS Negl Trop Dis ; 18(5): e0012159, 2024 May.
Article in English | MEDLINE | ID: mdl-38739673

ABSTRACT

BACKGROUND: Rodents are recognized as the hosts of many vector-borne bacteria and protozoan parasites and play an important role in their transmission and maintenance. Intensive studies have focused on their infections in vectors, especially in ticks, however, vector-borne bacterial and protozoan infections in rodents are poorly understood although human cases presenting with fever may due to their infection have been found. METHODS: From May to October 2019, 192 wild rodents were trapped in wild environment of Guangxi Province, and the spleen samples were collected to reveal the presence of vector-borne bacterial and protozoan infections in them. The microorganisms in rodents were identified by detecting their DNA using (semi-)nested PCR. All the PCR products of the expected size were subjected to sequencing, and then analyzed by BLASTn. Furthermore, all the recovered sequences were subjected to nucleotide identity and phylogenetic analyses. RESULTS: As a result, 192 rodents representing seven species were captured, and Bandicota indica were the dominant species, followed by Rattus andamanensis. Based on the (semi-)nested PCR, our results suggested that Anaplasma bovis, Anaplasma capra, Anaplasma ovis, Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis", "Candidatus E. hainanensis", "Candidatus E. zunyiensis", three uncultured Ehrlichia spp., Bartonella coopersplainsensis, Bartonella tribocorum, Bartonella rattimassiliensis, Bartonella silvatica, two uncultured Bartonella spp., Babesia microti and diverse Hepatozoon were identified in six rodent species. More importantly, six species (including two Anaplasma, two Bartonella, "Ca. N. mikurensis" and Bab. microti) are zoonotic pathogens except Anaplasma bovis and Anaplasma ovis with zoonotic potential. Furthermore, dual infection was observed between different microorganisms, and the most common type of co-infection is between "Ca. N. mikurensis" and other microorganisms. Additionally, potential novel Bartonella species and Hepatozoon species demonstrated the presence of more diverse rodent-associated Bartonella and Hepatozoon. CONCLUSIONS: The results in this work indicated great genetic diversity of vector-borne infections in wild rodents, and highlighted the potential risk of human pathogens transmitted from rodents to humans through vectors.


Subject(s)
Genetic Variation , Rodentia , Animals , China/epidemiology , Rodentia/microbiology , Rodentia/parasitology , Phylogeny , Animals, Wild/parasitology , Animals, Wild/microbiology , Anaplasma/genetics , Anaplasma/isolation & purification , Anaplasma/classification , Vector Borne Diseases/transmission , Vector Borne Diseases/microbiology , Vector Borne Diseases/parasitology , Vector Borne Diseases/epidemiology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Rats
11.
Clin Infect Dis ; 78(6): 1551-1553, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38640140

ABSTRACT

Among patients with pathologically proven infective endocarditis, the association of pathogen with occurrence of infection-related glomerulonephritis (IRGN) was examined in 48 case patients with IRGN and 192 propensity score-matched controls. Bartonella was very strongly associated with IRGN (odds ratio, 38.2 [95% confidence interval, 6.7-718.8]; P < .001); other microorganisms were not.


Subject(s)
Endocarditis , Glomerulonephritis , Humans , Glomerulonephritis/microbiology , Male , Female , Middle Aged , Aged , Endocarditis/microbiology , Endocarditis/complications , Adult , Case-Control Studies , Bartonella/isolation & purification , Endocarditis, Bacterial/microbiology
12.
J Wildl Dis ; 60(3): 792-794, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38659240

ABSTRACT

Anaplasma bovis (1), Bartonella krasnovii (3), and Bartonella sp. (17) were detected in 80 Libyan jirds (Meriones libycus) from China. These findings extend the known host and geographic ranges of these pathogens, with neither A. bovis nor B. krasnovii previously confirmed in Libyan jirds.


Subject(s)
Anaplasma , Anaplasmosis , Bartonella Infections , Bartonella , Animals , China/epidemiology , Anaplasma/isolation & purification , Bartonella/isolation & purification , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Rodentia/microbiology , Female , Male
13.
Vet Res Commun ; 48(4): 2743-2751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38662316

ABSTRACT

Despite the worldwide occurrence and high genetic diversity of Bartonella spp. in bats, few studies investigate their occurrence in bat-associated mites. To date, 26 species of Macronyssidae mite species have been reported from Brazil, and 15 of which were found parasitizing bats. The present study aimed to investigate the presence of Bartonella DNA in bat-associated macronyssid mites from Brazil. For this purpose, 393 macronyssid specimens were selected by convenience from the tissue bank of the Acari Collection of the Instituto Butantan (IBSP). These mites were collected from 14 different bat species in three different Brazilian States (Minas Gerais, Paraná, and Rio de Janeiro). Out of 165 mites positive in the PCR for the endogenous 18S rRNA gene, only eight were positive in the qPCR for Bartonella spp. based on the nuoG gene, and we were able to obtain two sequences base in this same gene, and one sequence based on the 16S rRNA gene. The phylogenetic inference based on the nuoG gene grouped the obtained sequences with Bartonella genotypes previously detected in bats and associated bat flies, while the phylogeny based on the 16S rRNA grouped the obtained sequence in the same clade of Bartonella genotypes previously detected in Dermanyssus gallinae. These findings suggest that macronyssid mites might be associated with the maintenance of bartonellae among bats.


Subject(s)
Bartonella , Chiroptera , Mites , Phylogeny , Animals , Chiroptera/microbiology , Chiroptera/parasitology , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Brazil , Mites/microbiology , Mite Infestations/veterinary , Mite Infestations/parasitology , Mite Infestations/microbiology , RNA, Ribosomal, 16S/genetics , Bartonella Infections/veterinary , Bartonella Infections/microbiology , RNA, Ribosomal, 18S/genetics
14.
Vet Res Commun ; 48(3): 1631-1640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38443588

ABSTRACT

Despite the worldwide occurrence of bartonellae in a broad range of mammal species, in which they usually cause a long-lasting erythrocytic bacteremia, few studies reported Bartonella spp. in avian hosts. The present work aimed to investigate the occurrence and molecular identity of Bartonella spp. infecting birds in the Pantanal wetland, central-western Brazil using a multigene approach. For this purpose, blood samples were collected from 517 individuals from 13 avian orders in the states of Mato Grosso and Mato Groso do Sul. DNA was extracted from avian blood and 500/517 (96.7%) samples were positive in a conventional PCR targeting the avian ß-actin gene. Nineteen (3.8%) out of 500 avian blood samples were positive in a qPCR assay for Bartonella spp. based on the nuoG gene. Among 19 avian blood DNA samples positive in the qPCR for Bartonella spp., 12 were also positive in the qPCR for Bartonella based on the 16S-23S RNA Intergenic region (ITS). In the PCR assays performed for molecular characterization, one 16S rRNA, three ribC, and one nuoG sequences were obtained. Based on BLASTn results, while 1 nuoG, 2 ribC, and 2 ITS sequences showed high identity to Bartonella henselae, one 16S rRNA and 2 ITS showed high similarity to Bartonella machadoae in the sampled birds. Bartonella spp. related to B. henselae and B. machadoae were detected, for the first time, in wild birds from the Brazilian Pantanal.


Subject(s)
Bartonella Infections , Bartonella , Bird Diseases , Birds , Wetlands , Animals , Bartonella/genetics , Bartonella/isolation & purification , Bartonella/classification , Brazil/epidemiology , Birds/microbiology , Bird Diseases/microbiology , Bird Diseases/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Phylogeny , Animals, Wild/microbiology , RNA, Ribosomal, 16S/genetics , Polymerase Chain Reaction/veterinary
15.
Infection ; 52(4): 1307-1314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38300353

ABSTRACT

OBJECTIVES: Bartonella spp., renowned for cat-scratch disease, has limited reports of dissemination. Tissue and blood cultures have limitations in detecting this fastidious pathogen. Molecular testing (polymerase chain reaction, PCR) and cell-free DNA have provided an avenue for diagnoses. This retrospective observational multicenter study describes the incidence of disseminated Bartonella spp. and treatment-related outcomes. METHODS: Inclusion criteria were diagnosis of bartonellosis via diagnosis code, serology testing of blood, polymerase chain reaction (PCR) of blood, 16/18S tests of blood or tissue, cultures of blood or tissue, or cell-free DNA of blood or tissue from January 1, 2014, through September 1, 2021. Exclusions were patients who did not receive treatment, insufficient data on treatment course, absence of dissemination, or retinitis as dissemination. RESULTS: Patients were primarily male (n = 25, 61.0%), white (n = 28, 68.3%), with mean age of 50 years (SD 14.4), and mean Charlson comorbidity index of 3.5 (SD 2.1). Diagnosis was primarily by serology (n = 34, 82.9%), with Bartonella henselae (n = 40, 97.6%) as the causative pathogen. Treatment was principally doxycycline with rifampin (n = 17, 41.5%). Treatment failure occurred in 16 (39.0%) patients, due to escalation of therapy during treatment (n = 5, 31.3%) or discontinuation of therapy due to an adverse event or tolerability (n = 5, 31.3%). CONCLUSIONS: In conclusion, this is the largest United States-based cohort of disseminated Bartonella spp. infections to date with a reported 39% treatment failure. This adds to literature supporting obtaining multiple diagnostic tests when Bartonella is suspected and describes treatment options.


Subject(s)
Anti-Bacterial Agents , Bartonella Infections , Bartonella , Humans , Male , Middle Aged , Female , Retrospective Studies , United States/epidemiology , Bartonella Infections/drug therapy , Bartonella Infections/epidemiology , Bartonella Infections/diagnosis , Bartonella Infections/microbiology , Adult , Anti-Bacterial Agents/therapeutic use , Bartonella/isolation & purification , Aged , Incidence , Doxycycline/therapeutic use
16.
Zoonoses Public Health ; 71(4): 416-428, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38419369

ABSTRACT

AIMS: Rat-associated zoonotic pathogen transmission at the human-wildlife interface is a public health concern in urban environments where Norway rats (Rattus norvegicus) thrive on abundant anthropogenic resources and live in close contact with humans and other animal species. To identify potential factors influencing zoonotic pathogen occurrence in rats, we investigated associations between environmental and sociodemographic factors and Leptospira interrogans and Bartonella spp. infections in rats from Windsor, Ontario, Canada, while controlling for the potential confounding effects of animal characteristics (i.e., sexual maturity and body condition). METHODS AND RESULTS: Between November 2018 and June 2021, 252 rats were submitted by collaborating pest control professionals. Kidney and spleen samples were collected for L. interrogans and Bartonella spp. PCR and sequencing, respectively. Of the rats tested by PCR, 12.7% (32/252) were positive for L. interrogans and 16.3% (37/227) were positive for Bartonella species. Associations between infection status and environmental and sociodemographic variables of interest were assessed via mixed multivariable logistic regression models with a random intercept for social group and fixed effects to control for sexual maturity and body condition in each model. The odds of L. interrogans infection were significantly higher in rats from areas with high building density (odds ratio [OR]: 3.76; 95% CI: 1.31-10.79; p = 0.014), high human population density (OR: 3.31; 95% CI: 1.20-9.11; p = 0.021), high proportion of buildings built in 1960 or before (OR: 11.21; 95% CI: 2.06-60.89; p = 0.005), and a moderate number of reports of uncollected garbage compared to a low number of reports (OR: 4.88; 95% CI: 1.01-23.63; p = 0.049). A negative association was observed between median household income and Bartonella spp. infection in rats (OR: 0.26; 95% CI: 0.08-0.89; p = 0.031). CONCLUSIONS: Due to the complexity of the ecology of rat-associated zoonoses, consideration of environmental and sociodemographic factors is of critical importance to better understand the nuances of host-pathogen systems and inform how urban rat surveillance and intervention efforts should be distributed within cities.


Subject(s)
Bartonella Infections , Bartonella , Rodent Diseases , Zoonoses , Animals , Rats , Ontario/epidemiology , Bartonella Infections/veterinary , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella/isolation & purification , Bartonella/genetics , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Leptospirosis/microbiology , Humans , Leptospira interrogans/isolation & purification , Male , Sociodemographic Factors , Female , Environment
17.
Infect Genet Evol ; 95: 105039, 2021 11.
Article in English | MEDLINE | ID: mdl-34438095

ABSTRACT

Wild rodents are considered as potential carriers of several zoonotic vector-borne bacteria but their epidemiology is poorly understood in Tunisia. A total of 305 biological samples (100 spleens, 100 livers, 100 kidneys, and 5 pooled ectoparasites (Xenopsylla cheopis, Laelaps echidninus, Ornithonyssus sp., Hoplopleura sp. and eggs of the rat fleas)) were collected from 100 wild rodents from three Tunisian governorates. Molecular screening was performed to reveal infections with main vector-borne bacteria. Captured rodents belonged to three rodent genera and species including Rattus rattus (n = 51, 51%), Meriones shawi (n = 24, 24%) and Mus musculus (n = 25, 25%). Examined rodents were found to be heavily infested by the rat flea X. cheopis (n = 32, 47%) and the rat mite L. echidninus (n = 22, 32.3%). However, the rat mite Ornithonyssus sp. (n = 13, 19.1%) and the rat lice Hoplopleura sp. (n = 1, 1.5%) were rarely identified. Based on 16S rRNA and msp4 genes, infection with Anaplasmataceae bacteria was detected in six specimens of R. rattus and one M. shawi. Pathogenic A. phagocytophilum (n = 1), A. phagocytophilum-like 1 (Anaplasma sp. Japan) (n = 1), and A. ovis (n = 5) were identified. On the basis of ompB, ompA and gltA genes, infection with Rickettsia spp. was identified in three specimens of R. rattus and one of M. shawi. Five Rickettsia species of the spotted fever group, corresponding to R. monacensis, R. helvetica, R. massiliae, R. africae, and R. aeschlimannii, were detected in mixed infections. Bartonella henselae DNA was also found in two R. rattus, based on rpoB partial sequences. All revealed Anaplasma, Rickettsia and Bartonella bacteria were detected in spleen samples. Ehrlichia, Coxiella and Borrelia spp. were not identified in any of the tested samples. In Tunisia, this is the first report indicating infections with Anaplasma, Rickettsia and Bartonella spp. in wild rodents, particularly present alongside domestic livestock and human. This represents a serious risk of potential bacterial transmission. Thus, controlling rodent population in animal herds, residential areas and sensitizing local people to this risk seem absolutely necessary.


Subject(s)
Bacterial Zoonoses/epidemiology , Gerbillinae , Mice , Mites/microbiology , Phthiraptera/microbiology , Rats , Rodent Diseases/epidemiology , Siphonaptera/microbiology , Anaplasma/isolation & purification , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Animals , Bacterial Zoonoses/microbiology , Bartonella/isolation & purification , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Female , Gerbillinae/parasitology , Male , Mice/parasitology , Prevalence , Rats/parasitology , Rickettsia/isolation & purification , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Rickettsia Infections/veterinary , Rodent Diseases/microbiology , Tunisia/epidemiology
18.
J Med Microbiol ; 70(7)2021 Jul.
Article in English | MEDLINE | ID: mdl-34296984

ABSTRACT

Introduction. Bartonellosis is an emerging zoonotic disease caused by bacteria of the genus Bartonella. Mixed Bartonella infections are a well-documented phenomenon in mammals and their ectoparasites. The accurate identification of Bartonella species in single and mixed infections is valuable, as different Bartonella species have varying impacts on infected hosts.Gap Statement. Current diagnostic methods are inadequate at identifying the Bartonella species present in mixed infections.Aim. The aim of this study was to adopt a Next Generation Sequencing (NGS) approach using Illumina sequencing technology to identify Bartonella species and demonstrate that this approach can resolve mixed Bartonella infections.Methodology. We used Illumina PCR amplicon NGS to target the ssrA and gltA genes of Bartonella in fleas collected from cats, dogs and a hedgehog in Israel. We included artificially mixed Bartonella samples to demonstrate the ability for NGS to resolve mixed infections and we compared NGS to traditional Sanger sequencing.Results. In total, we identified 74 Ctenocephalides felis, two Ctenocephalides canis, two Pulex irritans and three Archaeopsylla e. erinacei fleas. Real-time PCR of a subset of 48 fleas revealed that twelve were positive for Bartonella, all of which were cat fleas. Sanger sequencing of the ssrA and gltA genes confirmed the presence of Bartonella henselae, Bartonella clarridgeiae and Bartonella koehlerae. Illumina NGS of ssrA and gltA amplicons further confirmed the Bartonella species identity in all 12 flea samples and unambiguously resolved the artificially mixed Bartonella samples.Conclusion. The adaptation and multiplexing of existing PCR assays for diversity profiling via NGS is a feasible approach that is superior to traditional Sanger sequencing for Bartonella speciation and resolving mixed Bartonella infections. The adaptation of other PCR primers for Illumina NGS will be useful in future studies where mixed bacterial infections may be present.


Subject(s)
Bacterial Proteins/genetics , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Bartonella/isolation & purification , Animals , Bartonella/classification , Bartonella/genetics , Bartonella Infections/diagnosis , Bartonella Infections/transmission , Cat Diseases/diagnosis , Cat Diseases/microbiology , Cat Diseases/parasitology , Cats , Coinfection/diagnosis , Coinfection/microbiology , Coinfection/veterinary , DNA, Bacterial/genetics , Dog Diseases/diagnosis , Dog Diseases/microbiology , Dog Diseases/parasitology , Dogs , Hedgehogs , High-Throughput Nucleotide Sequencing , Insect Vectors/classification , Insect Vectors/genetics , Insect Vectors/microbiology , Israel , Sequence Analysis, DNA , Siphonaptera/classification , Siphonaptera/genetics , Siphonaptera/microbiology
19.
Parasit Vectors ; 14(1): 270, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34016174

ABSTRACT

BACKGROUND: The emergence of tick-borne disease is increasing because of the effects of the temperature rise driven by global warming. In Turkey, 19 pathogens transmitted by ticks to humans and animals have been reported. Based on this, this study aimed to investigate tick-borne pathogens including Hepatozoon spp., Theileria spp., Babesia spp., Anaplasma spp., Borrelia spp., and Bartonella spp. in tick samples (n = 110) collected from different hosts (dogs, cats, cattle, goats, sheep, and turtles) by molecular methods. METHODS: To meet this objective, ticks were identified morphologically at the genus level by microscopy; after DNA isolation, each tick sample was identified at the species level using the molecular method. Involved pathogens were then investigated by PCR method. RESULTS: Seven different tick species were identified including Rhipicephalus sanguineus, R. turanicus, R. bursa, Hyalomma marginatum, H. anatolicum, H. aegyptium, and Haemaphysalis erinacei. Among the analyzed ticks, Hepatozoon spp., Theileria spp., Babesia spp., and Anaplasma spp. were detected at rates of 6.36%, 16.3%, 1.81%, and 6.36%, respectively while Borrelia spp. and Bartonella spp. were not detected. Hepatozoon spp. was detected in R. sanguineus ticks while Theileria spp., Babesia spp., and Anaplasma spp. were detected in R. turanicus and H. marginatum. According to the results of sequence analyses applied for pathogen positive samples, Hepatozoon canis, Theileria ovis, Babesia caballi, and Anaplasma ovis were identified. CONCLUSION: Theileria ovis and Anaplasma ovis were detected for the first time to our knowledge in H. marginatum and R. turanicus collected from Turkey, respectively. Also, B. caballi was detected for the first time to our knowledge in ticks in Turkey.


Subject(s)
Ixodidae/microbiology , Ixodidae/parasitology , Tick-Borne Diseases/veterinary , Anaplasma/genetics , Anaplasma/isolation & purification , Animals , Babesia/genetics , Babesia/isolation & purification , Bartonella/genetics , Bartonella/isolation & purification , Cats/microbiology , Cats/parasitology , Cattle/microbiology , Cattle/parasitology , Dogs/microbiology , Dogs/parasitology , Ixodidae/classification , Sheep/microbiology , Sheep/parasitology , Theileria/genetics , Theileria/isolation & purification , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/parasitology , Turkey , Turtles/microbiology , Turtles/parasitology
20.
Eur J Clin Microbiol Infect Dis ; 40(9): 1873-1879, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33829350

ABSTRACT

Previous reports have highlighted the high prevalence of blood culture negative endocarditis (BCNE) in South Africa. The Tygerberg Endocarditis Cohort (TEC) study is an ongoing prospective cohort study of patients with confirmed or suspected IE presenting to Tygerberg Academic Hospital, Cape Town, South Africa. Current analysis includes patients that presented between November 2019 and August 2020. Forty four (44) patients have been included in this ongoing study. Fourteen of the 44 patients (31.8%) had BCNE. Further analysis of the patients with BCNE identified Bartonella species as the most common causative organism (n=6; 43%). Other causes included Mycoplasma species (n=2). No cause could be identified in 4 of the 44 patients (9%). Bartonella quintana was identified with PCR of valvular tissue as the causative organism in 4 of the 5 patients that underwent urgent surgery. The patients with Bartonella IE (n=6) had an average age of 39 years with equal gender distribution. The common clinical features were clubbing (n=5; 83%), anemia (n=4; 66.6%), haematuria (n=3; 50%), acute on chronic severe regurgitant lesion (n=3; 50%) and acute severe regurgitant lesion (n=2; 33.3%).The aortic valve was involved in 5 of 6 patients. During a mean follow-up period of 251 days after diagnosis, no major adverse events occurred. Bartonella-associated IE is an important cause of BCNE in the Western Cape of South Africa. Imaging findings (in patients with BCNE) of significant valvular destruction with large vegetations on the aortic valve not affected by congenital or rheumatic valve disease should raise the suspicion of Bartonella-associated IE.


Subject(s)
Bartonella Infections/complications , Bartonella Infections/epidemiology , Bartonella/genetics , Bartonella/pathogenicity , Endocarditis, Bacterial/epidemiology , Adult , Aortic Valve/microbiology , Bartonella/growth & development , Bartonella/isolation & purification , Bartonella quintana/genetics , Bartonella quintana/pathogenicity , Colony Count, Microbial , Female , Humans , Male , Middle Aged , Prospective Studies , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL