Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Mol Biotechnol ; 66(3): 442-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37199885

ABSTRACT

Myocardial infarction (MI) is an extremely severe cardiovascular disease, which ranks as the leading cause of sudden death worldwide. Studies have proved that cardiac injury following MI can cause cardiomyocyte apoptosis and myocardial fibrosis. Bilobalide (Bilo) from Ginkgo biloba leaves have been widely reported to possess excellent cardioprotective effects. However, concrete roles of Bilo in MI have not been investigated yet. We here designed both in vitro and in vivo experiments to explore the effects of Bilo on MI-induced cardiac injury and the underlying mechanisms of its action. We conducted in vitro experiments using oxygen-glucose deprivation (OGD)-treated H9c2 cells. Cell apoptosis in H9c2 cells was assessed by conducting flow cytometry assay and evaluating apoptosis-related proteins with western blotting. MI mouse model was established by performing left anterior descending artery (LAD) ligation. Cardiac function of MI mice was determined by assessing ejection fraction (EF), fractional shortening (FS), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic diameter (LVEDD). Histological changes were analyzed, infarct size and myocardial fibrosis were measured by hematoxylin and eosin (H&E) and Masson staining in cardiac tissues from the mice. The apoptosis of cardiomyocytes in MI mice was assessed by TUNEL staining. Western blotting was applied to detect the effect of Bilo on c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases (p38 MAPK) signaling both in vitro and in vivo. Bilo inhibited OGD-induced cell apoptosis and lactate dehydrogenase (LDH) release in H9c2 cells. The protein levels of p-JNK and p-p38 were significantly downregulated by Bilo treatment. SB20358 (inhibitor of p38) and SP600125 (inhibitor of JNK) suppressed OGD-induced cell apoptosis as Bilo did. In MI mouse model, Bilo improved the cardiac function and significantly reduced the infarct size and myocardial fibrosis. Bilo inhibited MI-induced cardiomyocytes apoptosis in mice. Bilo suppressed the protein levels of p-JNK and p-p38 in cardiac tissues from MI mice. Bilo alleviated OGD-induced cell apoptosis in H9c2 cells and suppressed MI-induced cardiomyocyte apoptosis and myocardial fibrosis in mice via the inactivation of JNK/p38 MAPK signaling pathways. Thus, Bilo may be an effective anti-MI agent.


Subject(s)
Bilobalides , Myocardial Infarction , Mice , Animals , Bilobalides/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , Apoptosis , Fibrosis
2.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069325

ABSTRACT

As a medicinal tree species, ginkgo (Ginkgo biloba L.) and terpene trilactones (TTLs) extracted from its leaves are the main pharmacologic activity constituents and important economic indicators of its value. The accumulation of TTLs is known to be affected by environmental stress, while the regulatory mechanism of environmental response mediated by microRNAs (miRNAs) at the post-transcriptional levels remains unclear. Here, we focused on grafted ginkgo grown in northwestern, southwestern, and eastern-central China and integrally analyzed RNA-seq and small RNA-seq high-throughput sequencing data as well as metabolomics data from leaf samples of ginkgo clones grown in natural environments. The content of bilobalide was highest among detected TTLs, and there was more than a twofold variation in the accumulation of bilobalide between growth conditions. Meanwhile, transcriptome analysis found significant differences in the expression of 19 TTL-related genes among ginkgo leaves from different environments. Small RNA sequencing and analysis showed that 62 of the 521 miRNAs identified were differentially expressed among different samples, especially the expression of miRN50, miR169h/i, and miR169e was susceptible to environmental changes. Further, we found that transcription factors (ERF, MYB, C3H, HD-ZIP, HSF, and NAC) and miRNAs (miR319e/f, miRN2, miRN54, miR157, miR185, and miRN188) could activate or inhibit the expression of TTL-related genes to participate in the regulation of terpene trilactones biosynthesis in ginkgo leaves by weighted gene co-regulatory network analysis. Our findings provide new insights into the understanding of the regulatory mechanism of TTL biosynthesis but also lay the foundation for ginkgo leaves' medicinal value improvement under global change.


Subject(s)
Bilobalides , MicroRNAs , MicroRNAs/genetics , Ginkgolides , Terpenes/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Extracts , Lactones/metabolism
3.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4201-4207, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802788

ABSTRACT

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 µg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 µg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 µg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Subject(s)
Bilobalides , Female , Rats , Mice , Animals , Bilobalides/pharmacology , Neuroprotection , Lipopolysaccharides/toxicity , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Mice, Inbred C57BL , Macrophages/metabolism , Microglia , Cytokines/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/pharmacology , Inflammation/metabolism
4.
J Appl Microbiol ; 134(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37833234

ABSTRACT

AIMS: Disabling bacterial virulence with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The von Willebrand factor-binding protein of Staphylococcus aureus was identified previously as a key virulence determinant. Our objective was to discover a von Willebrand-factor binding protein (vWbp) inhibitor distinct from the antibiotics used to prevent infections resulting from S. aureus. METHODS AND RESULTS: Using coagulation assays, we found that the sesquiterpene trilactone bilobalide blocks coagulation mediated by vWbp, but has no impact on the growth of S. aureus at a concentration of 128 µg ml-1. Moreover, a mouse model of pneumonia caused by S. aureus indicated that bilobalide could attenuate S. aureus virulence in vivo. This effect is achieved not by interfering with the expression of vWbp but by binding to vWbp, as demonstrated by western blotting, thermal shift assays, and fluorescence quenching assays. Using molecular dynamic simulations and point mutagenesis analysis, we identified that the Q17A and R453A residues are key residues for the binding of bilobalide to vWbp. CONCLUSIONS: Overall, we tested the ability of bilobalide to inhibit S. aureus infections by targeting vWbp and explored the potential mechanism of this activity.


Subject(s)
Bilobalides , Pneumonia , Staphylococcal Infections , Mice , Animals , Carrier Proteins/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Staphylococcus aureus/metabolism , Staphylococcal Infections/drug therapy
5.
Molecules ; 28(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687239

ABSTRACT

Bilobalide exhibits numerous beneficial bioactivities, including neuroprotective, anti-inflammatory, and antioxidant activity. Our previous study demonstrated that bilobalide inhibits adipogenesis and promotes lipolysis. The dose-dependent cytotoxicity was found to be specific to the mature adipocytes only, indicating the potential for regulating apoptosis in them. Herein, we aimed to investigate the apoptotic effects of bilobalide on 3T3-L1 mature adipocytes and elucidate the underlying mechanisms thereof. Flow cytometry analysis (FACS) revealed the pro-apoptotic effects of bilobalide on these cells. Bilobalide induced early apoptosis by reducing the mitochondrial membrane potential (MMP). DNA fragmentation was confirmed using TUNEL staining. Additionally, bilobalide increased the intracellular reactive oxygen species (ROS) levels and activities of Caspases 3/9. Pre-treatment with NAC (an ROS scavenger) confirmed the role of ROS in inducing apoptosis. Moreover, bilobalide up- and down-regulated the expression of Bax and Bcl-2, respectively, at the mRNA and protein expression levels; upregulated the Bax/Bcl-2 ratio; triggered the release of cytochrome c from the mitochondria; and increased the protein expression of cleaved Caspase 3, cleaved Caspase 9, and PARP cleavage. These results support the conclusion that bilobalide induces apoptosis in mature 3T3-L1 adipocytes through the ROS-mediated mitochondrial pathway, and offers potential novel treatment for obesity.


Subject(s)
Bilobalides , Mice , Animals , Reactive Oxygen Species , 3T3-L1 Cells , bcl-2-Associated X Protein , Apoptosis , Mitochondria , Adipocytes
6.
Food Funct ; 14(18): 8409-8419, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37615035

ABSTRACT

Background: Depression is a psychiatric disorder with depressed mood and even suicide attempts as the main clinical symptoms, and its pathogenesis has not yet been fully elucidated. Brain derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of depression. Purpose: The main aim of the present study was to evaluate the effectiveness and reveal the potential mechanisms of bilobalide (BB) intervention in alleviating depression-like behaviors by using chronic unpredictable mild stress (CUMS) mice via mediating the BDNF pathway. Methods: Behavioral assessments were carried out by using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). CUMS mice were randomly divided into 5 groups: CUMS + solvent, CUMS + BB low, CUMS + BB medium, CUMS + BB high and CUMS + fluoxetine. Total serum levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured by ELISA. Expression of TNF-α, IL-6, AKT, GSK3ß, ß-catenin, Trk-B and BDNF in the mouse hippocampus was assessed by western blotting. Results: BB treatment reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and increased the protein expression of BDNF in the hippocampus region of the CUMS mice. Moreover, BB treatment enhanced the AKT/GSK3ß/ß-catenin signaling pathway which is downstream of the BDNF receptor Trk-B in the hippocampus of these mice. Conclusions: Overall, the experimental results indicated that BB reverses CUMS-induced depression-like behavior. BB exerts antidepressant-like effects by inhibiting neuroinflammation and enhancing the function of neurotrophic factors.


Subject(s)
Bilobalides , Brain-Derived Neurotrophic Factor , Animals , Mice , Brain-Derived Neurotrophic Factor/genetics , Tumor Necrosis Factor-alpha/genetics , Depression/drug therapy , Glycogen Synthase Kinase 3 beta , Interleukin-6/genetics , Proto-Oncogene Proteins c-akt , beta Catenin
7.
Adv Neurobiol ; 32: 353-384, 2023.
Article in English | MEDLINE | ID: mdl-37480466

ABSTRACT

Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.


Subject(s)
Bilobalides , Ginkgo biloba , Neuroprotective Agents , Spinal Cord Injuries , Animals , Rats , Cold Temperature , Drug Delivery Systems , Nanowires , Neuroprotective Agents/therapeutic use , Plant Extracts/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , China
8.
J Neurosci Res ; 101(6): 866-880, 2023 06.
Article in English | MEDLINE | ID: mdl-36634122

ABSTRACT

The effects of a single and multiple doses of ginkgolide A, B, C, and bilobalide, active components of Ginkgo biloba extract (EGb 761), on absence seizures were investigated in male WAG/Rij rats, a genetic animal model of absence epilepsy. Furthermore, the interactions of ginkgolide A together with NMDA receptor antagonist MK-801, AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or L-type calcium channel blocker nicardipine were studied to figure out how ginkgolide A affects spike-wave discharges (SWDs) in the brain. The experiments were done using 6-8-month-old male WAG/Rij rats with infusion cannula and EEG electrode implanted. Ginkgolide A, B, C, and bilobalide were administered intraperitoneally for 7 days at a dose of 6 mg/kg. In interaction groups, 6 µg ginkgolide A was injected intracerebroventricularly in combination with MK-801 (10 µg), CNQX (1 µg), and nicardipine (50 µg) for 7 days. EEG was recorded from animals at the baseline, first dose, and seventh dose periods for 4 h. Ginkgolide A (p = .028), C (p = .046), and bilobalide (p = .043) significantly increased the frequency of SWDs in WAG/Rij rats. Ginkgolide A injected into the lateral ventricle with MK-801 (p = .046), CNQX (p = .043), and nicardipine (p = .046) significantly increased the number of SWDs after seventh dose. Finally, the EGb 761-related increase in absence epilepsy was determined to be caused by ginkgolide A, C, and bilobalide. All three receptor antagonists/channel blockers do not inhibit the pro-absence effect of ginkgolide A. The findings revealed that ginkgolide A's pro-absence effect is mediated by brain circuits other than ionotropic glutamate receptors or L-type calcium channels.


Subject(s)
Bilobalides , Epilepsy, Absence , Rats , Male , Animals , Epilepsy, Absence/genetics , 6-Cyano-7-nitroquinoxaline-2,3-dione , Dizocilpine Maleate , Nicardipine , Ginkgolides/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Electroencephalography , Disease Models, Animal
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008616

ABSTRACT

This study aims to explore the neuroprotective effect of bilobalide(BB) and the mechanisms such as inhibiting inflammatory response in macrophage/microglia, promoting neurotrophic factor secretion, and interfering with the activation and differentiation of peripheral CD4~+ T cells. BB of different concentration(12.5, 25, 50, 100 μg·mL~(-1)) was used to treat the RAW264.7 and BV2 cells for 24 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay and cell counting kit-8(CCK-8) were employed to detect the cytotoxicity of BB and appropriate concentration was selected for further experiment. Lipopolysaccharide(LPS) was applied to elicit inflammation in RAW264.7 and BV2 cells, mouse bone marrow-derived macrophages(BMDMs), and primary microglia, respectively. The effect of BB on cell proliferation and secretion of inflammatory cytokines and neurotrophic factors was detected by enzyme-linked immunosorbent assay(ELISA). Spleen monocytes of C57BL/6 female mice(7-8 weeks old) were isolated, and CD4~+ T cells were separated by magnetic beads under sterile conditions. Th17 cells were induced by CD3/CD28 and the conditioned medium for eliciting the inflammation in BMDMs. The content of IL-17 cytokines in the supernatant was detected by ELISA to determine the effect on the activation and differentiation of CD4~+ T cells. In addition, PC12 cells were incubated with the conditioned medium for eliciting inflammation in BMDMs and primary microglia and the count and morphology of cells were observed. The cytoto-xicity was determined by lactate dehydrogenase(LDH) assay. The result showed that BB with the concentration of 12.5-100 μg·mL~(-1) had no toxicity to RAW264.7 and BV2 cells, and had no significant effect on the activity of cell model with low inflammation. The 50 μg·mL~(-1) BB was selected for further experiment, and the results indicated that BB inhibited LPS-induced secretion of inflammatory cytokines. The experiment on CD4~+ T cells showed that the conditioned medium for LPS-induced inflammation in BMDMs promoted the activation and differentiation of CD4~+ T cells, while the conditioned medium of the experimental group with BB intervention reduced the activation and differentiation of CD4~+ T cells. In addition, BB also enhanced the release of neurotrophic factors from BMDMs and primary microglia. The conditioned medium after BB intervention can significantly reduce the death of PC12 neurons, inhibit neuronal damage, and protect neurons. To sum up, BB plays a neuroprotective role by inhibiting macrophage and microglia-mediated inflammatory response and promoting neurotrophic factors.


Subject(s)
Female , Rats , Mice , Animals , Bilobalides/pharmacology , Neuroprotection , Lipopolysaccharides/toxicity , Culture Media, Conditioned/pharmacology , Mice, Inbred C57BL , Macrophages/metabolism , Microglia , Cytokines/metabolism , Nerve Growth Factors/pharmacology , Inflammation/metabolism
10.
Arthritis Res Ther ; 24(1): 197, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982488

ABSTRACT

BACKGROUND: Uncoupled extracellular matrix (ECM) causes cartilage degeneration and osteoarthritis (OA) by suppressing the synthesis and activating the degradation of ECM components. Gingko biloba is a natural Chinese herb with a variety of biological functions; however, the extent to which it can protect against OA and the mechanisms involved are unknown. METHODS: In our study, using bioinformatics tools, we were able to identify an important lactone, bilobalide (BB), from Gingko biloba. In vitro experiments were performed to evaluate the potential therapeutic effects of BB on ECM homeostasis. In vivo experiments were conducted to assess the protection of systemic administration of BB on cartilage degeneration. Molecular mechanisms underlying BB-regulated anti-arthritic role were further explored. RESULTS: In interleukin-1ß-incubated human chondrocytes, in vitro treatment with BB increased the expression of cartilage anabolic proteins, while inhibiting the activities of ECM degrading enzymes. In a mice model, systemic administration of BB, in vivo, prevented post-traumatic cartilage erosion and attenuated the formation of abnormal osteophytes in the subchondral bone. Mechanistically, the activation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)-sirtuin 1 (SIRT1) signaling pathway was involved in the anti-arthritic effects of BB. In vitro, blocking BB's chondroprotection with the AMPK-specific inhibitor Compound C abrogated it. CONCLUSIONS: These results demonstrated that BB extracted from Gingko biloba regulates ECM balance to prevent OA by activating the AMPK-SIRT1 signaling pathway. This study proposed the monomer BB, a traditional Chinese medicine, as a de novo therapeutic insight for OA. Schematic representation of the experimental design. Based on the bioinformatic analysis, bilobalide (BB), a natural herb Gingko biloba-derived ingredient, was identified as a candidate for treating osteoarthritis. In vitro, BB treatment not only facilitates cartilage extracellular matrix synthesis but also inhibits proteolytic enzyme activities. In vivo intraperitoneal injection of BB improves cartilage degeneration and subchondral bone sclerosis. BB, in particular, had anti-arthritic effects by activating the AMPK-SIRT1 signaling pathway.


Subject(s)
Bilobalides , Lactones , Osteoarthritis , AMP-Activated Protein Kinases/metabolism , Animals , Bilobalides/pharmacology , Chondrocytes/metabolism , Ginkgo biloba/chemistry , Humans , Lactones/pharmacology , Mice , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/prevention & control , Signal Transduction , Sirtuin 1/metabolism
11.
J Mol Model ; 28(9): 283, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36044079

ABSTRACT

The application of antineoplastic chemotherapeutic agents causes a common side effect known as chemotherapy-induced peripheral neuropathy (CIPN) that leads to reducing the quality of patient's life. This research involves the performance of molecular docking and molecular dynamic (MD) simulation studies to explore the impact of terpenoids of Ginkgo biloba on the targets (CB-1, TLR4, FAAH-1, COX-1, COX-2) that can significantly affect the controlling of CIPN's symptoms. According to the in-vitro and in-vivo investigations, terpenoids, particularly ginkgolides B, A, and bilobalide, can cause significant effects on neuropathic pain. The molecular docking results disclosed the tendency of our ligands to interact with mainly CB1 and FAAH-1, as well as partly with TLR4, throughout their interactions with targets. Terpene trilactone can exhibit a lower rate of binding energy than CB1's inhibitor (7dy), while being precisely located in the CB1's active site and capable of inducing stable interactions by forming hydrogen bonds. The analyses of MD simulation proved that ginkgolide B was a more suitable activator and inhibitor for CB1 and TLR4, respectively, when compared to bilobalide and ginkgolide A. Moreover, bilobalide is capable of inhibiting FAAH-1 more effectively than the two other ligands. According to the analyses of ADME, every three ligands followed the Lipinski's rule of five. Considering these facts, the exertion of three ligands is recommended for their anti-inflammatory, neuroprotective, and anti-nociception influences caused by primarily activating CB1 and inhibiting FAAH-1 and TLR4; in this regard, these compounds can stand as potential candidates for the control and treatment of CIPN's symptoms.


Subject(s)
Bilobalides , Peripheral Nervous System Diseases , Cyclopentanes/chemistry , Cyclopentanes/pharmacology , Furans/pharmacology , Ginkgo biloba/chemistry , Humans , Lactones/chemistry , Molecular Docking Simulation , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Plant Extracts , Terpenes/pharmacology , Toll-Like Receptor 4
12.
Appl Biochem Biotechnol ; 194(12): 6407-6422, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35932369

ABSTRACT

Diabetic retinopathy (DR) is a diabetes mellitus (DM) complication that causes visual acuity impairment and loss of sight in the working population, mainly in developed countries. According to the WHO, DR accounts for 5% of the world's 37 million blind people. The prevalence of diabetic retinopathy was highest in Africa, followed by North America and the Caribbean and South and Central America. Hyperglycemia can generate excessive ROS that activates multiple pathways, which can damage the cells. Oxidative stress and inflammatory process are intricate in the DR pathological mechanism. Bilobalide is the main bioactive compound isolated from the Ginkgo biloba, a plant utilized in folklore medicine. Bilobalide, a sesquiterpene trilactone, exhibits excellent antioxidant activity. But the molecular mechanisms associated with such effects, especially the antioxidant-related mechanism, have not been documented. Hence, this investigation explored whether bilobalide may attenuate DR in streptozotocin (STZ)-prompted diabetic rats. The effects of bilobalide on parameters of antioxidant content, oxidative stress, and inflammatory factors in the retinal tissues were evaluated by ELISA, RT-PCR, and immunohistochemistry methods. Bilobalide improved caloric management by reducing food consumption and increasing body weight. Furthermore, the administration of bilobalide decreases the blood glucose level and glycosylated (HbA1c) hemoglobin. The anti-retinopathy activity of bilobalide was established by the increase in the total retina thickness (TRT), inner nuclear layer (INL), and outer nuclear layer (ONL) in diabetic rats. Additionally, the serum level of MDA was decreased. In contrast, the antioxidant enzyme (SOD and CAT) levels were increased with TAC plus lower Keap1 and higher Nrf2 expression in the retina when associated with the DM rats. Moreover, bilobalide increased the nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase-1 (HO-1) expression level and inflammatory mediators (NF-κß p65, TNF-α, IL-1ß, and VEGF), thus inhibiting oxidative stress. Bilobalide can be effective against DR, and the possible mechanism may be relatively elucidated by decreasing oxidative stress and anti-inflammatory activities. But the further investigation should be directed to expose the precise mechanism.


Subject(s)
Bilobalides , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Rats , Animals , Streptozocin/adverse effects , NF-E2-Related Factor 2/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/prevention & control , Diabetic Retinopathy/complications , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Kelch-Like ECH-Associated Protein 1/metabolism , Bilobalides/pharmacology , Rats, Sprague-Dawley , Oxidative Stress , Retina/metabolism , Retina/pathology , Inflammation/drug therapy
13.
Tree Physiol ; 42(10): 2068-2085, 2022 10 07.
Article in English | MEDLINE | ID: mdl-35532090

ABSTRACT

Ginkgo biloba L. is currently the only remaining gymnosperm of the Ginkgoaceae Ginkgo genus, and its history can be traced back to the Carboniferous 200 million years ago. Terpene trilactones (TTLs) are one of the main active ingredients in G. biloba, including ginkgolides and bilobalide. They have a good curative effect on cardiovascular and cerebrovascular diseases because of their special antagonistic effect on platelet-activating factors. Therefore, it is necessary to deeply mine genes related to TTLs and to analyze their transcriptional regulation mechanism, which will hold vitally important scientific and practical significance for quality improvement and regulation of G. biloba. In this study, we performed RNA-Seq on the root, stem, immature leaf, mature leaf, microstrobilus, ovulate strobilus, immature fruit and mature fruit of G. biloba. The TTL regulatory network of G. biloba in different organs was revealed by different transcriptomic analysis strategies. Weighted gene co-expression network analysis (WGCNA) revealed that the five modules were closely correlated with organs. The 12 transcription factors, 5 structural genes and 24 Cytochrome P450 (CYP450) were identified as candidate regulators for TTL accumulation by WGCNA and cytoscape visualization. Finally, 6 APETALA2/ethylene response factors, 2 CYP450s and bHLH were inferred to regulate the metabolism of TTLs by correlation analysis. This study is the comprehensive in authenticating transcription factors, structural genes and CYP450 involved in TTL biosynthesis, thereby providing molecular evidence for revealing the comprehensive regulatory network involved in TTL metabolism in G. biloba.


Subject(s)
Bilobalides , Ginkgo biloba , Cytochrome P-450 Enzyme System/genetics , Ethylenes/metabolism , Gene Expression Profiling , Ginkgo biloba/chemistry , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ginkgolides/chemistry , Ginkgolides/metabolism , Lactones , Terpenes/metabolism , Transcription Factors/genetics
14.
Eur Rev Med Pharmacol Sci ; 26(24): 9502-9510, 2022 12.
Article in English | MEDLINE | ID: mdl-36591860

ABSTRACT

Alzheimer's disease (AD) is an irreversible degenerative illness of the central nervous system with characteristic histological alterations, known as amyloid plaques and neurofibrillary tangles (NFT). Aggregation of plaques and tangles in the brain induces neurotoxicity and synaptic dysfunction, eventually contributing to neuronal cell death and neurodegeneration. Recent studies have revealed that COVID-19 has a great impact on the development of AD, directly or indirectly, by facilitating the accumulation of amyloid plaques, causing altered functional brain integrity or increasing the phosphorylation rate of tau protein. As two important bioactive components of Ginkgo biloba extract (GbE), ginkgolides and bilobalide (BB) have been reported to show neuroprotective effects in AD via multiple mechanisms such as anti-excitotoxicity, anti-inflammatory and anti-oxidative activities. Intriguingly, ginkgolides and BB also seem to demonstrate antiviral properties against COVID-19 by inhibiting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. Herein, we review studies on the neuroprotective and antiviral mechanisms of ginkgolides and bilobalide, as well as their therapeutic potential against AD and COVID-19.


Subject(s)
Alzheimer Disease , Bilobalides , COVID-19 , Humans , Alzheimer Disease/drug therapy , Plaque, Amyloid/drug therapy , SARS-CoV-2 , Ginkgolides/pharmacology , Ginkgolides/therapeutic use , Plant Extracts/pharmacology , Ginkgo biloba
15.
Transl Psychiatry ; 11(1): 542, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671017

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) involves multiple cell types including endothelial cells, glia, and neurons. It suggests that therapy against single target in single cell type may not be sufficient to treat AD and therapies with protective effects in multiple cell types may be more effective. Here, we comprehensively investigated the effects of bilobalide on neuroinflammation and Aß degrading enzymes in AD cell model and mouse model. We find that bilobalide inhibits Aß-induced and STAT3-dependent expression of TNF-α, IL-1ß, and IL-6 in primary astrocyte culture. Bilobalide also induces robust expression of Aß degrading enzymes like NEP, IDE, and MMP2 to facilitate astrocyte-mediated Aß clearance. Moreover, bilobalide treatment of astrocyte rescues neuronal deficiency in co-cultured APP/PS1 neurons. Most importantly, bilobalide reduces amyloid and inflammation in AD mouse brain. Taken together, the protective effects of bilobalide in in vitro cultures were fully recapitulated in in vivo AD mouse model. Our study supports that bilobalide has therapeutic potential for AD treatment.


Subject(s)
Alzheimer Disease , Bilobalides , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Animals , Astrocytes , Endothelial Cells , Inflammation/drug therapy , Mice , Neurons
16.
Prog Brain Res ; 265: 249-315, 2021.
Article in English | MEDLINE | ID: mdl-34560923

ABSTRACT

Military personnel often exposed to high summer heat are vulnerable to heat stroke (HS) resulting in abnormal brain function and mental anomalies. There are reasons to believe that leakage of the blood-brain barrier (BBB) due to hyperthermia and development of brain edema could result in brain pathology. Thus, exploration of suitable therapeutic strategies is needed to induce neuroprotection in HS. Extracts of Gingko Biloba (EGb-761) is traditionally used in a variety of mental disorders in Chinese traditional medicine since ages. In this chapter, effects of TiO2 nanowired EGb-761 and BN-52021 delivery to treat brain pathologies in HS is discussed based on our own investigations. We observed that TiO2 nanowired delivery of EGb-761 or TiO2 BN-52021 is able to attenuate more that 80% reduction in the brain pathology in HS as compared to conventional drug delivery. The functional outcome after HS is also significantly improved by nanowired delivery of EGb-761 and BN-52021. These observations are the first to suggest that nanowired delivery of EGb-761 and BN-52021 has superior therapeutic effects in HS not reported earlier. The clinical significance in relation to the military medicine is discussed.


Subject(s)
Bilobalides , Heat Stroke , Neuroprotective Agents , China , Ginkgo biloba , Ginkgolides , Humans , Lactones , Neuroprotective Agents/pharmacology , Plant Extracts
17.
Phytother Res ; 35(11): 6114-6130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34342079

ABSTRACT

Bilobalide is a natural sesquiterpene trilactone from Ginkgo biloba leaves. It has good water solubility and is widely used in food and pharmaceutical fields. In the last decade, a plethora of studies on the pharmacological activities of bilobalide has been conducted and demonstrated that bilobalide possessed an extensive range of pharmacological activities such as neuroprotective, antioxidative, antiinflammatory, anti-ischemic, and cardiovascular protective activities. Pharmacokinetic studies indicated that bilobalide may have the characteristics of rapid absorption, good bioavailability, wide distribution, and slow elimination. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and safety studies of bilobalide in the last decade with an emphasis on its neuroprotective and antiinflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.


Subject(s)
Bilobalides , Biological Availability , Cyclopentanes/pharmacology , Furans/pharmacology , Ginkgo biloba , Ginkgolides/pharmacology , Plant Extracts/pharmacology
18.
Food Funct ; 12(14): 6226-6239, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34096560

ABSTRACT

Dysfunction of the intestinal epithelial barrier and intestinal microbiota dysbiosis can drive the onset or aggravation of ulcerative colitis (UC). Bilobalide (BI) is an extract of Ginkgo biloba that has been shown to exhibit a range of anti-inflammatory properties. Herein, we explored functional and mechanistic effects of BI treatment in a rodent model of DSS-induced UC. These analyses revealed that BI treatment was sufficient to reduce disease severity, increase colon length, and normalize colon histological characteristics relative to those observed in DSS-treated model mice. BI also enhanced the expression of tight junction proteins associated with intestinal barrier integrity including ZO-1, Occludin, and Claudin-3. Through 16S rDNA sequencing analyses, BI was also found to influence the overall richness of the intestinal microbiome, promoting the proliferation of probiotic species including Lactobacillus. Consistent with these in vivo findings, BI treatment protected RAW264.7 cells against lipopolysaccharide (LPS)-induced inflammatory damage, suppressing the activation of the AKT/NF-κB p65 and MAPK signaling pathways in this experimental context. In summary, these findings revealed that BI can suppress MAPK and AKT/NF-κB p65 signaling, thereby suppressing the production of inflammatory cytokines including IL-1ß, IL-6, and TNF-α, while additionally alleviating UC severity by facilitating repair of the intestinal epithelial barrier and the remodeling of intestinal microbial communities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bilobalides/pharmacology , Colitis, Ulcerative/drug therapy , Ginkgo biloba/chemistry , Plant Extracts/pharmacology , Animals , Colitis, Ulcerative/metabolism , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Dysbiosis/drug therapy , Dysbiosis/metabolism , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Tight Junction Proteins/metabolism
19.
Biomed Res Int ; 2021: 8835408, 2021.
Article in English | MEDLINE | ID: mdl-33959665

ABSTRACT

This study was aimed at examining the effect and underlying mechanisms of bilobalide (BB) on hepatic injury in streptozotocin- (STZ-) induced diabetes mellitus (DM) in immature rats. Immature rats (one day old) were randomly divided into five groups: group I, control nondiabetic rats; group II, STZ-induced, untreated diabetic rats; groups III/IV/V, STZ-induced and BB-treated diabetic rats, which were intraperitoneally injected with BB (2.5 mg/kg, 5 mg/kg, or 10 mg/kg) after 3 days followed by STZ treatment. We observed that BB improved the histopathological changes and maintained normal glucose metabolism, blood lipid, and liver function indicators, such as fasting blood glucose, obesity index, HbA1c, HOMA-IR, fast serum insulin, adiponectin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), aspartate transaminase (AST), and alanine transaminase (ALT) in STZ-induced DM in immature rats by a biochemical analyzer or ELISA. Meanwhile, Western blot analysis showed that in STZ-induced DM immature rats, BB decreased the expression of apoptosis-related proteins Bax, cleaved caspase-3, and cleaved caspase-9 while enhancing the Bcl-2 expression; BB downregulated the expression of ACC related to fat anabolism, while upregulating the expression of CPT-1 related to fat catabolism. Strikingly, treatment with BB significantly increased the expression of AMPKα1 as well as inhibited HMGB1, TLR4, and p-P65 expression in hepatic tissues of immature DM rats. AMPK inhibitor (compound C, CC) cotreated with BB undermined the protective effect of BB on the liver injury. The results of the present study suggested BB may have a significant role in alleviating liver damage in the STZ-induced immature DM rats.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Bilobalides/pharmacology , Diabetes Mellitus, Experimental/metabolism , Liver Diseases/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Arabidopsis Proteins/metabolism , Blood Glucose/drug effects , DNA-Binding Proteins/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , NF-kappa B/metabolism , Rats , Rats, Wistar , Toll-Like Receptor 4/metabolism
20.
J Biochem Mol Toxicol ; 35(5): e22723, 2021 May.
Article in English | MEDLINE | ID: mdl-33511709

ABSTRACT

Gastric carcinoma is one of the most aggressive types of cancer that ranks fifth among all cancer incidences and third in cancer mortality. As it exhibits a prolonged asymptomatic condition and high recurrence rate, it is a great challenge to treat gastric cancer. Traditional medicine that utilizes herbal phytochemicals to treat various diseases is a potent alternative for current allopathic treatment. Hence, we evaluated the potency of a phytochemical bilobalide for treating gastric cancer in in vitro and in vivo models. Bilobalide, a sesquiterpenoid, is present in the Ginkgo biloba plant that belongs to the family of Ginkgoaceae. The cytotoxicity effect of bilobalide was evaluated in both gastric cancer (AGS) cells and normal gastric epithelial cells. Apoptosis-inducing property of bilobalide against the AGS cell line was analyzed with different fluorescent staining techniques and terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and cell cycle analysis was carried out by flow cytometry. The in vivo studies were assessed with N-methyl-N-nitrosourea (MNU)-induced gastric cancer in rats. Serum-specific gastric markers were quantified and histopathological analysis of stomach tissue was performed. The expression of target-signaling molecules was analyzed by a reverse-transcription polymerase chain reaction. The in vitro results proved that bilobalide effectively suppressed the AGS cell growth and induced cell death by nuclear damage and apoptosis induction. The bilobalide treatment effectively arrested the cell cycle of AGS cells via inhibiting the PI3K-signaling pathway. Our in vivo results also confirmed that the bilobalide persuasively inhibited the MNU-induced gastric carcinoma via inhibiting the thioredoxin-fold family proteins and inflammatory markers' expression. Overall, our results authentically prove that bilobalide possesses therapeutic potency to cure gastric carcinoma.


Subject(s)
Apoptosis/drug effects , Bilobalides/pharmacology , Cell Proliferation/drug effects , Neoplasms, Experimental/drug therapy , Plant Extracts/chemistry , Stomach Neoplasms/drug therapy , Animals , Bilobalides/chemistry , Cell Line, Tumor , Ginkgo biloba , Humans , Male , Methylnitrosourea/toxicity , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Rats , Rats, Wistar , Stomach Neoplasms/chemically induced , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...