Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
Chem Biol Drug Des ; 103(6): e14564, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845574

ABSTRACT

The leaves of Araucaria cunninghamii are known to be nonedible and toxic. Previous studies have identified biflavones in various Araucaria species. This study aimed to investigate the in vitro cytotoxicity of the isolated compounds from Araucaria cunninghamii after metabolomics and network pharmacological analysis. Methanol extract of Araucaria cunninghamii leaves was subjected to bioassay-guided fractionation. The active fraction was analyzed using LC-HRMS, through strategic database mining, by comparing the data to the Dictionary of Natural Products to identify 12 biflavones, along with abietic acid, beta-sitosterol, and phthalate. Eight compounds were screened for network pharmacology study, where in silico ADME analysis, prediction of gene targets, compound-gene-pathway network and hierarchical network analysis, protein-protein interaction, KEGG pathway, and Gene Ontology analyses were done, that showed PI3KR1, EGFR, GSK3B, and ABCB1 as the common targets for all the compounds that may act in the gastric cancer pathway. Simultaneously, four biflavones were isolated via chromatography and identified through NMR as dimeric apigenin with varying methoxy substitutions. Cytotoxicity study against the AGS cell line for gastric cancer showed that AC1 biflavone (IC50 90.58 µM) exhibits the highest cytotoxicity and monomeric apigenin (IC50 174.5 µM) the lowest. Besides, the biflavones were docked to the previously identified targets to analyze their binding affinities, and all the ligands were found to bind with energy ≤-7 Kcal/mol.


Subject(s)
Data Mining , Metabolomics , Molecular Docking Simulation , Humans , Cell Line, Tumor , Plant Leaves/chemistry , Plant Leaves/metabolism , Network Pharmacology , Biflavonoids/chemistry , Biflavonoids/pharmacology , Biflavonoids/metabolism , Biflavonoids/isolation & purification , Tracheophyta/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Chromatography, Liquid , ATP Binding Cassette Transporter, Subfamily B/metabolism , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Mass Spectrometry
2.
Phytochemistry ; 224: 114166, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810815

ABSTRACT

Plants of the Garcinia genus were rich in structurally diverse and naturally bioactive components, while limited studies have been reported for Garcinia pedunculata Roxb. and G. nujiangensis C. Y. Wu & Y. H. Li. Four previously undescribed compounds including three chromones, garpedunchromones A-C (1-3), and one biflavonoid, nujiangbiflavone A (14), along with fifteen known analogs (4-13, 15-19) were isolated from G. pedunculata and G. nujiangensis. The structures of the isolated compounds were determined based on their HRESIMS data, extensive NMR spectroscopic analyses, and ECD calculations. The chromone derivatives were isolated from Garcinia for the first time. Compound 14 was a rare biflavonoid with C-3─C-6″ linkage. The biological evaluation of these isolates against NO production was conducted in the LPS-induced RAW 264.7 cells, resulting in the identification of a series of potent NO inhibitors, of which garpedunchromone B (2) was the most active with an IC50 value of 18.11 ± 0.96 µM. In the network pharmacology studies, the potential targets of compounds and inflammation were obtained from PharmMapper and GeneCards database. GO and KEGG enrichment analysis revealed that the overlapped targets were closely related to the major pathogenic processes linked to inflammation. Garpedunchromone B and proteins binding sites were being predicted.


Subject(s)
Anti-Inflammatory Agents , Biflavonoids , Chromones , Garcinia , Garcinia/chemistry , Biflavonoids/chemistry , Biflavonoids/pharmacology , Biflavonoids/isolation & purification , Chromones/chemistry , Chromones/pharmacology , Chromones/isolation & purification , Mice , Animals , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Structure-Activity Relationship , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Dose-Response Relationship, Drug
3.
J Nat Med ; 78(3): 732-740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38592349

ABSTRACT

Three new biflavonoids (1-3) and two known flavonoids (4, 5) were isolated from Xylia kerrii collected in Thailand. Compounds 1-5 showed selective cytotoxicity against the rheumatoid fibroblast-like synovial MH7A cell line, and these compounds showed weak cytotoxicity against the human lung synovial fibroblast WI-38 VA13 sub 2 RA cell line. Notably, compound 1 was highly selective toward MH7A cells with an IC50 value of 6.9 µM, whereas the IC50 value for WI-38 VA13 sub 2 RA cells was > 100 µM. The western blotting analysis of MH7A cells treated with compound 1 showed increased CDKN2A /p16INK4A and caspase-8 levels.


Subject(s)
Arthritis, Rheumatoid , Biflavonoids , Fibroblasts , Plant Extracts , Plant Leaves , Humans , Fibroblasts/drug effects , Arthritis, Rheumatoid/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Cell Line , Biflavonoids/pharmacology , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Thailand , Synovial Membrane/drug effects , Molecular Structure
4.
Bioorg Med Chem Lett ; 56: 128486, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34875389

ABSTRACT

A new biflavonoid, (2''S)-6''-methyl-2'',3''-dihydroochnaflavone (1), along with two known ochnaflavones (2, 3), four known amentoflavones (4-7) and two known robustaflavones (8, 9) were obtained from the 70% EtOH extract of Selaginella trichoclada. The chemical structures of isolated compounds were elucidated by extensive spectroscopic analyses. Overall, compounds 1-9 displayed moderate cytotoxic effects against human breast cancer MCF-7 cell lines. Among them, compounds 2 and 8 exhibited relatively strong cytotoxic effects against MCF-7 cells with an IC50 value of 7.7 and 6.9 µΜ, respectively. The results of RNA-sequencing and KEGG functional enrichment analysis showed that 8 could induce ferroptosis in MCF-7 cells by down-regulating the expression of ferroptosis-related genes including ACSL4, NOXO1, NOXA1, ACSL5, STEAP3, LPCAT3, ATG7 and TP53. Then 8 could inhibit the expression of ACSL4 proteins through molecule docking analysis, which showed a strong interaction of - 11.89 Kcal/mol binding energy. Those results indicate that 8 could be chemotherapy agents to fight drug resistance in breast cancer by down-regulating the expression level of ACSL4 proteins via ferroptosis, which needs to be further certified in vitro.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Plant Extracts/pharmacology , Selaginellaceae/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Dynamics Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship
5.
Bioorg Chem ; 119: 105509, 2022 02.
Article in English | MEDLINE | ID: mdl-34844768

ABSTRACT

Hepatocellular carcinoma (HCC), the most prevalent liver cancer, is considered one of the most lethal malignancies with a dismal outcome. There is an urgent need to find novel therapeutic approaches to treat HCC. At present, natural products have served as a valuable source for drug discovery. Here, we obtained five known biflavones from the root of Stellera chamaejasme and evaluated their activities against HCC Hep3B cells in vitro. Chamaejasmenin E (CE) exhibited the strongest inhibitory effect among these biflavones. Furthermore, we found that CE could suppress the cell proliferation and colony formation, as well as the migration ability of HCC cells, but there was no significant toxicity on normal liver cells. Additionally, CE induced mitochondrial dysfunction and oxidative stress, eventually leading to cellular apoptosis. Mechanistically, the potential target of CE was predicted by database screening, showing that the compound might exert an inhibitory effect by targeting at c-Met. Next, this result was confirmed by molecular docking, cellular thermal shift assay (CETSA), as well as RT-PCR and Western blot analysis. Meanwhile, CE also reduced the downstream proteins of c-Met in HCC cells. In concordance with above results, CE is efficacious and non-toxic in tumor xenograft model. Taken together, our findings revealed an underlying tumor-suppressive mechanism of CE, which provided a foundation for identifying the target of biflavones.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Plant Extracts/pharmacology , Protein Kinase Inhibitors/pharmacology , Thymelaeaceae/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
6.
Nutrients ; 13(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34959930

ABSTRACT

Theaflavin-3,3'-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve ß cells regeneration in diabetic zebrafish at low concentrations (5 µg/mL and 10 µg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting ß cells. TF3 might be a promising agent for combating diabetes.


Subject(s)
Biflavonoids/pharmacology , Catechin/analogs & derivatives , Drug Evaluation, Preclinical/methods , Hypoglycemic Agents , Animals , Biflavonoids/isolation & purification , Catechin/isolation & purification , Catechin/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Glucokinase/metabolism , Glucose/metabolism , Hep G2 Cells , Humans , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Tea/chemistry , Up-Regulation/drug effects , Zebrafish
7.
Molecules ; 26(21)2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34770830

ABSTRACT

Cinnamon procyanidin oligomers (CPOs) are water-soluble components extracted from cinnamon. This study aims to explore the neuroprotection of B-type CPO (CPO-B) against 1-methyl-4-phenylpyridinium (MPP+)-mediated cytotoxicity and the molecular mechanisms underlying its protection. The results demonstrated that CPO-B showed protection by increasing cell viability, attenuating an intracellular level of reactive oxygen species, downregulating cleaved caspase-3 expression, and upregulating the Bcl-2/Bax ratio. Moreover, CPO-B completely blocked the dephosphorylation of extracellular, signal-regulated kinase 1 and 2 (Erk1/2) caused by MPP+. Treatment with an Erk1/2 inhibitor, SCH772984, significantly abolished the neuroprotection of CPO-B against MPP+. Taken together, we demonstrate that CPO-B from cinnamon bark provided protection against MPP+ in cultured SH-SY5Y cells, and the potential mechanisms may be attributed to its ability to modulate the dysregulation between pro-apoptotic and anti-apoptotic proteins through the Erk1/2 signaling pathway. Our findings suggest that the addition of cinnamon to food or supplements might benefit patients with PD.


Subject(s)
Apoptosis/drug effects , Biflavonoids/pharmacology , Catechin/pharmacology , Cinnamomum zeylanicum/chemistry , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Proanthocyanidins/pharmacology , 1-Methyl-4-phenylpyridinium , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Parkinson Disease/pathology , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Tumor Cells, Cultured
8.
Bioorg Chem ; 117: 105450, 2021 12.
Article in English | MEDLINE | ID: mdl-34710667

ABSTRACT

The fruit of Citrus medica L. var. sarcodactylis Swingle is not only used as a traditional medicinal plant, but also served as a delicious food. Six new (3'→7″)-biflavonoids (1-6), and twelve known biflavonoid derivatives (7-18) were isolated and characterized from the fruits of C. medica L. var. sarcodactylis Swingle for the first time. Their structures were determined by extensive and comprehensive analyzing NMR, HR-ESI-MS, UV, and IR spectral data coupled with the data described in the literature. Compounds (1-18) were evaluated for their hypolipidemic activities with Orlistat as the positive control, and assayed for their immunosuppressive activities with Dexamethasone as the positive control, respectively. Among them, compounds (1-3) exhibited moderate inhibition of pancreatic lipase activity by inhibiting 68.56 ± 1.40%, 56.18 ± 1.57%, 53.51 ± 1.59% of pancreatic lipase activities at the concentration of 100 µM, respectively. Compounds (4-6) and 8 showed potent immunosuppressive activities with the IC50 values from 16.83 ± 1.32 to 50.90 ± 1.79 µM. The plausible biogenetic pathway and preliminary structure activity relationship of the selected compounds were scientifically summarized and discussed in this study.


Subject(s)
Biflavonoids/pharmacology , Citrus/chemistry , Enzyme Inhibitors/pharmacology , Hypolipidemic Agents/pharmacology , Immunosuppressive Agents/pharmacology , Lipase/antagonists & inhibitors , Animals , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Concanavalin A/antagonists & inhibitors , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fruit/chemistry , Hep G2 Cells , Humans , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Lipase/metabolism , Molecular Structure , Pancreas/enzymology , Spleen/drug effects , Structure-Activity Relationship , Swine
9.
J Photochem Photobiol B ; 224: 112304, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536907

ABSTRACT

Keratinocytes are rich in lipids and are the main sensitive cells to ultraviolet (UV) rays. Theaflavins are the core functional components of black tea and are known as the "soft gold" in tea. In this study, ultraviolet-B (UVB) irradiation caused apoptosis and necrosis of human epidermal keratinocytes (HaCaT). EGCG and the four theaflavins had anti-UVB damage activity, among which theaflavin-3'-gallate (TF3'G) had the best activity. The results of biophysical and molecular biology experiments showed that TF3'G has anti-damage effects on UVB-irradiated HaCaT cells through the dual effects of photoprotection and maintenance of cell homeostasis. That is, TF3'G preincubation could absorb UV rays, reduce the accumulation of aging-related heterochromatin (SAHF) formation, increase mitochondrial membrane potential, downregulate NF-κB inflammation pathways, inhibit the formation of cytotoxic aggregates, and protect biological macromolecules Structure, etc. The accumulation of conjugated π bonds and the balance benzoquinone are the core functional structure of TF3'G with high efficiency and low toxicity. The study indicates that TF3'G has the potential to inhibit the photoaging and intrinsic aging of skin cells.


Subject(s)
Biflavonoids/pharmacology , Catechin/pharmacology , Gallic Acid/analogs & derivatives , Homeostasis/drug effects , Radiation-Protective Agents/pharmacology , Tea/chemistry , Ultraviolet Rays , Antioxidants/pharmacology , Apoptosis/drug effects , Biflavonoids/isolation & purification , Catechin/analogs & derivatives , Catechin/isolation & purification , Cellular Senescence/drug effects , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , HaCaT Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
10.
Food Funct ; 12(17): 7762-7772, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34231610

ABSTRACT

Nutritional biomarkers are critical tools to objectively assess intake of nutrients and other compounds from the diet. In this context, it is essential that suitable analytical methods are available for the accurate quantification of biomarkers in large scale studies. Recently, structurally-related (-)-epicatechin metabolites (SREMs) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone metabolites (gVLMs) were identified as biomarkers of intake of flavanols and procyanidins, a group of polyphenol bioactives. This study aimed at validating a high throughput method for the quantification of SREMs and gVLMs in plasma along with methylxanthines (MXs), dietary compounds known to interact with flavanol and procyanidin effects. To accomplish this, a full set of authentic analytical standards were used to optimize a micro solid phase extraction method for sample preparation coupled to HPLC-MS detection. Isotopically-labelled standards for all analytes were included to correct potential matrix effects on quantification. Average accuracies of 101%, 93% and 103% were obtained, respectively, for SREMs, gVLMs and MXs. Intra- and inter-day repeatability values were <15%. The method showed linear responses for all analytes (>0.993). Most SREMs and gVLMs had limits of quantifications <5 nM while limits of quantification of MXs were 0.2 µM. All analytes were stable under different tested processing conditions. Finally, the method proved to be suitable to assess SREMs, gVLMs and MXs in plasma collected after single acute and daily intake of cocoa-derived test materials. Overall, this method proved to be a valid analytical tool for high throughput quantification of flavanol and procyanidin biomarkers and methylxanthines in plasma.


Subject(s)
Biflavonoids/blood , Catechin/blood , Chromatography, High Pressure Liquid/methods , Flavonols/blood , High-Throughput Screening Assays/methods , Mass Spectrometry/methods , Proanthocyanidins/blood , Xanthines/blood , Biflavonoids/isolation & purification , Biomarkers/blood , Catechin/isolation & purification , Flavonols/isolation & purification , Humans , Plasma/chemistry , Proanthocyanidins/isolation & purification , Solid Phase Microextraction , Xanthines/isolation & purification
11.
Chem Biodivers ; 18(8): e2100240, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34081396

ABSTRACT

Ozoroa obovata (Oliv.) R. & A. Fern. var. obovata found in KwaZulu-Natal in South Africa was investigated for phytochemical constituents, and for antiplasmodial and cytotoxic effects. The plant leaves were collected from the University of KwaZulu-Natal (UKZN) arboretum on the Pietermaritzburg Campus, in March 2019. The inhibitory activity against 3D7 Plasmodium falciparum was determined using the parasite lactate dehydrogenase (pLDH) assay and cytotoxicity against HeLa cells was evaluated using the resazurin assay. The bioactive compounds were isolated by chromatographic purification and their structures were established with spectroscopic and spectrometric techniques. The plant leaf extract displayed significant antiplasmodial activity at 50 µg/mL and was also cytotoxic against HeLa cells. Chromatographic purification of the extract led to the isolation of two biflavonoids, four flavonoid glycosides, a steroid glycoside, and a megastigmene derivative. The compounds displayed antiplasmodial and antiproliferative activities at 50 µg/mL but the activity was substantially reduced at 10 µg/mL. The activities and compounds are being reported in O. obovata for the first time.


Subject(s)
Anacardiaceae/chemistry , Antimalarials/pharmacology , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Anacardiaceae/metabolism , Antimalarials/chemistry , Antimalarials/isolation & purification , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Biflavonoids/pharmacology , Cell Survival/drug effects , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/pharmacology , HeLa Cells , Humans , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Leaves/metabolism
12.
Chem Biodivers ; 18(8): e2100299, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34086421

ABSTRACT

The article reports the chemical composition, antioxidant, six key enzymes inhibitory and antimicrobial activities of two solvent extracts (water and methanol) of leaves and stem bark of Uapaca togoensis. For chemical composition, methanol extract of stem bark exhibited significant higher total phenolic (129.86 mg GAE/g) and flavanol (10.44 mg CE/g) contents. Methanol extract of leaves and water extract of stem bark showed high flavonoids (20.94 mg RE/g) and phenolic acid (90.40 mg CAE/g) content, respectively. In addition, HPLC-ESI-TOF-MS analysis revealed that U. togoensis was rich in procyanidins. The methanol and water extracts of stem bark had overall superior antioxidant activity; however, only methanol extract of stem bark showed higher inhibition of cholinesterase (AChE: 2.57 mg GALAE/g; BChE: 4.69 mg GALAE/g), tyrosinase (69.53 mg KAE/g) and elastase (2.73 mmol CE/g). Potent metal chelating ability was showed by water extract of leaves (18.94 mg EDTAE/g), higher inhibition of amylase was detected for water extracts of leaves (0.94 mmol ACAE/g) and stem bark (0.92 mmol ACAE/g). The tested extracts have shown wide-spectrum antibacterial properties and these effects have shown to be more effective against Aspergillus ochraceus, Penicillium funiculosum, Trichoderma viride, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The results revealed that the antioxidant, enzyme inhibitory and antimicrobial activities depended on the extraction solvents and the parts of plant. Bioinformatics analysis on the 17 major compounds showed modulation of pathway associated with cancer. In brief, U. togoensis might be valuable as potential source of natural agents for therapeutic application.


Subject(s)
Biflavonoids/chemistry , Catechin/chemistry , Computational Biology/methods , Enzyme Inhibitors/chemistry , Magnoliopsida/chemistry , Plant Extracts/chemistry , Proanthocyanidins/chemistry , Amylases/antagonists & inhibitors , Amylases/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Biflavonoids/isolation & purification , Biflavonoids/metabolism , Biflavonoids/pharmacology , Catechin/isolation & purification , Catechin/metabolism , Catechin/pharmacology , Chromatography, High Pressure Liquid , Cluster Analysis , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Magnoliopsida/metabolism , Microbial Sensitivity Tests , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Plant Bark/chemistry , Plant Bark/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Proanthocyanidins/isolation & purification , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Spectrometry, Mass, Electrospray Ionization
13.
Molecules ; 26(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920529

ABSTRACT

Plant polyphenols have beneficial antioxidant effects on human health; practices aimed at preserving their content in foods and/or reusing food by-products are encouraged. The impact of the traditional practice of the water curing procedure of chestnuts, which prevents insect/mould damage during storage, was studied to assess the release of polyphenols from the fruit. Metabolites extracted from pericarp and integument tissues or released in the medium from the water curing process were analyzed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray-quadrupole-time of flight-mass spectrometry (ESI-qTOF-MS). This identified: (i) condensed and hydrolyzable tannins made of (epi)catechin (procyanidins) and acid ellagic units in pericarp tissues; (ii) polyphenols made of gallocatechin and catechin units condensed with gallate (prodelphinidins) in integument counterparts; (iii) metabolites resembling those reported above in the wastewater from the chestnut curing process. Comparative experiments were also performed on aqueous media recovered from fruits treated with processes involving: (i) tap water; (ii) tap water containing an antifungal Lb. pentosus strain; (iii) wastewater from a previous curing treatment. These analyses indicated that the former treatment determines a 6-7-fold higher release of polyphenols in the curing water with respect to the other ones. This event has a negative impact on the luster of treated fruits but qualifies the corresponding wastes as a source of antioxidants. Such a phenomenon does not occur in wastewater from the other curing processes, where the release of polyphenols was reduced, thus preserving the chestnut's appearance. Polyphenol profiling measurements demonstrated that bacterial presence in water hampered the release of pericarp metabolites. This study provides a rationale to traditional processing practices on fruit appearance and qualifies the corresponding wastes as a source of bioactive compounds for other nutraceutical applications.


Subject(s)
Aesculus/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Antioxidants/isolation & purification , Antioxidants/metabolism , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Fruit/chemistry , Humans , Nuts/chemistry , Plant Extracts/pharmacology , Polyphenols/isolation & purification , Polyphenols/metabolism , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tannins/chemistry , Water/chemistry
14.
Fitoterapia ; 151: 104857, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33582268

ABSTRACT

The new isoflavonoid kirkinone A (1) and biflavonoid kirkinone B (2) along with six known compounds (3-8) were isolated from the methanolic extract of the root bark of Ochna kirkii. The compounds were identified by NMR spectroscopic and mass spectrometric analyses. Out of the eight isolated natural products, calodenin B (4) and lophirone A (6) showed significant antibacterial activity against the Gram-positive bacterium Bacillus subtilis with MIC values of 2.2 and 28 µM, and cytotoxicity against the MCF-7 human breast cancer cell line with EC50 values of 219.3 and 19.2 µM, respectively. The methanolic crude extract of the root bark exhibited cytotoxicity at EC50 8.4 µg/mL. The isolated secondary metabolites and the crude extract were generally inactive against the Gram-negative Escherichia coli (MIC ≥400 µg/mL). Isolation of biflavonoids and related secondary metabolites from O. kirkii demonstrates their chemotaxonomic significance to the genus Ochna and to other members of the family Ochnaceae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Ochnaceae/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Bacillus subtilis/drug effects , Biflavonoids/isolation & purification , Humans , MCF-7 Cells , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Bark/chemistry , Plant Roots/chemistry , Tanzania
15.
Bioorg Chem ; 109: 104744, 2021 04.
Article in English | MEDLINE | ID: mdl-33639365

ABSTRACT

Breast cancer is one of the major malignant tumors in females, and currently, recurrence and metastasis are the main obstacles preventing effective breast cancer treatment. Biflavonoids of secondary metabolites from plants are excellent anticancer agents to fight sensitive and resistant breast cancer cell lines. In this study, six C-3'-C-6″ biflavonoids, including one new robustaflavone A (1, RF-A) and five known robustaflavone derivatives (2-6), were isolated from Selaginella trichoclada for the first time. We aimed to evaluate the inhibitory effects of compounds 1-6 against human breast cancer MCF-7 cells. Among the six compounds, RF-A showed the strongest activity, decreasing cell viability with an IC50 value of 11.89 µΜ. Furthermore, RF-A strikingly induced MCF-7 nonapoptotic cell death through ferroptosis by enhancing the expression of VDAC2 channels and reducing the expression of Nedd4 E3 ubiquitin ligase, leading to lipid peroxidation and ROS production. The results suggested that RF-A has potential as a novel breast cancer treatment through its regulation of the mitochondrial VDAC2 and Nedd4 pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Biological Products/pharmacology , Breast Neoplasms/drug therapy , Ferroptosis/drug effects , Mitochondria/drug effects , Selaginellaceae/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Mitochondria/metabolism , Molecular Structure , Structure-Activity Relationship
16.
Nat Prod Res ; 35(6): 1024-1028, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31135222

ABSTRACT

Chemical isolation and bioactivity studies were conducted on the stamens of Mesua ferrea L., which are being used in a traditional skincare formulation in Myanmar. Rhusflavanone and mesuaferrone B were obtained as the main biflavonoids together with lupeol, five common flavonoids, and five phenolic compounds. After being identified by NMR and other spectroscopic analyses, these compounds were evaluated for their 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging, human leukocyte elastase inhibitory, and mushroom tyrosinase inhibitory activities. The two biflavonoids exhibited strong inhibitory activities against elastase and tyrosinase, but low DPPH-radical scavenging activities. The contents of rhusflavanone and mesuaferrone B in the stamens were 0.35 ± 0.04% and 0.55 ± 0.06%, respectively. Moreover, lupeol was considered to be a cosmetically important component of the stamens because of its high content and strong elastase inhibitory activity. Rhusflavanone was reported to be isolated from M. ferrea for the first time.


Subject(s)
Benzopyrans/isolation & purification , Benzopyrans/pharmacology , Biflavonoids/isolation & purification , Biflavonoids/pharmacology , Enzyme Inhibitors/pharmacology , Flowers/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Pancreatic Elastase/antagonists & inhibitors , Agaricales/enzymology , Benzopyrans/chemistry , Biflavonoids/chemistry , Enzyme Inhibitors/chemistry , Humans , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/metabolism
17.
J Ethnopharmacol ; 265: 113386, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32920132

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Daphne pseudomezereum var. koreana Hamaya is distributed in the Gangwon-do of South Korea and is traditionally used to treat chronic inflammatory diseases, including rheumatoid arthritis. AIM OF THE STUDY: We investigated the anti-inflammatory effect of biflavonoid-rich fraction (BF) obtained from an extract of D. pseudomezereum leaves on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse model of ovalbumin (OVA)-induced allergic asthma. MATERIALS AND METHODS: Neochamaejasmin B (NB) and chamaejasmin D (CD) were spectroscopically characterized as major components of BF obtained from the leaves of D. pseudomezereum. RAW264.7 cells pretreated with NB, CD and BF and activated by LPS (500 ng/ml) were used to assess the anti-inflammatory effects of these materials in vitro. To evaluate the protective effect of BF on allergic asthma, female BALB/c mice were sensitized to OVA by intraperitoneal (i.p.) injection and treated with BF by oral administration (15 or 30 mg/kg). RESULTS: Pretreatment with BF inhibited LPS-stimulated nitric oxide (NO), TNF-α and IL-6, and led to upregulation of heme oxygenase-1 (HO-1) in RAW264.7 macrophages. Orally administered BF significantly inhibited the recruitment of eosinophils and the production of IL-5, IL-6, IL-13 and MCP-1 as judged by the analysis of BALF from OVA-induced asthma animal model. BF also decreased the levels of IgE in the serum of asthmatic mice. BF suppressed the influx of inflammatory cells into nearby airways and the hypersecretion of mucus by the airway epithelium of asthmatic mice. In addition, the increase in Penh in asthmatic mice was reduced by BF administration. Furthermore, BF led to Nrf2 activation and HO-1 induction in the lungs of mice. CONCLUSIONS: These data have shown the anti-asthmatic effects of BF, and therefore we expect that BF may be a potential candidate as a natural drug/nutraceutical for the prevention and treatment of allergic asthma.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Biflavonoids/pharmacology , Daphne/chemistry , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/isolation & purification , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Asthma/physiopathology , Biflavonoids/administration & dosage , Biflavonoids/isolation & purification , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Inflammation/drug therapy , Inflammation/pathology , Lipopolysaccharides , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Ovalbumin , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , RAW 264.7 Cells
18.
Bioorg Chem ; 105: 104445, 2020 12.
Article in English | MEDLINE | ID: mdl-33197848

ABSTRACT

Rare and endangered plants (REPs) and their associated endophytes survived in unique habitats are promising sources for natural product-derived drug discovery. In this study, six new (cephaloverines A-F, 1-6, resp.) and 16 known (11-26) cephalotaxine-type alkaloids, together with three new (oliverbiflavones A-C, 7-9, resp.) and 11 known (27-37) biflavonoids were isolated and characterized from the twigs and leaves of Cephalotaxus oliveri, an endangered plant endemic to China. Meanwhile, a preliminary investigation on the secondary metabolites from a selected fungal endophyte (i.e., Alternaria alternate Y-4-2) associated with the title plant led to the isolation of 21 structurally distinct polyketides including one new dimeric xanthone (10). The new structures (1-10) with the absolute configurations were determined by detailed spectroscopic analyses, electronic circular dichroism (ECD) or Na2MoO4-induced ECD, the modified Mosher's method, and some chemical transformations. Compounds 1-4 are the first representatives of naturally occurring N-oxides of cephalotaxine esters, while compounds 7-9 have a special structural feature of having a C-methylated biflavonoid skeleton. The Cephalotaxus alkaloids with ester side-chains at C-3 (1-6, 13-22, and 26) and four biflavonoids (27-29 and 34) were found to show pronounced cytotoxicities against a small panel of human cancer cell lines (A549, NCI-H460, HL60, NCI-H929, and RPMI-8226), with IC50 values mainly ranging from 0.003 to 9.34 µM. The most potent compound, deoxyharringtonine (16), generally exhibited IC50 values less than 10 nM. The structure-activity relationship (SAR) of the aforementioned Cephalotaxus alkaloids was briefly discussed.


Subject(s)
Alternaria/drug effects , Antineoplastic Agents/isolation & purification , Biflavonoids/isolation & purification , Cephalotaxus/chemistry , Plant Leaves/chemistry , Antineoplastic Agents/pharmacology , Biflavonoids/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Endophytes , Homoharringtonine/chemistry , Humans , Molecular Structure , Polyketides/chemistry , Secondary Metabolism , Structure-Activity Relationship , Xanthones/chemistry
19.
Phytomedicine ; 79: 153341, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32992086

ABSTRACT

BACKGROUND: Curcumin (CUR) is a natural diarylheptanoid with marked anti-tumor activities. Recent investigations demonstrate that CUR combines with some other phytochemicals exerts advantages over its single application manifested as lower toxicity, higher efficacy or more significant reversal of multidrug resistance. PURPOSE: This study aimed to elucidate a new biflavonoid (wikstroflavone B, WFB) isolated from Wikstroemia indica and to assess the synergistic inhibition of combined CUR and WFB (CUR/WFB) on human nasopharyngeal carcinoma (NPC) cell lines proliferation and metastasis. METHODS: WFB was obtained through sequential chromatographic methods including silica gel, Sephadex LH-20 and preparative HPLC. Its structure was determined by HRESIMS, 1D and 2D NMR spectroscopic analysis. The absolute configuration of WFB was assigned through comparison of experimental and calculated optical rotation (OR) values. Changes in cellular viability, migration and invasion were assessed by MTT, colony formation, wound healing and Transwell assays. The nature of synergistic interaction of CUR/WFB was determined through the combination index (CI) method under the median-effect analysis. Expression levels of indicated mRNAs and proteins were measured by qRT-PCR and Western blotting assays, respectively. RESULTS: WFB was isolated and structural elucidated. Compared with CUR or WFB used alone, CUR/WFB treatment inhibited more effectively on the cell viability, colony formation, cell migration and invasion. Both CI and dose reduction index (DRI) values indicated the significant synergistic effects existed between CUR and WFB. Besides, CUR/WFB showed the marked modulation on the genes involved in cell proliferation (survivin, cyclin D1, p53 and p21) and metastasis (MMP-2, MMP-9 and FAK). CUR/WFB treatment was also found to restrain the phosphorylation of FAK and STAT3 proteins. When pretreatment with a FAK inhibitor, the cell viability and metastasis were significantly attenuated. CONCLUSION: The results indicate that WFB can synergistically increase the inhibitory effects of CUR on NPC cells proliferation and metastasis, and these findings may afford a rational approach for developing the antitumor medications.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biflavonoids/isolation & purification , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy , Biflavonoids/administration & dosage , Biflavonoids/chemistry , Biflavonoids/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/administration & dosage , Curcumin/pharmacology , Focal Adhesion Kinase 1/metabolism , Humans , Matrix Metalloproteinases/metabolism , Molecular Structure , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Wikstroemia/chemistry
20.
Molecules ; 25(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575615

ABSTRACT

To provide further insight into the antioxidant potential of procyanidins (PCs) from cocoa beans, PC extract was fractionated by several methodologies, including solid phase extraction, Sephadex LH-20 gel permeation, and preparative HPLC using C18 and diol stationary phases. All the isolated fractions were analyzed by UHPLC-QTOF-MS to determine their relative composition. According to our results, classical techniques allowed good separation of alkaloids, catechins, dimers, and trimers, but were inefficient for oligomeric PCs. Preparative C18-HPLC method allowed the attainment of high relative composition of fractions enriched with alkaloids, catechins, and PCs with degree of polymerization (DP) < 4. However, the best results were obtained by preparative diol-HPLC, providing a separation according to the increasing DP. According to the mass spectrometry fragmentation pattern, the nine isolated fractions (Fractions II-X) consisted of exclusively individual PCs and their corresponding isomers (same DP). In summary, an efficient, robust, and fast method using a preparative diol column for the isolation of PCs is proposed. Regarding DPPH• and ABTS•+ scavenging activity, it increases according to the DP; therefore, the highest activity was for cocoa extract > PCs > monomers. Thereby, cocoa procyanidins might be of interest to be used as alternative antioxidants.


Subject(s)
Antioxidants , Biflavonoids , Cacao/chemistry , Catechin , Plant Extracts/chemistry , Proanthocyanidins , Antioxidants/chemistry , Antioxidants/isolation & purification , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Chemical Fractionation , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL