Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Talanta ; 277: 126349, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852342

ABSTRACT

We developed an aptamer-based fluorescence resonance energy transfer (FRET) assay capable of recognizing therapeutic monoclonal antibody bevacizumab and rapidly quantifying its concentration with just one mixing step. In this assay, two fluorescent dyes (fluorescein and tetramethylrhodamine) labeled aptamers bind to two Fab regions on bevacizumab, and FRET fluorescence is observed when both dyes come into close proximity. We optimized this assay in three different formats, catering to a wide range of analytical needs. When applied to hybridoma culture samples in practical settings, this assay exhibited a signal response that was concentration-dependent, falling within the range of 50-2000 µg/mL. The coefficients of determination (r2) ranged from 0.998 to 0.999, and bias and precision results were within ±24.0 % and 20.3 %, respectively. Additionally, during thermal and UV stress testing, this assay demonstrated the ability to detect denatured samples in a manner comparable to conventional Size Exclusion Chromatography. Notably, it offers the added advantage of detecting decreases in binding activity without changes in molecular weight. In contrast to many existing process analytical technology tools, this assay not only identifies bevacizumab but also directly measures the quality attributes related to mAb efficacy, such as the binding activity. As a result, this assay holds great potential as a valuable platform for providing highly reliable quality attribute information in real-time. We consider this will make a significant contribution to the worldwide distribution of high-quality therapeutic mAbs in various aspects of antibody manufacturing, including production monitoring, quality control, commercial lot release, and stability testing.


Subject(s)
Aptamers, Nucleotide , Bevacizumab , Fluorescence Resonance Energy Transfer , Bevacizumab/analysis , Bevacizumab/chemistry , Fluorescence Resonance Energy Transfer/methods , Aptamers, Nucleotide/chemistry , Antibodies, Anti-Idiotypic/chemistry , Antibodies, Anti-Idiotypic/analysis , Humans , Fluorescent Dyes/chemistry
2.
Appl Radiat Isot ; 210: 111379, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815448

ABSTRACT

This study aimed to carry out the preclinical studies of [89Zr]Zr-DFO-Bevacizumab. The radiolabeled compound was prepared with radiochemical purity >99% (ITLC), and a specific activity of 74 GBq/g. Cellular studies indicated the great capability of [89Zr]Zr-DFO-Bevacizumab for binding to SKOV3 cell lines. High accumulation was observed in the tumor. The liver and spleen received the highest absorbed dose with 1.12 and 0.72 mGy/MBq, respectively. This radiopharmaceutical can be considered as a suitable PET agent for VEGF-expressing ovarian cancer imaging.


Subject(s)
Bevacizumab , Ovarian Neoplasms , Positron-Emission Tomography , Radiopharmaceuticals , Vascular Endothelial Growth Factor A , Zirconium , Bevacizumab/pharmacokinetics , Bevacizumab/chemistry , Positron-Emission Tomography/methods , Animals , Humans , Female , Zirconium/chemistry , Radiopharmaceuticals/pharmacokinetics , Cell Line, Tumor , Vascular Endothelial Growth Factor A/metabolism , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/metabolism , Mice , Tissue Distribution , Radioisotopes , Deferoxamine/chemistry
3.
Eur J Pharm Biopharm ; 199: 114308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688439

ABSTRACT

We have previously developed an in vitro instrument, termed subcutaneous injection site simulator (SCISSOR), that can be used to monitor release properties of an active pharmaceutical ingredient (API) and formulation components of a medicine designed for SC injection. Initial studies to validate the SCISSOR instrument applications used a simple hyaluronic acid (HA) hydrogel to monitor early release events. We now report a type of cross-linked HA that can, when combined with HA, provide a hydrogel (HA-XR) with optical clarity and rheological properties that remain stable for at least 6 days. Incorporation of 0.05-0.1 mg/mL of collagens isolated from human fibroblasts (Col F), bovine type I collagen (Col I), chicken collagen type II (Col II), or chondroitin sulphate (CS) produced HA or HA-XR hydrogel formats with optical clarity and rheological properties comparable to HA or HA-XR alone. HA + Col F hydrogel had a much greater effect on release rates of 70 kDa compared to 4 kDa dextran, while Col F incorporated into the HA-XR hydrogel accentuated differences in release rates of prandial and basal forms of insulin as well as decreased the release rate of denosumab. A hydrogel format of HA + Col I was used to examine the complex events for bevacizumab release under conditions where a target ligand (vascular endothelial growth factor) can interact with extracellular matrix (ECM). Together, these data have demonstrated the feasibility of using a cross-linked HA format to examine API release over multiple days and incorporation of specific ECM elements to prepare more biomimetic hydrogels that allow for tractable examination of their potential impact of API release.


Subject(s)
Hyaluronic Acid , Hydrogels , Injections, Subcutaneous , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Humans , Animals , Drug Interactions/physiology , Cattle , Rheology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/administration & dosage , Insulin/administration & dosage , Insulin/chemistry , Bevacizumab/administration & dosage , Bevacizumab/chemistry , Collagen/chemistry
4.
Macromol Biosci ; 24(6): e2300530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319279

ABSTRACT

Postoperative adhesion can cause complications, such as pain and organ blockage, in the abdominal regions. To address this issue, surgical techniques and antiadhesive treatments are applied. Given the significant role of vascularization in adhesion band formation, Avastin (Ava) that targets vascular endothelial growth factor (VEGF) can be applied to prevent peritoneal adhesion bands. Moreover, Alginate (Alg), a natural polysaccharide, is a promising physical barrier to prevent adhesion bands. Incorporating Ava into Alg hydrogel in a form of 3D-printed scaffold (Alg/Ava) has potential to suppress inflammation and angiogenesis, leading to reduce peritoneal adhesion bands. Following physical, morphological, and biocompatibility evaluations, the efficacy of Alg and Ava alone and their combination in Alg/Ava on the formation of postsurgical adhesions is evaluated. Upon confirming physical stability and sustained release of Ava, the Alg/Ava scaffold effectively diminishes both the extent and strength of adhesion bands. Histopathological examination shows that the reduction in fibrosis and inflammation is responsible for preventing adhesion bands by the Alg/Ava scaffold. Additionally, the cytokine assessment reveals that this is due to the inhibition in the secretion of VEGF and Interleukin 6 suppressing vascularization and inflammatory pathways. This study suggests that a 3D-printed Alg/Ava scaffold has great potential to prevent the postsurgical adhesion bands.


Subject(s)
Alginates , Bevacizumab , Printing, Three-Dimensional , Tissue Scaffolds , Vascular Endothelial Growth Factor A , Alginates/chemistry , Alginates/pharmacology , Tissue Adhesions/prevention & control , Animals , Tissue Scaffolds/chemistry , Bevacizumab/pharmacology , Bevacizumab/chemistry , Vascular Endothelial Growth Factor A/metabolism , Rats , Postoperative Complications/prevention & control , Humans , Hydrogels/chemistry , Hydrogels/pharmacology
5.
Anal Bioanal Chem ; 415(17): 3341-3362, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37162525

ABSTRACT

Therapeutical monoclonal antibodies are structurally and functionally complex, whereas the innovator's manufacturing processes are proprietary. With respect to the similarity assessment, a proposed biosimilar product needs to demonstrate a side-by-side comparison between the reference product (RP) and candidate product in terms of physicochemical properties and biological activities, as well as nonclinical and clinical outcomes. Here, a comprehensive analytical similarity assessment was performed for in-depth comparison of HLX04, China-sourced Avastin® (CN-Avastin®), and Europe-sourced Avastin® (EU-Avastin®) following a tier-based quality attribute (QA) evaluation. A series of orthogonal and state-of-the-art analytical techniques were developed for the assessment. Ten lots of HLX04 were compared with 29 lots bevacizumab RP. Referred to the characterization results, HLX04 is highly similar to the RPs with respect to physicochemical properties and biological functions. In addition, HLX04 was found with similar stability and degradation behaviors upon multiple stressed conditions to bevacizumab. Minor differences were observed in glycosylation, aggregates, FcγRIIIa(F), and FcγRIIIa(V) binding activities; nevertheless, they were evaluated and demonstrated not to impact clinical outcomes. According to the reported clinical results, the totality of evidence, including the pharmacokinetic, efficacy, safety, and immunogenicity, further shows that HLX04 is similar to CN-/EU-Avastin®.


Subject(s)
Biosimilar Pharmaceuticals , Bevacizumab/chemistry , Biosimilar Pharmaceuticals/chemistry , Glycosylation , China , Europe
6.
J Pharm Biomed Anal ; 223: 115121, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36308924

ABSTRACT

Aggregate of therapeutic antibodies is usually considered as one of the most important critical quality attributes (CQA). The propensity of aggregates formation for bevacizumab is higher than other monoclonal antibody (mAb) drugs due to its tendency of self-association via the non-covalent interaction between the Fab arm of one bevacizumab molecule and the K445 residue on the heavy chain of another bevacizumab molecule. HLX04 has been developed as a biosimilar to bevacizumab (Avastin®) by Shanghai Henlius Biotech. To perform a head-to-head similarity evaluation with respect to aggregates or higher molecular weight species (HMWS) between HLX04 and Avastin®, we developed a robust high performance liquid chromatography (SEC-HPLC) method for aggregates analysis. Our characterization data indicated that HMWS of bevacizumab were mainly composed of dimers, and the dimer formation-dissociation equilibrium was influenced by protein concentration and storage temperature. Based on the characterization data of aggregates, we optimized the key parameters for SEC-HPLC based aggregates analysis method including mobile phase components and pH, autosampler temperature, as well as incubation conditions for sample pretreatment. The developed method was applied in HLX04 and Avastin® aggregates assessment and the similarity were confirmed among HLX04, China-sourced, and Europe-sourced Avastin® using both the pharmaceutical dosage forms and forced degradation samples. The method was also validated per ICH Q2 (R1) guidelines by challenging the parameters including specificity, accuracy, precision, linearity, range, limit of quantitation, and robustness. The validated method was applied in release test and stability study of HLX04 samples generated from commercial manufacturing process.


Subject(s)
Antibodies, Monoclonal , Biosimilar Pharmaceuticals , Bevacizumab/chemistry , China , Antibodies, Monoclonal/analysis , Biosimilar Pharmaceuticals/chemistry , Temperature
7.
J Pharm Sci ; 111(12): 3243-3250, 2022 12.
Article in English | MEDLINE | ID: mdl-36007559

ABSTRACT

The presence of monoclonal antibody (mAb) fragments in pharmaceutical mAb products is a critical quality attribute and should be controlled for safety. Several mAb fragments derived from clip formation in the complementarity determining regions (CDRs), as well as from cleavage in the hinge region, have been reported. However, the properties of CDR-clipped variants are not fully understood because of difficulties in separating them from intact mAbs under non-denaturing conditions due to similarities in size. We have established a method for separating CDR-clipped variants under non-denaturing conditions using an appropriate size exclusion chromatography column.1 In this report, we provide a comprehensive characterization of a CDR-clipped variant from bevacizumab. The variant exhibited a lower pI, a higher tendency to form dimers, and a lower affinity for both neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR). The effects of clip formation in CDR H3 on the higher order structure were analyzed by hydrogen/deuterium exchange mass spectrometry, and the observed changes in the structures of the VH, CH2, and VL domains were in agreement with the lowered affinity for antigen, FcRn, and FcγR. These findings suggest that clip formation in the CDR may affect the efficacy, safety, and pharmacokinetics of pharmaceutical mAbs.


Subject(s)
Bevacizumab , Complementarity Determining Regions , Receptors, IgG , Bevacizumab/chemistry
8.
Biomacromolecules ; 23(7): 2914-2929, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35735135

ABSTRACT

Retinal diseases are the leading cause of visual impairment worldwide. The effectiveness of antibodies for the treatment of retinal diseases has been demonstrated. Despite the clinical success, achieving sufficiently high concentrations of these protein therapeutics at the target tissue for an extended period is challenging. Patients suffering from macular degeneration often receive injections once per month. Therefore, there is a growing need for suitable systems that can help reduce the number of injections and adverse effects while improving patient complacency. This study systematically characterized degradable "in situ" forming hydrogels that can be easily injected into the vitreous cavity using a small needle (29G). After intravitreal injection, the formulation is designed to undergo a sol-gel phase transition at the administration site to obtain an intraocular depot system for long-term sustained release of bioactives. A Diels-Alder reaction was exploited to crosslink hyaluronic acid-bearing furan groups (HAFU) with 4 arm-PEG10K-maleimide (4APM), yielding stable hydrogels. Here, a systematic investigation of the effects of polymer composition and the ratio between functional groups on the physicochemical properties of hydrogels was performed to select the most suitable formulation for protein delivery. Rheological analysis showed rapid hydrogel formation, with the fastest gel formation within 5 min after mixing the hydrogel precursors. In this study, the mechanical properties of an ex vivo intravitreally formed hydrogel were investigated and compared to the in vitro fabricated samples. Swelling and degradation studies showed that the hydrogels are biodegradable by the retro-Diels-Alder reaction under physiological conditions. The 4APM-HAFU (ratio 1:5) hydrogel formulation showed sustained release of bevacizumab > 400 days by a combination of diffusion, swelling, and degradation. A bioassay showed that the released bevacizumab remained bioactive. The hydrogel platform described in this study offers high potential for the sustained release of therapeutic antibodies to treat ocular diseases.


Subject(s)
Hydrogels , Retinal Diseases , Bevacizumab/chemistry , Delayed-Action Preparations/chemistry , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry
9.
Biologicals ; 77: 1-15, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35667958

ABSTRACT

The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.


Subject(s)
Biosimilar Pharmaceuticals , Bevacizumab/chemistry , Bevacizumab/pharmacology , Biosimilar Pharmaceuticals/chemistry , Biosimilar Pharmaceuticals/pharmacology , Glycosylation , Immunoglobulin G
10.
Pharm Res ; 39(5): 851-865, 2022 May.
Article in English | MEDLINE | ID: mdl-35355206

ABSTRACT

BACKGROUND: Lysine variants of monoclonal antibodies (mAbs) result from incomplete clipping of the C-terminal lysine residues of the heavy chain. Although the structure of the lysine variants has been determined for several mAb products, a detailed study that investigates the impact of lysine charge variants on PK/PD and preclinical safety is yet to be published. OBJECTIVE: An in-depth investigation of the impact of C- terminal lysine clipping of mAbs on safety and efficacy for bevacizumab charge variants. METHOD: Charge variant isolation using semi-preparative chromatography is followed by a comparative analysis of FcRn binding, pharmacokinetics, and pharmacodynamics in relevant animal models. RESULTS: K1 variant exhibited improved FcRn binding affinity (4-fold), half-life (1.3-fold), and anti-tumor activity (1.3-fold) as compared to the K0 (main) product. However, the K2 variant, even though exhibited higher FcRn affinity (2-fold), displayed lower half-life (1.6-fold) and anti-tumor activity at medium and low doses. Differential proteomic analysis revealed that seven pathways (such as glycolysis, gluconeogenesis, carbon metabolism, synthesis of amino acids) were significantly enriched. Higher efficacy of the K1 variant is likely due to higher bioavailability of the drug, leading to complete downregulation of the pathways that facilitate catering of the energy requirements of the proliferating tumor cells. On the contrary, the K2 variant exhibits a shorter half-life, resulting only in partial reduction in the metabolic/energy requirements of the growing tumor cells. CONCLUSION: Overall, we conclude that the mAb half-life, dosage, and efficacy of a biotherapeutic product are significantly impacted by the charge variant profile of a biotherapeutic product.


Subject(s)
Antineoplastic Agents, Immunological , Receptors, Fc , Animals , Antibodies, Monoclonal/pharmacokinetics , Bevacizumab/chemistry , Half-Life , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Lysine , Proteomics , Receptors, Fc/genetics , Receptors, Fc/metabolism
11.
PLoS One ; 17(2): e0261925, 2022.
Article in English | MEDLINE | ID: mdl-35143514

ABSTRACT

PURPOSE: Vitreous humor is a complex biofluid whose composition determines its structure and function. Vitreous viscosity will affect the delivery, distribution, and half-life of intraocular drugs, and key physiological molecules. The central pig vitreous is thought to closely match human vitreous viscosity. Diffusion is inversely related to viscosity, and diffusion is of fundamental importance for all biochemical reactions. Fluorescence Recovery After Photobleaching (FRAP) may provide a novel means of measuring intravitreal diffusion that could be applied to drugs and physiological macromolecules. It would also provide information about vitreous viscosity, which is relevant to drug elimination, and delivery. METHODS: Vitreous viscosity and intravitreal macromolecular diffusion of fluorescently labelled macromolecules were investigated in porcine eyes using fluorescence recovery after photobleaching (FRAP). Fluorescein isothiocyanate conjugated (FITC) dextrans and ficolls of varying molecular weights (MWs), and FITC-bovine serum albumin (BSA) were employed using FRAP bleach areas of different diameters. RESULTS: The mean (±standard deviation) viscosity of porcine vitreous using dextran, ficoll and BSA were 3.54 ± 1.40, 2.86 ± 1.13 and 4.54 ± 0.13 cP respectively, with an average of 3.65 ± 0.60 cP. CONCLUSIONS: FRAP is a feasible and practical optical method to quantify the diffusion of macromolecules through vitreous.


Subject(s)
Fluorescence Recovery After Photobleaching/methods , Vitreous Body/metabolism , Animals , Bevacizumab/chemistry , Bevacizumab/metabolism , Dextrans/chemistry , Diffusion , Ficoll/chemistry , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Ranibizumab/chemistry , Ranibizumab/metabolism , Receptors, Vascular Endothelial Growth Factor/chemistry , Receptors, Vascular Endothelial Growth Factor/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Serum Albumin, Bovine/chemistry , Swine , Viscosity
12.
Nanotechnology ; 33(16)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34965522

ABSTRACT

Nanomedicine and aptamer have excellent potential in giving play to passive and active targeting respectively, which are considered to be effective strategies in the retro-ocular drug delivery system. The presence of closely adjoined tissue structures in the eye makes it difficult to administer the drug in the posterior segment of the eye. The application of nanomedicine could represent a new avenue for the treatment, since it could improve penetration, achieve targeted release, and improve bioavailability. Additionally, a novel type of targeted molecule aptamer with identical objective was proposed. As an emerging molecule, aptamer shows the advantages of penetration, non-toxicity, and high biocompatibility, which make it suitable for ocular drug administration. The purpose of this paper is to summarize the recent studies on the effectiveness of nanoparticles as a drug delivery to the posterior segment of the eye. This paper also creatively looks forward to the possibility of the combined application of nanocarriers and aptamers as a new method of targeted drug delivery system in the field of post-ophthalmic therapy.


Subject(s)
Aptamers, Nucleotide/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Animals , Bevacizumab/chemistry , Bevacizumab/therapeutic use , Eye Diseases/drug therapy , Humans , Nanomedicine , Ranibizumab/chemistry , Ranibizumab/therapeutic use
13.
J Cancer Res Clin Oncol ; 148(2): 487-496, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33866430

ABSTRACT

PURPOSE: Bevacizumab is a recombinant humanized monoclonal antibody that inhibits vascular endothelial growth factor-specific angiogenesis in some cancers. MYL-1402O is a proposed bevacizumab biosimilar. METHODS: The primary objective of this single-center, randomized, double-blind, three-arm, parallel-group, phase 1 study in healthy male volunteers was to evaluate bioequivalence of MYL-1402O to EU and US-reference bevacizumab, and EU-reference bevacizumab to US-reference bevacizumab. The primary pharmacokinetic parameter was area under the serum concentration-time curve from 0 extrapolated to infinity (AUC0-∞). Pharmacokinetic parameters were analyzed using general linear models of analysis of variance. Secondary endpoints included safety and tolerability. RESULTS: Of 111 enrolled subjects, 110 were included in the pharmacokinetic analysis (MYL-1402O, n = 37; EU-reference bevacizumab, n = 36; US-reference bevacizumab, n = 37). Bioequivalence was demonstrated between MYL-1402O and EU-reference bevacizumab, MYL-1402O and US-reference bevacizumab, and between EU- and US-reference bevacizumab where least squares mean ratios of AUC0-∞ were close to 1, and 90% CIs were within the equivalence range (0.80-1.25). Secondary pharmacokinetic parameters (AUC from 0 to time of last quantifiable concentration [AUC0-t], peak serum concentration [Cmax], time to Cmax, elimination rate constant, and elimination half-life) were also comparable, with 90% CIs for ratios of AUC0-t and Cmax within 80-125%. Treatment-emergent adverse events were similar across all three treatment groups and were consistent with clinical data for bevacizumab. CONCLUSION: MYL-1402O was well tolerated and demonstrated pharmacokinetic and safety profiles similar to EU-reference bevacizumab and US-reference bevacizumab in healthy male volunteers. No new significant safety issues emerged (ClinicalTrials.gov, NCT02469987; ClinicalTrialsRegister.eu EudraCT, 2014-005621-12; June 12, 2015).


Subject(s)
Bevacizumab/pharmacokinetics , Biosimilar Pharmaceuticals/pharmacokinetics , Adolescent , Adult , Bevacizumab/chemistry , Biosimilar Pharmaceuticals/chemistry , Double-Blind Method , Drug Compounding/methods , Drug Compounding/standards , Europe , Healthy Volunteers , Humans , Male , Middle Aged , Netherlands , Therapeutic Equivalency , United States , Young Adult
14.
Biologicals ; 73: 41-56, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34593306

ABSTRACT

The majority of recombinant mAb products contain heterogeneous charge variants, commonly the result of post-translational modifications occurring during cell culture and accumulated during production, formulation and storage. MB02 is a biosimilar mAb to bevacizumab. Similarity data of charge variants for biosimilars against its reference products must be generated to demonstrate consistency in product quality and to ensure efficacy and safety. The goal of this work was to isolate seven charge variants of MB02 and Avastin® by semi-preparative cation exchange chromatography followed by purity test and extended analytical characterization to prove similarity. Although poor purity obtained for minor variants complicated data interpretation, an in-depth insight into the charge variants pattern of MB02 compared to Avastin® was obtained, contributing to a better understanding of modifications associated to microheterogeneity. To our knowledge, this is the first comparative analytical study of individual charge variants of a bevacizumab biosimilar following a head-to head approach and the most comprehensive N-glycosylation assessment of IgG1 charge variants. Although modifications related to N- and C-terminal, N-glycans, size heterogeneity or deamidation were specifically enriched among low abundant charge variants, they did not affect binding affinity to VEGF or FcRn and in vitro potency compared with the main species or unfractionated material.


Subject(s)
Bevacizumab/chemistry , Biosimilar Pharmaceuticals , Biosimilar Pharmaceuticals/chemistry , Biosimilar Pharmaceuticals/standards , Glycosylation , Immunoglobulin G
15.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299401

ABSTRACT

Bevacizumab (BCZ) is a recombinant humanized monoclonal antibody against the vascular endothelial growth factor, which is involved in the angiogenesis process. Pathologic angiogenesis is observed in several diseases including ophthalmic disorders and cancer. The multiple administrations of BCZ can cause adverse effects. In this way, the development of controlled release systems for BCZ delivery can promote the modification of drug pharmacokinetics and, consequently, decrease the dose, toxicity, and cost due to improved efficacy. This review highlights BCZ formulated in organic nanoparticles providing an overview of the physicochemical characterization and in vitro and in vivo biological evaluations. Moreover, the main advantages and limitations of the different approaches are discussed. Despite difficulties in working with antibodies, those nanocarriers provided advantages in BCZ protection against degradation guaranteeing bioactivity maintenance.


Subject(s)
Bevacizumab/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Bevacizumab/administration & dosage , Bevacizumab/chemistry , Humans , Nanoparticles/chemistry
16.
Curr Eye Res ; 46(5): 751-757, 2021 05.
Article in English | MEDLINE | ID: mdl-33896277

ABSTRACT

AIM: The development of a polyarginine cell-penetrating peptide (CPP) could enable the treatment of age-related macular degeneration, with drugs like bevacizumab, to be administered using eye drops instead of intravitreal injections. Topical formulations have a vast potential impact on healthcare by increasing patient compliance while reducing the financial burden. However, as the ocular preparations may contain several doses, it is essential to understand the stability of the bevacizumab+CPP conjugate produced. MATERIALS AND METHODS: In this work, we examine the stability of a bevacizumab solution with and without cell-penetrating peptide using dynamic light scattering and circular dichroism to assess the physical stability. We use HPLC to assess the chemical stability and ELISA to assess its biological activity. We also examine the potential of the CPP to be used as an antimicrobial agent in place of preservatives in the eye drop. RESULTS: The structural stability of bevacizumab with and without the CPP was found not to be affected by temperature: samples stored at either 20°C or 4°C were identical in behavior. However, physical instability was observed after five weeks, leading to aggregation and precipitation. Further investigation revealed that the addition of the polypeptide led to increased aggregation, as revealed through dynamic light scattering and concentration analysis of the peptide through HPLC. Complexing the bevacizumab with CPP had no effect on biological stability or degradation. CONCLUSIONS: Our findings suggest that the shelf life of CPP+bevacizumab complexes is at least 38 days from its initial formulation. Currently, the mechanism for aggregation is not fully understood but does not appear to occur through chemical degradation.


Subject(s)
Angiogenesis Inhibitors/chemistry , Bevacizumab/chemistry , Cell-Penetrating Peptides/chemistry , Macular Degeneration/drug therapy , Peptides/chemistry , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Chromatography, High Pressure Liquid , Circular Dichroism , Drug Delivery Systems , Drug Stability , Enzyme-Linked Immunosorbent Assay , Light , Ophthalmic Solutions , Pharmaceutical Preparations , Scattering, Radiation
17.
Sci Rep ; 11(1): 2899, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536498

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.


Subject(s)
Bevacizumab/pharmacology , Carotid Stenosis/diagnosis , Optical Imaging/methods , Plaque, Atherosclerotic/complications , Vascular Endothelial Growth Factor A/analysis , Aged , Asymptomatic Diseases , Benzenesulfonates/chemistry , Bevacizumab/chemistry , Carotid Stenosis/etiology , Carotid Stenosis/pathology , Carotid Stenosis/surgery , Endarterectomy, Carotid , Feasibility Studies , Female , Fluorescent Dyes/chemistry , Humans , Indoles/chemistry , Male , Middle Aged , Molecular Imaging/methods , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/surgery , Severity of Illness Index , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
18.
Ann Nucl Med ; 35(4): 514-522, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33582981

ABSTRACT

OBJECTIVE: Pretargeting radioimmunotherapy (PRIT) is a promising approach that can reduce long-time retention of blood radioactivity and consequently reduce hematotoxicity. Among the PRIT strategies, the combination of biotin-conjugated mAb and radiolabeled streptavidin (StAv) is a simple and convenient method because of its ease of preparation. This study performed three-step (3-step) PRIT using the sequential injection of (1) biotinylated bevacizumab (Bt-BV), (2) avidin, and (3) radiolabeled StAv for the treatment of triple-negative breast cancer (TNBC). METHODS: Four biodistribution studies were performed using 111In in tumor-bearing mice to optimize each step of our PRIT methods. Further, a therapeutic study was performed with optimized 3-step PRIT using 90Y-labeled StAv. RESULTS: Based on the biodistribution studies, the protein dose of Bt-BV and avidin was optimized to 100 µg and 10 molar equivalent of BV, respectively. Succinylation of StAv significantly decreased the kidney accumulation level (with succinylation (6.96 ± 0.91) vs without succinylation (20.60 ± 1.47) at 1 h after injection, p < 0.0001) with little effect on the tumor accumulation level. In the therapeutic study, tumor growth was significantly suppressed in treatment groups with optimized 3-step PRIT using 90Y-labeled succinylated StAv compared to that of the no-treatment group (p < 0.05). CONCLUSIONS: The 3-step PRIT strategy of this study achieved fast blood clearance and low kidney uptake with little effect on the tumor accumulation level, and a certain degree of therapeutic effect was consequently observed. These results indicated that the pretargeting treatment of the current study may be effective for human TNBC treatment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacokinetics , Bevacizumab/pharmacokinetics , Indium Radioisotopes/chemistry , Indium/chemistry , Streptavidin/pharmacokinetics , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents, Immunological/chemistry , Bevacizumab/chemistry , Biotin/chemistry , Dose-Response Relationship, Immunologic , Female , Heterografts , Immunoconjugates/therapeutic use , Kidney , Mice , Mice, Inbred BALB C , Mice, Nude , Radioimmunotherapy , Streptavidin/chemistry , Succinimides/chemistry
19.
Sci Rep ; 11(1): 2487, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514790

ABSTRACT

The present study investigates the impact of charge variants on bevacizumab's structure, stability, and biological activity. Five basic and one acidic charge variants were separated using semi-preparative cation exchange chromatography using linear pH gradient elution with purity > 85%. Based on the commercial biosimilar product's composition, two basic variants, one acidic and the main bevacizumab product, were chosen for further investigation. Intact mass analysis and tryptic peptide mapping established the basic variants' identity as those originating from an incomplete clipping of either one or both C-terminal lysine residues in the heavy chain of bevacizumab. Based on peptide mapping data, the acidic variant formation was attributed to deamidation of asparagine residue (N84), oxidation of M258, and preservation of C-terminal lysine residue, located on the heavy chain of bevacizumab. None of the observed charge heterogeneities in bevacizumab were due to differences in glycosylation among the variants. The basic (lysine) variants exhibited similar structural, functional, and stability profiles as the bevacizumab main product. But it was also noted that both the variants did not improve bevacizumab's therapeutic utility when pooled in different proportions with the main product. The acidic variant was found to have an equivalent secondary structure with subtle differences in the tertiary structure. The conformational difference also translated into a ~ 62% decrease in biological activity. Based on these data, it can be concluded that different charge variants behave differently with respect to their structure and bioactivity. Hence, biopharmaceutical manufacturers need to incorporate this understanding into their process and product development guidelines to maintain consistency in product quality.


Subject(s)
Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Bevacizumab/chemistry , Bevacizumab/pharmacology , Biosimilar Pharmaceuticals/chemistry , Biosimilar Pharmaceuticals/pharmacology , Cell Proliferation/drug effects , Mass Spectrometry/methods , Animals , CHO Cells , Chromatography, Ion Exchange/methods , Cricetulus , Drug Stability , Glycosylation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Peptide Mapping/methods , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Vascular Endothelial Growth Factor A/antagonists & inhibitors
20.
Molecules ; 25(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33113897

ABSTRACT

Vascular endothelial growth factor (VEGF) expression increased significantly in the pathogenesis of age-related macular degeneration, which induced the formation of pathological blood vessels. Dexamethasone is an exogenous anti-angiogenic drug while bevacizumab is an endogenous anti-angiogenic drug. They both have been widely used in ophthalmology. However, independent administration is not enough to completely block the development of choroidal neovascularization (CNV), and the number of eyes vitreous injections is limited. Reasonable combination of drugs may produce significantly better therapeutic effect than single drug treatment. The cyclic RGD (cRGD) peptide has a particularly high affinity with retinal pigment epithelial cells, where VEGF secretes from. In this study, we prepared nanoparticles of bevacizumab and dexamethasone with cRGD peptide as the target (aBev/cRGD-DPPNs). The particle size of the aBev/cRGD-DPPNs was 213.8 ± 1.5 nm, SEM results showed that the nano-carriers were well dispersed and spherical. The cell uptake study demonstrated the selectivity of the aBev/cRGD-DPPN to ARPE-19 with αVß3 over expressed. The aBev/cRGD-DPPNs had a better apoptosis induction effect and an obvious inhibitory effect on migration, invasion, and capillary-like structures formation of human umbilical vein epithelial cells. The fluorescein fundus angiography study, immunohistochemistry and histopathological evaluation showed the aBev/cRGD-DPPNs greatly reduced the development of CNV on a rabbit model.


Subject(s)
Drug Carriers/chemistry , Macular Degeneration/drug therapy , Nanoparticles/chemistry , Peptides, Cyclic/chemistry , Adult , Bevacizumab/administration & dosage , Bevacizumab/chemistry , Bevacizumab/therapeutic use , Biological Transport , Cell Line , Dexamethasone/administration & dosage , Dexamethasone/chemistry , Dexamethasone/therapeutic use , Drug Carriers/metabolism , Epithelial Cells/metabolism , Humans , Macular Degeneration/metabolism , Peptides, Cyclic/metabolism , Polymers/chemistry , Retina/cytology , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL