Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.871
Filter
1.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964062

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Republic of Korea , Proteomics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Gas Chromatography-Mass Spectrometry , Catechols/metabolism , Rivers/chemistry , Rivers/microbiology , Multiomics
2.
Aquat Toxicol ; 273: 107016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38991362

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) accumulate and integrate into aquatic environments, raising concerns about the well-being and safety of aquatic ecosystems. Benzo[a]pyrene (BaP), a persistent PAH commonly detected in the environment, has been extensively studied. However, the broader multifaceted toxicity potential of BaP on the early life stages of marine fish during chronic exposure to environmentally relevant concentrations needs further exploration. To fill these knowledge gaps, this study assessed the in vivo biotoxicity of BaP (1, 4, and 8 µg/L) in marine medaka (Oryzias melastigma) during early development over a 30-day exposure period. The investigation included morphological, biochemical, and molecular-level analyses to capture the broader potential of BaP toxicity. Morphological analyses showed that exposure to BaP resulted in skeletal curvatures, heart anomalies, growth retardation, elevated mortality, delayed and reduced hatching rates. Biochemical analyses revealed that BaP exposure not only created oxidative stress but also disrupted the activities of antioxidant enzymes. This disturbance in redox balance was further explored by molecular level investigation. The transcriptional profiles revealed impaired oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle pathways, which potentially inhibited the oxidative respiratory chain in fish following exposure to BaP, and reduced the production of adenosine triphosphate (ATP) and succinate dehydrogenase (SDH). Furthermore, this investigation indicated a potential connection to apoptosis, as demonstrated by fluorescence microscopy and histological analyses, and supported by an increase in the expression levels of related genes via real-time quantitative PCR. This study enhances our understanding of the molecular-level impacts of BaP's multifaceted toxicity in the early life stages of marine medaka, and the associated risks.


Subject(s)
Benzo(a)pyrene , Oryzias , Oxidation-Reduction , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/toxicity , Oryzias/genetics , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Transcriptome/drug effects , Embryo, Nonmammalian/drug effects
3.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963450

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Citric Acid , Soil Pollutants , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Citric Acid/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Laccase/metabolism , Soil Microbiology , Polyporaceae/metabolism , Trametes/metabolism , Biomass
4.
Sci Rep ; 14(1): 17002, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043924

ABSTRACT

Prenatal exposure to Benzo[a]pyrene (BaP) has been suggested to increase the risk of adverse pregnancy outcomes. However, the role of placental apoptosis on BaP reproductive toxicity is poorly understood. We conducted a maternal animal model of C57BL/6 wild-type (WT) and transformation-related protein 53 (Trp53) heterozygous knockout (p53KO) mice, as well as a nested case-control study involving 83 women with PB and 82 term birth from a birth cohort on prenatal exposure to BaP and preterm birth (PB). Pregnant WT and p53KO mice were randomly allocated to BaP treatment and control groups, intraperitoneally injected of low (7.8 mg/kg), medium (35 mg/kg), and high (78 mg/kg) doses of 3,4-BaP per day and equal volume of vegetable oil, from gestational day 10.5 until delivery. Results show that high-dose BaP treatment increased the incidence of preterm birth in WT mice. The number of fetal deaths and resorptions increased with increasing doses of BaP exposure in mice. Notably, significant reductions in maternal and birth weights, increases in placental weights, and decrease in the number of livebirths were observed in higher-dose BaP groups in dose-dependent manner. We additionally observed elevated p53-mediated placental apoptosis in higher BaP exposure groups, with altered expression levels of p53 and Bax/Bcl-2. In case-control study, the expression level of MMP2 was increased among women with high BaP exposure and associated with the increased risk of all PB and moderate PB. Our study provides the first evidence of BaP-induced reproductive toxicity and its adverse effects on maternal-fetal outcomes in both animal and population studies.


Subject(s)
Apoptosis , Benzo(a)pyrene , Mice, Knockout , Placenta , Premature Birth , Tumor Suppressor Protein p53 , Benzo(a)pyrene/toxicity , Pregnancy , Apoptosis/drug effects , Female , Animals , Placenta/drug effects , Placenta/metabolism , Placenta/pathology , Mice , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Prenatal Exposure Delayed Effects/chemically induced , Pregnancy Outcome , Case-Control Studies , Mice, Inbred C57BL , Maternal Exposure/adverse effects , Adult
5.
Sci Total Environ ; 946: 174418, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38960162

ABSTRACT

Micro-nano plastics have been reported as important carriers of polycyclic aromatic hydrocarbons (PAHs) for long-distance migration in the environment. However, the combined toxicity from long-term chronic exposure beyond the vehicle-release mechanism remains elusive. In this study, we investigated the synergistic action of Benzo[a]pyrene (BaP) and Polystyrene nanoparticles (PS) in Caenorhabditis elegans (C. elegans) as a combined exposure model with environmental concentrations. We found that the combined exposure to BaP and PS, as opposed to single exposures at low concentrations, significantly shortened the lifespan of C. elegans, leading to the occurrence of multiple senescence phenotypes. Multi-omics data indicated that the combined exposure to BaP and PS is associated with the disruption of glutathione homeostasis. Consequently, the accumulated reactive oxygen species (ROS) cannot be effectively cleared, which is highly correlated with mitochondrial dysfunction. Moreover, the increase in ROS promoted lipid peroxidation in C. elegans and downregulated Ferritin-1 (Ftn-1), resulting in ferroptosis and ultimately accelerating the aging process of C. elegans. Collectively, our study provides a new perspective to explain the long-term compound toxicity caused by BaP and PS at real-world exposure concentrations.


Subject(s)
Benzo(a)pyrene , Caenorhabditis elegans , Ferroptosis , Mitochondria , Reactive Oxygen Species , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Benzo(a)pyrene/toxicity , Mitochondria/drug effects , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Nanoparticles/toxicity , Microplastics/toxicity , Aging
6.
Article in English | MEDLINE | ID: mdl-38897364

ABSTRACT

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are priority contaminants of marine environments. However, their combined toxic effects on aquatic organisms are still largely unclear. In this study, the toxicological effects of microplastics (MPs) and Benzo[a]pyrene (BaP), a representative PAH, on Asian sea bass Lates calcarifer was investigated. Juvenile Asian sea bass were exposed for 56 days to polyethylene MPs (0.1 and 1 mg/L) and BaP (20 and 80 µg/L) as single or combined environmental stressors. The effects of MPs and BaP exposure on fish were evaluated considering several biological indices such as growth and condition indices, the oxidative stress response in the liver, and the expression levels of genes related to the stress, immunomodulation, detoxification, and apoptosis. Exposure to MPs and BaP in single or combined experiments significantly (P < 0.05) decreased fish growth, and altered body protein content and food conversion ratio (FCR), but greater magnitudes of changes was observed in the combined experimental group of BaP80 + MP1. The activities of liver antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) decreased; meanwhile, malondialdehyde (MDA) activity was dramatically enhanced (P < 0.05). The combined groups with higher concentrations (BaP80+ MP1) caused more severe alterations in enzyme levels compared to the single exposure groups and lower concentrations. MDA was the most affected among the studied enzymes. The expression levels of functional genes involved in stress response (GPX, HSP70, HSP90), pro-inflammation (LYZ, IL-1ß, IL-8, and TNF-α), and detoxification (CYP1A) displayed significant alterations as the result of exposure to MPs and BaP single and in combination. The transcription levels of functional genes were more affected in fish exposed to BaP at 80 ng/mL when combined with MPs at 1 mg/mL. Additionally, MPs and BaP heightened the expression of apoptotic-related genes (p53 and caspase-3) on day 7 of exposure in a dose-dependent synergetic manner (P < 0.05). The results of this study demonstrate that exposure to MPs and BaP alone results in significant alterations in fish growth and condition factors, and could activate the stress response, stimulate the anti-oxidative defense system, immune transcriptomic response, and apoptosis in Asian sea bass; however, MPs can enhance the adverse effects of BaP on biological markers.


Subject(s)
Bass , Benzo(a)pyrene , Microplastics , Oxidative Stress , Water Pollutants, Chemical , Animals , Bass/growth & development , Bass/genetics , Bass/metabolism , Benzo(a)pyrene/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Gene Expression Regulation/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism
7.
Ecotoxicol Environ Saf ; 281: 116630, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917590

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.


Subject(s)
Benzo(a)pyrene , Endoplasmic Reticulum Chaperone BiP , Oocytes , Animals , Benzo(a)pyrene/toxicity , Oocytes/drug effects , Female , Mice , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Organelles/drug effects , Mice, Inbred ICR
8.
J Hazard Mater ; 476: 134995, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38909468

ABSTRACT

To address two current issues in evaluating the toxicity of microplastics (MPs) namely, conflicting results due to species specificity and the ecological irrelevance of laboratory data, this study conducted a 10-day exposure experiment using a microalgal community comprising three symbiotic species. The experiment involved virgin and Benzo[a]pyrene-spiked micron-scale fibers and fragments made of polyethylene terephthalate (PET) and polypropylene (PP). The results showed that, from a physiological perspective, environmentally relevant concentrations of micron-scale MPs decreased saccharide accumulation in microalgal cells, as confirmed by ultrastructural observations. MPs may increase cellular energy consumption by obstructing cellular motility, interfering with nutrient uptake, and causing sustained oxidative stress. Additionally, MPs and adsorbed B[a]P induced DNA damage in microalgae, potentially further disrupting cellular energy metabolism. Ecologically, MPs altered the species abundance in microalgal communities, suggesting they could weaken the ecological functions of these communities as producers and affect ecosystem diversity and stability. This study marks a significant advancement from traditional single-species toxicity experiments to community-level assessments, providing essential insights for ecological risk assessment of microplastics and guiding future mechanistic studies utilizing multi-omics analysis.


Subject(s)
Energy Metabolism , Microalgae , Microplastics , Microplastics/toxicity , Microalgae/drug effects , Microalgae/metabolism , Energy Metabolism/drug effects , Water Pollutants, Chemical/toxicity , Polypropylenes/toxicity , Polypropylenes/chemistry , DNA Damage/drug effects , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/toxicity , Particle Size , Oxidative Stress/drug effects
9.
Sci Rep ; 14(1): 14618, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918492

ABSTRACT

Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.


Subject(s)
Behavior, Animal , Benzo(a)pyrene , Gastrointestinal Microbiome , Larva , Zebrafish , Animals , Zebrafish/microbiology , Benzo(a)pyrene/toxicity , Gastrointestinal Microbiome/drug effects , Behavior, Animal/drug effects , Larva/drug effects , Larva/microbiology
10.
Nat Commun ; 15(1): 4909, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851766

ABSTRACT

Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.


Subject(s)
B7-H1 Antigen , Benzo(a)pyrene , Disease Progression , Hyperglycemia , Insulin-Like Growth Factor II , Lung Neoplasms , Mice, Inbred C57BL , Nuclear Proteins , Nucleophosmin , Receptor, Insulin , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Male , Humans , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Hyperglycemia/metabolism , Benzo(a)pyrene/toxicity , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor II/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Nitrosamines/toxicity , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Paracrine Communication , Gene Expression Regulation, Neoplastic , Smoking/adverse effects , Macrophages/metabolism
11.
Sci Total Environ ; 946: 174164, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909798

ABSTRACT

The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor). Larvae were exposed to feeding substrate with varying B(a)P concentrations (0.03, 0.3, and 3 mg kg-1), and uptake (21 days in B(a)P-contaminated substrate) and elimination (21 days in B(a)P-free substrate) kinetics were subsequently assessed. The results showed that YMW can eliminate B(a)P, revealing dose-dependent B(a)P bioaccumulation in these insects. Larvae fed on a substrate with 0.03 mg kg-1 accumulated B(a)P over 21 days, presenting values of 0.049 (Standard deviation - 0.011) mg kg-1 and a kinetic-based (BAFkinetic) of 1.93 g substrate g organism-1, exceeding the EU regulatory limits for food. However, with a B(a)P half-life (DT50) of 4.19 days in the larvae, an EU legislation safety criterion was met after a 13-day depuration period in clean substrate. Larvae exposed to substrates with 0.3 and 3 mg kg-1 showed B(a)P accumulation, with BAFkinetic values of 3.27 and 2.09 g substrate g organism-1, respectively, not meeting the current legal standards for food consumption at the end of the exposure to B(a)P. Although the B(a)P half-life values after 35 days were 4.30 and 10.22 days (DT50s), the larvae retained B(a)P levels exceeding permitted food safety limits. These findings highlight a significant oversight in regulating PAHs in animal feed and the need for comprehensive safety evaluations of PAH hazards in edible insects for improved PAH feeding guidelines.


Subject(s)
Benzo(a)pyrene , Larva , Tenebrio , Animals , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Larva/drug effects , Toxicokinetics , Edible Insects , Bioaccumulation , Food Contamination
12.
Ecotoxicol Environ Saf ; 278: 116390, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38705037

ABSTRACT

Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5µm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.


Subject(s)
Benzo(a)pyrene , Liver , Microplastics , Oxidative Stress , Polystyrenes , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Benzo(a)pyrene/toxicity , Microplastics/toxicity , Male , Polystyrenes/toxicity , Liver/drug effects , Liver/pathology , Rats , Environmental Pollutants/toxicity , Antioxidants/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism
13.
Article in English | MEDLINE | ID: mdl-38821675

ABSTRACT

Currently, there is no test system, whether in vitro or in vivo, capable of examining all endpoints required for genotoxicity evaluation used in pre-clinical drug safety assessment. The objective of this study was to develop a model which could assess all the required endpoints and possesses robust human metabolic activity, that could be used in a streamlined, animal-free manner. Liver-on-chip (LOC) models have intrinsic human metabolic activity that mimics the in vivo environment, making it a preferred test system. For our assay, the LOC was assembled using primary human hepatocytes or HepaRG cells, in a MPS-T12 plate, maintained under microfluidic flow conditions using the PhysioMimix® Microphysiological System (MPS), and co-cultured with human lymphoblastoid (TK6) cells in transwells. This system allows for interaction between two compartments and for the analysis of three different genotoxic endpoints, i.e. DNA strand breaks (comet assay) in hepatocytes, chromosome loss or damage (micronucleus assay) and mutation (Duplex Sequencing) in TK6 cells. Both compartments were treated at 0, 24 and 45 h with two direct genotoxicants: methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), and two genotoxicants requiring metabolic activation: benzo[a]pyrene (B[a]P) and cyclophosphamide (CP). Assessment of cytochrome activity, RNA expression, albumin, urea and lactate dehydrogenase production, demonstrated functional metabolic capacities. Genotoxicity responses were observed for all endpoints with MMS and EMS. Increases in the micronucleus and mutations (MF) frequencies were also observed with CP, and %Tail DNA with B[a]P, indicating the metabolic competency of the test system. CP did not exhibit an increase in the %Tail DNA, which is in line with in vivo data. However, B[a]P did not exhibit an increase in the % micronucleus and MF, which might require an optimization of the test system. In conclusion, this proof-of-principle experiment suggests that LOC-MPS technology is a promising tool for in vitro hazard identification genotoxicants.


Subject(s)
Hepatocytes , Micronucleus Tests , Mutagenicity Tests , Mutagens , Humans , Hepatocytes/drug effects , Hepatocytes/metabolism , Mutagens/toxicity , Micronucleus Tests/methods , Mutagenicity Tests/methods , Liver/drug effects , Liver/metabolism , Lab-On-A-Chip Devices , DNA Damage/drug effects , Comet Assay/methods , Cyclophosphamide/toxicity , Methyl Methanesulfonate/toxicity , Cell Line , Benzo(a)pyrene/toxicity , Coculture Techniques , Ethyl Methanesulfonate/toxicity , Mutation/drug effects
14.
Sci Total Environ ; 933: 173088, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735333

ABSTRACT

Sexual dimorphism in immune responses is an essential factor in environmental adaptation. However, the mechanisms involved remain obscure owing to the scarcity of data from sex-role-reversed species in stressed conditions. Benzo[a]pyrene (BaP) is one of the most pervasive and carcinogenic organic pollutants in coastal environments. In this study, we evaluated the potential effects on renal immunotoxicity of the sex-role-reversed lined seahorse (Hippocampus erectus) toward environmental concentrations BaP exposure. Our results discovered the presence of different energy-immunity trade-off strategies adopted by female and male seahorses during BaP exposure. BaP induced more severe renal damage in female seahorses in a concentration-dependent manner. BaP biotransformation and detoxification in seahorses resemble those in mammals. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide (BPDE) and 9-hydroxybenzo[a]pyrene (9-OH-BaP) formed DNA adducts and disrupted Ca2+ homeostasis may together attribute the renal immunotoxicity. Sexual dimorphisms in detoxification of both BPDE and 9-OH-BaP, and in regulation of Ca2+, autophagy and inflammation, mainly determined the extent of renal damage. Moreover, the mechanism of sex hormones regulated sexual dimorphism in immune responses needs to be further elucidated. Collectively, these findings contribute to the understanding of sexual dimorphism in the immunotoxicity induced by BaP exposure in seahorses, which may attribute to the dramatic decline in the biodiversity of the genus.


Subject(s)
Benzo(a)pyrene , Sex Characteristics , Smegmamorpha , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/toxicity , Male , Female , Water Pollutants, Chemical/toxicity , Smegmamorpha/physiology , Inactivation, Metabolic , Kidney/drug effects
15.
Chemosphere ; 358: 142242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710409

ABSTRACT

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Subject(s)
Benzo(a)pyrene , Chironomidae , Oxidative Stress , Animals , Benzo(a)pyrene/toxicity , Chironomidae/drug effects , Chironomidae/genetics , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , Whole Genome Sequencing , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Mutagenicity Tests
16.
Aquat Toxicol ; 272: 106946, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759525

ABSTRACT

Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.


Subject(s)
Epithelial Cells , Gills , Microplastics , Salmo salar , Water Pollutants, Chemical , Animals , Gills/drug effects , Gills/cytology , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Epithelial Cells/drug effects , Cell Line , Polystyrenes/toxicity , Benzo(a)pyrene/toxicity , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
17.
J Hazard Mater ; 473: 134560, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759404

ABSTRACT

Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.


Subject(s)
Benzo(a)pyrene , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Pulmonary Fibrosis , Receptors, Aryl Hydrocarbon , Signal Transduction , Animals , Epithelial-Mesenchymal Transition/drug effects , NF-E2-Related Factor 2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Benzo(a)pyrene/toxicity , Male , Signal Transduction/drug effects , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Mice , Sequestosome-1 Protein/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
18.
Environ Int ; 188: 108748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763096

ABSTRACT

INTRODUCTION: Endocrine disruptors are compounds of manmade origin able to interfere with the endocrine system and constitute an important environmental concern. Indeed, detrimental effects on thyroid physiology and functioning have been described. Differences exist in the susceptibility of human sexes to the incidence of thyroid disorders, like autoimmune diseases or cancer. METHODS: To study how different hormonal environments impact the thyroid response to endocrine disruptors, we exposed human embryonic stem cell-derived thyroid organoids to physiological concentrations of sex hormones resembling the serum levels of human females post-ovulation or males of reproductive age for three days. Afterwards, we added 10 µM benzo[a]pyrene or PCB153 for 24 h and analyzed the transcriptome changes via single-cell RNA sequencing with differential gene expression and gene ontology analysis. RESULTS: The sex hormones receptors genes AR, ESR1, ESR2 and PGR were expressed at low levels. Among the thyroid markers, only TG resulted downregulated by benzo[a]pyrene or benzo[a]pyrene with the "male" hormones mix. Both hormone mixtures and benzo[a]pyrene alone upregulated ribosomal genes and genes involved in oxidative phosphorylation, while their combination decreased the expression compared to benzo[a]pyrene alone. The "male" mix and benzo[a]pyrene, alone or in combination, upregulated genes involved in lipid transport and metabolism (APOA1, APOC3, APOA4, FABP1, FABP2, FABP6). The combination of "male" hormones and benzo[a]pyrene induced also genes involved in inflammation and NFkB targets. Benzo[a]pyrene upregulated CYP1A1, CYP1B1 and NQO1 irrespective of the hormonal context. The induction was stronger in the "female" mix. Benzo[a]pyrene alone upregulated genes involved in cell cycle regulation, response to reactive oxygen species and apoptosis. PCB153 had a modest effect in presence of "male" hormones, while we did not observe any changes with the "female" mix. CONCLUSION: This work shows how single cell transcriptomics can be applied to selectively study the in vitro effects of endocrine disrupters and their interaction with different hormonal contexts.


Subject(s)
Benzo(a)pyrene , Endocrine Disruptors , Gonadal Steroid Hormones , Polychlorinated Biphenyls , Thyroid Gland , Transcriptome , Humans , Benzo(a)pyrene/toxicity , Polychlorinated Biphenyls/toxicity , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Thyroid Gland/drug effects , Female , Male , Single-Cell Analysis , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism
19.
Ecotoxicol Environ Saf ; 278: 116409, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38701656

ABSTRACT

Environmental benzo(a)pyrene (BaP) and itsmetabolite benzo(a)pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE), classic endocrine disrupting chemical and persistent organic pollutant, could cause miscarriage. However, the detailed mechanisms are still largely unclear and should be further explored. In this study, we discovered that exposure of trophoblast cells with BPDE could suppressed cell invasion/migration by inhibiting MEST/VIM (Vimentin) pathway. Moreover, BPDE exposure also increased lnc-HZ01 expression level, which further inhibited MEST/VIM pathway and then suppressed invasion/migration. Knockdown of lnc-HZ01 or overexpression of MEST could efficiently rescue invasion/migration of BPDE-exposed Swan 71 cells. Furthermore, lnc-HZ01 was highly expressed and MEST/VIM were lowly expressed in recurrent miscarriage (RM) villous tissues compared with healthy control (HC) group. Finally, we also found that BaP exposure inhibited murine Mest/Vim pathway in placental tissues and induced miscarriage in BaP-exposed mice. Therefore, the regulatory mechanisms were similar in BPDE-exposed human trophoblast cells, RM villous tissues, and placental tissues of BaP-exposed mice with miscarriage, building a bridge to connect BaP/BPDE exposure, invasion/migration, and miscarriage. This study provided novel insights in the toxicological effects and molecular mechanisms of BaP/BPDE-induced miscarriage, which is helpful for better elucidating the toxicological risks of BaP/BPDE on female reproduction.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide , Benzo(a)pyrene , Cell Movement , Down-Regulation , Trophoblasts , Trophoblasts/drug effects , Female , Animals , Cell Movement/drug effects , Benzo(a)pyrene/toxicity , Humans , Mice , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Pregnancy , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Cell Line , Abortion, Spontaneous/chemically induced
20.
Int Immunopharmacol ; 133: 111958, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608441

ABSTRACT

The composition, quantity, and function of peripheral blood mononuclear cells (PBMCs) are closely correlated with tumorigenesis. However, the mechanisms of PBMCs in lung cancer are not clear. Mitochondria are energy factories of cells, and almost all cellular functions rely on their energy metabolism level. The present study aimed to test whether the mitochondrial function of PBMCs directly determines their tumor immune monitoring function. We recruited 211 subjects, including 105 healthy controls and 106 patients with recently diagnosed with lung cancer. The model of lung carcinogenesis induced by BaP was used in animal experiment, and the Bap carcinogenic metabolite, Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), was used in cell experiment. We found that mitochondrial function of PBMCs decreased significantly in patients with new lung cancer, regardless of age. In vivo, BaP caused PBMC mitochondrial dysfunction in mice before the appearance of visible malignant tissue. Moreover, mitochondrial function decreased significantly in mice with lung cancers induced by BaP compared to those without lung cancer after BaP intervention. In vitro, BPDE also induced mitochondrial dysfunction and reduced the aggressiveness of PBMCs toward cancer cells. Furthermore, the changes in mitochondrial energy metabolism gene expression caused by BPDE are involved in this process. Thus, the mitochondrial function of PBMCs is a potential prognostic biomarker or therapeutic target to improve clinical outcomes in patients with lung cancer.


Subject(s)
Leukocytes, Mononuclear , Lung Neoplasms , Mitochondria , Humans , Lung Neoplasms/pathology , Leukocytes, Mononuclear/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Male , Female , Mice , Middle Aged , Carcinogenesis , Benzo(a)pyrene/toxicity , Energy Metabolism , Aged , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL