Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.404
Filter
1.
Nature ; 630(8017): 752-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867045

ABSTRACT

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Subject(s)
Base Pair Mismatch , DNA Damage , DNA, Single-Stranded , Sequence Analysis, DNA , Single Molecule Imaging , Humans , Aging/genetics , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Base Pair Mismatch/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytosine/metabolism , Deamination , DNA Damage/genetics , DNA Mismatch Repair/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , Genome, Mitochondrial/genetics , Mutation , Neoplasms/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Single Molecule Imaging/methods , Male , Female
2.
Int J Biol Macromol ; 269(Pt 2): 131965, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697428

ABSTRACT

In A-family DNA polymerases (dPols), a functional 3'-5' exonuclease activity is known to proofread newly synthesized DNA. The identification of a mismatch in substrate DNA leads to transfer of the primer strand from the polymerase active site to the exonuclease active site. To shed more light regarding the mechanism responsible for the detection of mismatches, we have utilized DNA polymerase 1 from Aquifex pyrophilus (ApPol1). The enzyme synthesized DNA with high fidelity and exhibited maximal exonuclease activity with DNA substrates bearing mismatches at the -2 and - 3 positions. The crystal structure of apo-ApPol1 was utilized to generate a computational model of the functional ternary complex of this enzyme. The analysis of the model showed that N332 forms interactions with minor groove atoms of the base pairs at the -2 and - 3 positions. The majority of known A-family dPols show the presence of Asn at a position equivalent to N332. The N332L mutation led to a decrease in the exonuclease activity for representative purine-pyrimidine, and pyrimidine-pyrimidine mismatches at -2 and - 3 positions, respectively. Overall, our findings suggest that conserved polar residues located towards the minor groove may facilitate the detection of position-specific mismatches to enhance the fidelity of DNA synthesis.


Subject(s)
Base Pair Mismatch , Models, Molecular , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Catalytic Domain , Conserved Sequence , Amino Acid Sequence , Mutation , DNA Polymerase I/chemistry , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , Substrate Specificity
3.
Mikrochim Acta ; 191(6): 334, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38758362

ABSTRACT

Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.


Subject(s)
Base Pair Mismatch , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Nucleic Acid Amplification Techniques , Polymorphism, Single Nucleotide , Biosensing Techniques/methods , Humans , Fluorescence Resonance Energy Transfer/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Inverted Repeat Sequences , DNA/chemistry , DNA/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Catalysis
4.
J Chem Inf Model ; 64(11): 4511-4517, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38767002

ABSTRACT

The A:8OG base pair (bp) is the outcome of DNA replication of the mismatched C:8OG bp. A high A:8OG bp population increases the C/G to A/T transversion mutation, which is responsible for various diseases. MutY is an important enzyme in the error-proof cycle and reverts A:8OG to C:8OG bp by cleaving adenine from the A:8OG bp. Several X-ray crystallography studies have determined the structure of MutY during the lesion scanning and lesion recognition stages. Interestingly, glycosidic bond (χ) angles of A:8OG bp in those two lesion recognition structures were found to differ, which implies that χ-torsion isomerization should occur during the lesion recognition process. In this study, as a first step to understanding this isomerization process, we characterized the intrinsic dynamic features of A:8OG in free DNAs by a free energy landscape simulation at the all-atom level. In this study, four isomerization states were assigned in the order of abundance: Aanti:8OGsyn > Aanti:8OGanti > Asyn:8OGanti ≈ Asyn:8OGsyn. Of these bp states, only 8OG in Asyn:8OGanti was located in the extrahelical space, whereas the purine bases (A and 8OG) in the other bp states remained inside the DNA helix. Also, free energy landscapes showed that the isomerization processes connecting these four bp states proceeded mostly in the intrahelical space via successive single glycosidic bond rotations of either A or 8OG.


Subject(s)
Base Pair Mismatch , DNA , DNA/chemistry , DNA/metabolism , Isomerism , Nucleic Acid Conformation , Thermodynamics , Models, Molecular , Molecular Dynamics Simulation , Adenine/chemistry , Adenine/metabolism , Base Pairing
5.
Nucleic Acids Res ; 52(11): 6687-6706, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38783391

ABSTRACT

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.


Subject(s)
3' Untranslated Regions , Base Pair Mismatch , Nucleotide Motifs , RNA, Viral , SARS-CoV-2 , Humans , Base Pairing , COVID-19/virology , Genome, Viral , Hydrogen Bonding , Molecular Dynamics Simulation , Nucleic Acid Conformation , Plasmodium falciparum/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/chemistry
6.
Elife ; 132024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656237

ABSTRACT

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Subject(s)
Base Pair Mismatch , DNA , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Base Pair Mismatch/genetics , Animals , Fluorescence Resonance Energy Transfer , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xenopus laevis
7.
Nucleic Acids Res ; 52(11): 6662-6673, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38621714

ABSTRACT

Eukaryotic Argonaut proteins (AGOs) assemble RNA-induced silencing complexes (RISCs) with guide RNAs that allow binding to complementary RNA sequences and subsequent silencing of target genes. The model plant Arabidopsis thaliana encodes 10 different AGOs, categorized into three distinct clades based on amino acid sequence similarity. While clade 1 and 2 RISCs are known for their roles in post-transcriptional gene silencing, and clade 3 RISCs are associated with transcriptional gene silencing in the nucleus, the specific mechanisms of how RISCs from each clade recognize their targets remain unclear. In this study, I conducted quantitative binding analyses between RISCs and target nucleic acids with mismatches at various positions, unveiling distinct target binding characteristics unique to each clade. Clade 1 and 2 RISCs require base pairing not only in the seed region but also in the 3' supplementary region for stable target RNA binding, with clade 1 exhibiting a higher stringency. Conversely, clade 3 RISCs tolerate dinucleotide mismatches beyond the seed region. Strikingly, they bind to DNA targets with an affinity equal to or surpassing that of RNA, like prokaryotic AGO complexes. These insights challenge existing views on plant RNA silencing and open avenues for exploring new functions of eukaryotic AGOs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA-Induced Silencing Complex , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA-Induced Silencing Complex/metabolism , RNA-Induced Silencing Complex/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , RNA, Plant/metabolism , RNA, Plant/genetics , RNA, Plant/chemistry , Protein Binding , RNA Interference , Base Pair Mismatch , DNA, Plant/metabolism , DNA, Plant/genetics
8.
Nucleic Acids Res ; 52(9): 5033-5047, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38444149

ABSTRACT

The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.


Subject(s)
Chromosomes, Bacterial , DNA Mismatch Repair , Endonucleases , Streptomyces , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Pair Mismatch , Chromosomes, Bacterial/genetics , DNA Breaks, Double-Stranded , DNA Mismatch Repair/genetics , DNA Replication/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Endonucleases/genetics , Endonucleases/metabolism , Mutation , Mutation Rate , Streptomyces/genetics , Streptomyces/enzymology
9.
Anal Chem ; 96(1): 554-563, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38112727

ABSTRACT

The efficiency of the enzyme-free toehold-mediated strand displacement (TMSD) technique is often insufficient to detect single-nucleotide polymorphism (SNP) that possesses only single base pair mismatch discrimination. Here, we report a novel dual base pair mismatch strategy enabling TMSD biosensing for SNP detection under enzyme-free conditions when coupled with catalytic hairpin assembly (CHA) and fluorescence resonance energy transfer (FRET). The strategy is based on a competitive strand displacement reaction mechanism, affected by the thermodynamic stability originating from rationally designed dual base pair mismatch, for the specific recognition of mutant-type DNA. In particular, enzyme-free nucleic acid circuits, such as CHA, emerge as a powerful method for signal amplification. Eventually, the signal transduction of this proposed biosensor was determined by FRET between streptavidin-coated 605 nm emission quantum dots (605QDs, donor) and Cy5/biotin hybridization (acceptor, from CHA) when incubated with each other. The proposed biosensor displayed high sensitivity to the mutant target (MT) with a detection concentration down to 4.3 fM and led to high discrimination factors for all types of mismatches in multiple sequence contexts. As such, the application of this proposed biosensor to investigate mechanisms of the competitive strand displacement reaction further illustrates the versatility of our dual base pair mismatch strategy, which can be utilized for the creation of a new class of biosensors.


Subject(s)
Biosensing Techniques , Polymorphism, Single Nucleotide , Base Pair Mismatch , Nucleic Acid Hybridization , Fluorescence Resonance Energy Transfer , Biotin , Biosensing Techniques/methods
10.
Nucleic Acids Res ; 51(20): 11040-11055, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37791890

ABSTRACT

DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.


Subject(s)
DNA Mismatch Repair , Mutagenesis , Oxygen , Humans , Base Pair Mismatch , DNA Repair , DNA Replication , Mutation , Cell Line
11.
Biophys J ; 122(15): 3031-3043, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37329136

ABSTRACT

The mismatch repair protein MutS safeguards genomic integrity by finding and initiating repair of basepairing errors in DNA. Single-molecule studies show MutS diffusing on DNA, presumably scanning for mispaired/unpaired bases, and crystal structures show a characteristic "mismatch-recognition" complex with DNA enclosed within MutS and kinked at the site of error. But how MutS goes from scanning thousands of Watson-Crick basepairs to recognizing rare mismatches remains unanswered, largely because atomic-resolution data on the search process are lacking. Here, 10 µs all-atom molecular dynamics simulations of Thermus aquaticus MutS bound to homoduplex DNA and T-bulge DNA illuminate the structural dynamics underlying the search mechanism. MutS-DNA interactions constitute a multistep mechanism to check DNA over two helical turns for its 1) shape, through contacts with the sugar-phosphate backbone, 2) conformational flexibility, through bending/unbending engineered by large-scale motions of the clamp domain, and 3) local deformability, through basepair destabilizing contacts. Thus, MutS can localize a potential target by indirect readout due to lower energetic costs of bending mismatched DNA and identify a site that distorts easily due to weaker base stacking and pairing as a mismatch. The MutS signature Phe-X-Glu motif can then lock in the mismatch-recognition complex to initiate repair.


Subject(s)
Escherichia coli Proteins , Molecular Dynamics Simulation , Base Pair Mismatch , DNA/chemistry , MutS DNA Mismatch-Binding Protein/chemistry , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , Base Pairing , Escherichia coli Proteins/genetics
12.
J Biol Chem ; 299(6): 104800, 2023 06.
Article in English | MEDLINE | ID: mdl-37164156

ABSTRACT

For cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers. Here, we summarize key features of biomolecular condensates and note where they have been implicated in the repair of DNA double-strand breaks. We also describe evidence suggesting that condensates may be involved in the repair of other types of DNA damage, including single-strand DNA breaks, nucleotide modifications (e.g., mismatch and oxidized bases), and bulky lesions, among others. Finally, we discuss old and new mysteries that could now be addressed considering the properties of condensates, including chemoresistance mechanisms.


Subject(s)
DNA Repair , DNA , Drug Resistance, Neoplasm , DNA/chemistry , DNA/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Drug Resistance, Neoplasm/drug effects , DNA Breaks, Single-Stranded/drug effects , Base Pair Mismatch/drug effects
13.
J Biol Chem ; 299(4): 104608, 2023 04.
Article in English | MEDLINE | ID: mdl-36924943

ABSTRACT

Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein-coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and, from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.


Subject(s)
Anticodon , Codon , RNA, Ribosomal , Ribosomes , Anticodon/chemistry , Anticodon/genetics , Anticodon/metabolism , Codon/chemistry , Codon/genetics , Codon/metabolism , Nucleic Acid Conformation , Nucleotides/chemistry , Nucleotides/metabolism , Protein Biosynthesis , Ribosomes/chemistry , Ribosomes/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Base Pair Mismatch , Models, Molecular , RNA, Ribosomal/chemistry , RNA, Ribosomal/metabolism
14.
Int J Biol Macromol ; 233: 123510, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36739048

ABSTRACT

Human genome is continuously susceptible to changes that may lead to undesirable mutations causing various diseases and cancer. Vast majority of techniques has investigated the discrimination between base-pair mismatched nucleic acid, but many of these techniques are time-consuming, complex, expensive, and limited to the detection of specific type of dsDNA mismatches. In this study, we introduce a simple mix-and-read assay for the sensitive and cost-effective analysis of DNA base mismatches and UV-induced DNA damage using Hoechst genosensor dye (H258). This dye is a minor groove binder that undergoes a drastic conformational change upon binding with mismatch DNA. The difference in binding affinity between perfectly matched and mismatched DNA was studied for sequences at different base mismatch locations and finally, extended for the detection of dsDNA damage by UVC radiation in calf thymus DNA. In addition, a comparative DNA damage kinetic study was performed using H258 (minor groove binder) and EvaGreen (intercalating) dye to get insight on assay selectivity and sensitivity with dye binding mechanism. The result shows good reproducibility making H258 genosensor a cheaper alternative for DNA mismatch and damage studies with possibility of extension for in-vitro detection of hot spots of DNA mutations.


Subject(s)
Base Pair Mismatch , DNA , Humans , Reproducibility of Results , DNA/chemistry , Base Pairing , DNA Damage , DNA Probes
15.
DNA Repair (Amst) ; 119: 103392, 2022 11.
Article in English | MEDLINE | ID: mdl-36095926

ABSTRACT

MutS initiates mismatch repair by recognizing mismatches in newly replicated DNA. Specific interactions between MutS and mismatches within double-stranded DNA promote ADP-ATP exchange and a conformational change into a sliding clamp. Here, we demonstrated that MutS from Pseudomonas aeruginosa associates with primed DNA replication intermediates. The predicted structure of this MutS-DNA complex revealed a new DNA binding site, in which Asn 279 and Arg 272 appeared to directly interact with the 3'-OH terminus of primed DNA. Mutation of these residues resulted in a noticeable defect in the interaction of MutS with primed DNA substrates. Remarkably, MutS interaction with a mismatch within primed DNA induced a compaction of the protein structure and impaired the formation of an ATP-bound sliding clamp. Our findings reveal a novel DNA binding mode, conformational change and intramolecular signaling for MutS recognition of mismatches within primed DNA structures.


Subject(s)
Escherichia coli Proteins , MutS DNA Mismatch-Binding Protein , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Base Pair Mismatch , DNA/metabolism , DNA Replication , Escherichia coli Proteins/metabolism , MutS DNA Mismatch-Binding Protein/metabolism , Protein Binding
16.
J Biol Chem ; 298(11): 102505, 2022 11.
Article in English | MEDLINE | ID: mdl-36126773

ABSTRACT

MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.


Subject(s)
Escherichia coli Proteins , MutS DNA Mismatch-Binding Protein , Humans , Adenosine Triphosphate/metabolism , Base Pair Mismatch , DNA/metabolism , DNA Mismatch Repair , Escherichia coli Proteins/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , MutS Proteins/genetics , Protein Binding
17.
Molecules ; 27(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35458636

ABSTRACT

Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA-protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2'-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA-protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA-protein interactions because of high selectivity of cysteine trapping.


Subject(s)
Cysteine , Escherichia coli Proteins , Acrylamide , Base Pair Mismatch , Cysteine/chemistry , DNA/chemistry , DNA Mismatch Repair , DNA Repair , Escherichia coli Proteins/metabolism , MutS DNA Mismatch-Binding Protein/chemistry , MutS DNA Mismatch-Binding Protein/metabolism , Proteins
18.
Analyst ; 147(10): 2164-2169, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35441615

ABSTRACT

Although accurate base-pairing ensures specificity of molecular recognition, DNA polymerization and DNA amplification, there are many non-specific pairings that arise from mismatched pairs, such as the T/G wobble pair. We have found that by using 2-S-TTP (STTP), we can minimize T/G mismatch, improve the DNA polymerization specificity and enhance the detection sensitivity (up to 20 fold), without significantly compromising the polymerization efficiency (the extension rate ratio of TTP vs.STTP is 1.08). With the STTP strategy, DNA polymerization is more specific and allows the detection of pathogens (such as COVID-19) in single digits (up to 5 copies), which is not possible with conventional RT-PCR. We have discovered that STTP can generally promote much higher specificity and sensitivity in DNA polymerization and nucleic acid detection than canonical TTP.


Subject(s)
COVID-19 , Thymine , Base Pair Mismatch , DNA/genetics , Humans , Polymerization , Sulfur
19.
Nat Commun ; 13(1): 1050, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217661

ABSTRACT

The B-family multi-subunit DNA polymerase ζ (Polζ) is important for translesion DNA synthesis (TLS) during replication, due to its ability to extend synthesis past nucleotides opposite DNA lesions and mismatched base pairs. We present a cryo-EM structure of Saccharomyces cerevisiae Polζ with an A:C mismatch at the primer terminus. The structure shows how the Polζ active site responds to the mismatched duplex DNA distortion, including the loosening of key protein-DNA interactions and a fingers domain in an "open" conformation, while the incoming dCTP is still able to bind for the extension reaction. The structure of the mismatched DNA-Polζ ternary complex reveals insights into mechanisms that either stall or favor continued DNA synthesis in eukaryotes.


Subject(s)
Base Pair Mismatch , Saccharomyces cerevisiae Proteins , Cryoelectron Microscopy , DNA , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35017296

ABSTRACT

The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.


Subject(s)
2',5'-Oligoadenylate Synthetase/chemistry , 2',5'-Oligoadenylate Synthetase/metabolism , Base Pair Mismatch , RNA, Double-Stranded/metabolism , Base Sequence , Endoribonucleases/metabolism , Enzyme Activation , Humans , Inosine/metabolism , Molecular Dynamics Simulation , Protein Structure, Secondary , RNA Editing , RNA Stability , Structure-Activity Relationship , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL