Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.873
Filter
1.
Cells ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920671

ABSTRACT

(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.


Subject(s)
Prefrontal Cortex , Signal Transduction , Social Isolation , Animals , Prefrontal Cortex/metabolism , Male , Rats , Biogenic Monoamines/metabolism , Rats, Sprague-Dawley , Behavior, Animal , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Enkephalins/metabolism , Enkephalins/genetics , Protein Precursors/metabolism , Protein Precursors/genetics , Transcriptome/genetics , Gene Expression Regulation
2.
Toxicology ; 505: 153839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782113

ABSTRACT

Neonicotinoid (NN) pesticides have been linked to increased brain dysfunction in mammals, such as anxiety-like behavior; this is thought to involve monoamines (MA), neurotransmitters that control behavior, memory, and learning. However, the mechanism by which NNs affect the central nervous system is not fully understood. In this study, we aimed to investigate whether MAs affect NNs-induced anxiety-like behavior. Mice were orally administered acetamiprid (ACE), an NN, at the no observed adverse effect level (NOAEL) of mouse (20 mg/kg body mass) set by the Food Safety Commission of Japan, and the elevated zero-maze (EZM) test was performed 30 min after administration. After behavioral analysis, levels of four MA (dopamine, 3-MT, serotonin, and histamine) in selected brain regions were determined by liquid chromatography mass spectrometry (LC/MS/MS). In the exposed group, a trend toward increased anxiety-like behavior was observed, and at least one MA concentration was significantly increased in each region. Further, significant correlations were found between behavioral test results and hippocampal serotonin and striatal dopamine concentrations, as well as between dopamine and serotonin concentrations, in the exposed group. As anxiety can influence activity in the behavioral tests, the activity of neurons in the raphe nuclei (RN), a brain region greatly involved in anxiety via the serotonergic system, was examined by staining with anti-serotonin antibodies, and increased serotonergic activity was observed. Taken together, these results suggest that ACE regulates MA levels, notably serotonin levels in the hippocampus and that RN plays an important role in ACE-induced anxiety-like behavior.


Subject(s)
Anxiety , Behavior, Animal , Biogenic Monoamines , Brain , Neonicotinoids , Animals , Anxiety/chemically induced , Anxiety/metabolism , Neonicotinoids/toxicity , Male , Biogenic Monoamines/metabolism , Mice , Brain/drug effects , Brain/metabolism , Behavior, Animal/drug effects , Insecticides/toxicity , Mice, Inbred ICR , Maze Learning/drug effects , Serotonin/metabolism , Dopamine/metabolism
3.
Cell Rep ; 43(4): 114042, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573858

ABSTRACT

Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor ß. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Neuropeptides , Pseudomonas aeruginosa , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/microbiology , Neuropeptides/metabolism , Pseudomonas aeruginosa/metabolism , Caenorhabditis elegans Proteins/metabolism , Biogenic Monoamines/metabolism , Neurons/metabolism , Avoidance Learning/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
4.
Aquat Toxicol ; 271: 106921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615580

ABSTRACT

Thimerosal (THI) is the most widely used form of organic mercury in pharmaceutical and personal care products, and has become a major source of ethylmercury pollution in aquatic ecosystems. However, knowledge about its potential risk to aquatic species is limited. In this study, zebrafish were exposed to THI for 7 days, and variations in their behavioral traits, brain monoaminergic neurotransmitter contents, and related gene expression were investigated. After the 7-day exposure, THI reduced locomotor activity and thigmotaxis in males but not females. Exposure to THI increased the social interaction between females but decreased that between males. The THI exposure also significantly reduced the serotonin (5-HT), 5-hydroxyindoleacetic acid, dopamine (DA), and 3,4-dihydroxyphenylacetic acid contents in the brain of males, but only significantly decreased the DA content in females. Correlation analysis revealed that the neurochemical alterations in the brain of zebrafish play critical roles in the behavioral abnormalities induced by THI exposure. Moreover, THI also significantly altered the expression of some genes associated with the synthesis, metabolism, and receptor binding of 5-HT and DA in the brain of zebrafish. The differences in these gene expressions between female and male zebrafish exposed to THI seem to be an important mechanism underlying their sex-specific responses to this chemical. This is the first report on the sex-specific effects of THI on behaviors and brain monoaminergic neurotransmitter contents in zebrafish, which can further improve our understanding of its toxic effects on teleost.


Subject(s)
Behavior, Animal , Brain , Thimerosal , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/physiology , Male , Female , Thimerosal/toxicity , Brain/drug effects , Brain/metabolism , Behavior, Animal/drug effects , Water Pollutants, Chemical/toxicity , Serotonin/metabolism , Dopamine/metabolism , Biogenic Monoamines/metabolism , Sex Factors , Sex Characteristics , Gene Expression Regulation/drug effects
5.
Psychoneuroendocrinology ; 165: 107033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569396

ABSTRACT

Peripartum mood and anxiety disorders (PMADs) affect 15-20% of peripartum women and are well known to disrupt infant caregiving. A recent study in humans reported that anxiety and depressive symptoms were alleviated by peripartum treatment with the probiotic, Lactocaseibacillus rhamnosus HN001. The current study determined the effects of chronic Lactocaseibacillus rhamnosus HN001 (HN001) treatment on postpartum affective and caregiving behaviors in a laboratory rodent model. Female rats were given probiotic overnight in their drinking water, or untreated water, from the first day of pregnancy through postpartum day 10. To determine whether the HN001 effects were influenced by a background of stress, half the females underwent chronic variable pregnancy stress and the other half remained undisturbed. The results revealed that, even without pregnancy stress, HN001 reduced postpartum anxiety-related behavior, increased variability in behavioral fragmentation when dams interacted with pups, increased time away from pups, and decreased prefrontal cortex norepinephrine (NE), dopamine (DA) and serotonin (5-HT). Probiotic plus stress consistently reduced the latency to float in the forced swim test, increased DA and 5-HT turnovers in the prefrontal cortex, increased hippocampal NE, and reduced hypothalamic DA. Fecal microbe alpha and beta diversities were lower postpartum than prepartum, which was prevented by the probiotic treatment and/or stress. Across the entire sample lower postpartum anxiety behavior was associated with lower fecal Bacteroides dorei. This study reveals novel information about how L. rhamnosus HN001 influences postpartum behavior and microbiota-gut-brain physiology in female laboratory rats, with implications for probiotic supplement use by pregnant and postpartum women.


Subject(s)
Anxiety , Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Postpartum Period , Probiotics , Animals , Female , Probiotics/pharmacology , Probiotics/administration & dosage , Rats , Anxiety/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Postpartum Period/metabolism , Pregnancy , Behavior, Animal/drug effects , Behavior, Animal/physiology , Serotonin/metabolism , Rats, Sprague-Dawley , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Norepinephrine/metabolism , Dopamine/metabolism , Stress, Psychological/metabolism , Maternal Behavior/physiology , Maternal Behavior/drug effects , Biogenic Monoamines/metabolism
6.
Behav Brain Res ; 467: 115023, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688411

ABSTRACT

Chronic social stress can increase susceptibility to chronic diseases such as depression. One of the most used models to study the physiological mechanisms and behavioral outcomes of this type of stress is chronic defeat stress (CDS) in male mice. OF1 male mice were subjected to a stress period lasting 18 days. During that time, non-stressed animals were housed in groups. The cluster analysis of the behavioral profile displayed during the first social interaction divided subjects into two groups: active/aggressive (AA) and passive/reactive (PR). The day after the end of the stress period, the following behavioral analyses were performed: the sucrose preference test (SPT) on day 19, the open field test (OFT) on day 20, and the forced swim test (FST) on day 21. Immediately after completing the last test, animals were weighed, and blood samples were obtained. Then, they were sacrificed, and their prefrontal cortices and hippocampi were removed and stored to analyze monoamine levels. Stressed animals displayed anhedonia, and solely the PR mice continued to show higher levels of immobility in the OFT and FST. All stressed animals, regardless of the coping strategy, presented higher plasma corticosterone levels. In addition, stressed mice showed lower levels of tyrosine, dopamine, DOPAC, MHPG, kynurenine, kynurenic acid, and 5-HIAA levels but higher serotonin levels in the prefrontal cortex, not in the hippocampus. In conclusion, our results show that CSD induces differences in monoamine levels between brain areas, and these differences did not respond to the coping strategy adopted.


Subject(s)
Biogenic Monoamines , Corticosterone , Hippocampus , Prefrontal Cortex , Stress, Psychological , Animals , Male , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Hippocampus/metabolism , Mice , Biogenic Monoamines/metabolism , Corticosterone/blood , Social Defeat , Anhedonia/physiology , Aggression/physiology , Disease Models, Animal
7.
Mol Cell Endocrinol ; 588: 112215, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38548145

ABSTRACT

Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.


Subject(s)
Biogenic Monoamines , Bivalvia , Neurosecretory Systems , Animals , Neurosecretory Systems/metabolism , Bivalvia/metabolism , Biogenic Monoamines/metabolism , Signal Transduction , Invertebrates/metabolism
8.
Nature ; 629(8010): 235-243, 2024 May.
Article in English | MEDLINE | ID: mdl-38499039

ABSTRACT

Biogenic monoamines-vital transmitters orchestrating neurological, endocrinal and immunological functions1-5-are stored in secretory vesicles by vesicular monoamine transporters (VMATs) for controlled quantal release6,7. Harnessing proton antiport, VMATs enrich monoamines around 10,000-fold and sequester neurotoxicants to protect neurons8-10. VMATs are targeted by an arsenal of therapeutic drugs and imaging agents to treat and monitor neurodegenerative disorders, hypertension and drug addiction1,8,11-16. However, the structural mechanisms underlying these actions remain unclear. Here we report eight cryo-electron microscopy structures of human VMAT1 in unbound form and in complex with four monoamines (dopamine, noradrenaline, serotonin and histamine), the Parkinsonism-inducing MPP+, the psychostimulant amphetamine and the antihypertensive drug reserpine. Reserpine binding captures a cytoplasmic-open conformation, whereas the other structures show a lumenal-open conformation stabilized by extensive gating interactions. The favoured transition to this lumenal-open state contributes to monoamine accumulation, while protonation facilitates the cytoplasmic-open transition and concurrently prevents monoamine binding to avoid unintended depletion. Monoamines and neurotoxicants share a binding pocket that possesses polar sites for specificity and a wrist-and-fist shape for versatility. Variations in this pocket explain substrate preferences across the SLC18 family. Overall, these structural insights and supporting functional studies elucidate the mechanism of vesicular monoamine transport and provide the basis to develop therapeutics for neurodegenerative diseases and substance abuse.


Subject(s)
Biogenic Monoamines , Drug Interactions , Vesicular Monoamine Transport Proteins , Humans , 1-Methyl-4-phenylpyridinium/chemistry , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Amphetamine/chemistry , Amphetamine/pharmacology , Amphetamine/metabolism , Binding Sites , Biogenic Monoamines/chemistry , Biogenic Monoamines/metabolism , Cryoelectron Microscopy , Dopamine/chemistry , Dopamine/metabolism , Models, Molecular , Norepinephrine/chemistry , Norepinephrine/metabolism , Protein Binding , Protons , Reserpine/pharmacology , Reserpine/chemistry , Reserpine/metabolism , Serotonin/chemistry , Serotonin/metabolism , Substrate Specificity , Vesicular Monoamine Transport Proteins/chemistry , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/ultrastructure
9.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276574

ABSTRACT

This review highlights the advantages of high-precision liquid chromatography with an electrochemical detector (HPLC-ECD) in detecting and quantifying biological samples obtained through intracerebral microdialysis, specifically the serotonergic and dopaminergic systems: Serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), 3-metoxytryptamin (3-MT) and homovanillic acid (HVA). Recognized for its speed and selectivity, HPLC enables direct analysis of intracerebral microdialysis samples without complex derivatization. Various chromatographic methods, including reverse phase (RP), are explored for neurotransmitters (NTs) and metabolites separation. Electrochemical detector (ECD), particularly with glassy carbon (GC) electrodes, is emphasized for its simplicity and sensitivity, aimed at enhancing reproducibility through optimization strategies such as modified electrode materials. This paper underscores the determination of limits of detection (LOD) and quantification (LOQ) and the linear range (L.R.) showcasing the potential for real-time monitoring of compounds concentrations. A non-exhaustive compilation of literature values for LOD, LOQ, and L.R. from recent publications is included.


Subject(s)
Dopamine , Serotonin , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Dopamine/metabolism , Chromatography, Liquid , Serotonin/metabolism , Neurotransmitter Agents , 3,4-Dihydroxyphenylacetic Acid/metabolism , Hydroxyindoleacetic Acid/analysis , Hydroxyindoleacetic Acid/metabolism , Biogenic Monoamines
10.
J Inherit Metab Dis ; 47(3): 533-550, 2024 05.
Article in English | MEDLINE | ID: mdl-38168036

ABSTRACT

Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.


Subject(s)
Disease Models, Animal , Neurotransmitter Agents , Animals , Mice , Humans , Neurotransmitter Agents/metabolism , Biogenic Monoamines/metabolism
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2497-2506, 2024 04.
Article in English | MEDLINE | ID: mdl-37851059

ABSTRACT

Quercetin, a plant-derived flavonoid, is an antioxidant and has demonstrated antidepressant and anti-inflammatory activities in several animal models. However, there is scanty information on the underlying mechanisms of its antidepressant property. This present study aimed at assessing the involvement of monoaminergic systems in the antidepressant-like activity of quercetin in experimental animals. Mice received varying doses of quercetin (25, 50 &100 mg/kg daily) and were then subjected to open field test (OPF), despair tests, the reserpine test, and the yohimbine lethality test (YLT). In addition, monoaminergic involvement was investigated by combining quercetin (100 mg/kg) with dopaminergic antagonists (haloperidol and sulpiride), adrenergic blockers (prazosin, propranolol and yohimbine), and serotonergic blockers/inhibitors (metergoline). The results showed that quercetin produced significant anti-immobility effects in the forced swim test (FST) and tail suspension test (TST), suggesting antidepressant activity. In addition, the potentiation of yohimbine lethality by quercetin further indicates its antidepressant-like property. This antidepressant action demonstrated was, however, blocked when quercetin was co-administered with dopaminergic, adrenergic and serotonergic antagonists, suggesting involvement of the monoaminergic system in the antidepressant action of quercetin. Nevertheless, quercetin did not significantly alter the locomotor activity of mice, which implies lack of stimulant effect. Taken together, these outcomes suggest that monoaminergic systems are likely involved in the anti-depressant effect of quercetin in mice.


Subject(s)
Biogenic Monoamines , Quercetin , Animals , Mice , Quercetin/pharmacology , Biogenic Monoamines/metabolism , Antidepressive Agents/pharmacology , Sulpiride/pharmacology , Yohimbine/pharmacology , Swimming , Hindlimb Suspension , Depression/metabolism , Behavior, Animal
12.
Bull Exp Biol Med ; 175(6): 739-743, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978148

ABSTRACT

The activity in the open field, short- and long-term memory in the novel object recognition test, and gait features were evaluated in 6- and 12-month-old male C57BL/6 mice. The levels of norepinephrine, dopamine, serotonin, and their metabolites were determined in the cerebellum and frontal cortex. In the observed age range, a decrease in locomotion speed, impairment of gait initiation and stability, and long-term memory deficit were revealed. In the cerebral cortex, reduced levels of dopamine and its metabolites and accelerated metabolism of all neurotransmitters under study were found. In the cerebellum, the content of all studied monoamines was elevated, while dopamine metabolism was decelerated. Analysis of correlations between the neurochemical and behavioral parameters showed that the mechanisms of compensation of brain functions during the early aging may be associated with an increase in activity of the monoaminergic systems in the cerebellum.


Subject(s)
Dopamine , Norepinephrine , Mice , Animals , Male , Dopamine/metabolism , Mice, Inbred C57BL , Norepinephrine/metabolism , Cognition , Cerebellum/metabolism , Frontal Lobe/metabolism , Aging , Brain/metabolism , Biogenic Monoamines/metabolism
13.
Curr Opin Chem Biol ; 74: 102302, 2023 06.
Article in English | MEDLINE | ID: mdl-37054563

ABSTRACT

Protein monoaminylation is a biochemical process through which biogenic monoamines (e.g., serotonin, dopamine, histamine, etc.) are covalently bonded to certain protein substrates via Transglutaminase 2, an enzyme that catalyzes the transamidation of primary amines to the γ-carboxamides of glutamine residues. Since their initial discovery, these unusual post-translational modifications have been implicated in a wide variety of biological processes, ranging from protein coagulation to platelet activation and G-protein signaling. More recently, histone proteins - specifically histone H3 at glutamine 5 (H3Q5) - have been added to the growing list of monoaminyl substrates in vivo, with H3Q5 monoaminylation demonstrated to regulate permissive gene expression in cells. Such phenomena have further been shown to contribute critically to various aspects of (mal)adaptive neuronal plasticity and behavior. In this short review, we examine the evolution of our understanding of protein monoaminylation events, highlighting recent advances in the elucidation of their roles as important chromatin regulators.


Subject(s)
Glutamine , Histones , Histones/chemistry , Glutamine/metabolism , Protein Processing, Post-Translational , Biogenic Monoamines/metabolism , Neurotransmitter Agents
14.
Trends Neurosci ; 46(4): 263-275, 2023 04.
Article in English | MEDLINE | ID: mdl-36803800

ABSTRACT

During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.


Subject(s)
Biogenic Monoamines , Neoplasms , Neurosecretory Systems , Neoplasms/immunology , Neoplasms/metabolism , Homeostasis , Neurosecretory Systems/metabolism , Humans , Carcinogenesis , Disease Progression , Animals , Immune System/metabolism , Biogenic Monoamines/metabolism
15.
Article in English | MEDLINE | ID: mdl-36682335

ABSTRACT

Monoamines are a class of neuromodulators that are crucial for a variety of brain functions, including control of mood, movement, sleep and cognition. From mammals to insects, the nervous system is enriched in monoamines such as dopamine, serotonin and melatonin, analytes which range from being highly polar to non-polar. Here we developed a method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify in a single run the amounts of six distinct monoamines in extracts from dissected Drosophila and mouse brain tissues. The measured monoamines were dopamine (DA), serotonin (also known as 5-hydroxytryptamine (5-HT)), octopamine (OA, an insect equivalent of norepinephrine), tyramine (TA), melatonin (MT) and N-acetylserotonin (NAS). The analytical range of these monoamines was between 0.25 and 5.0 ng/mL. This quantitative LC-MS/MS methodology has important use for simultaneous measurement of distinct neuroactive monoamines from precious biological specimens.


Subject(s)
Dopamine , Melatonin , Mice , Animals , Chromatography, Liquid/methods , Dopamine/analysis , Tandem Mass Spectrometry/methods , Serotonin , Amines , Brain , Biogenic Monoamines , Chromatography, High Pressure Liquid/methods , Mammals
16.
Neurochem Res ; 48(6): 1755-1774, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36680692

ABSTRACT

Social isolation (SI) is chronic psycho-emotional stress for humans and other socially living species. There are few comparative studies that have measured monoamine levels in brain structures in male and female rats subjected to SI. Existing data is highly controversial. In our recent study, we investigated behavioral effects of SI prolonged up to 9 months on a rather large sample of 69 male and female Wistar rats. In the present study, we measured the levels of monoamines-norepinephrine (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), and DA and 5-HT metabolites-in the brain structures of 40 rats from the same sample. The single-housed rats of both sexes showed hyperactivity and reduced reactivity to novelty in the Open Field test, and impaired passive avoidance learning. Regardless of their sex, by the time of sacrifice, the single-housed rats weighed less and had lower pain sensitivity and decreased anxiety compared with group-housed animals. SI decreased NE levels in the hippocampus and increased them in the striatum. SI induced functional activation of the DA-ergic system in the frontal cortex and hypothalamus, with increased DA and 3-methoxytyramine levels. SI-related changes were found in the 5-HT-ergic system: 5-HT levels increased in the frontal cortex and striatum, while 5-hydroxyindoleacetic acid only increased in the frontal cortex. We believe that SI prolonged for multiple months could be a valuable model for comparative analysis of the behavioral alterations and the underlying molecular processes in dynamics of adaptation to chronic psychosocial stress in male and female rats in relation to age-dependent changes.


Subject(s)
Brain , Social Isolation , Male , Female , Animals , Rats , Rats, Wistar , Biogenic Monoamines/metabolism , Brain/metabolism , Behavior, Animal , Maze Learning , Body Weight , Anxiety
17.
Int J Mol Sci ; 23(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36233200

ABSTRACT

Reduction in the levels of monoamines, such as serotonin and dopamine in the brain, were reported in patients and animals with depression. SAMe, a universal methyl donor and an epigenetic modulator, is successfully used as an adjunct treatment of depression. We previously found that prenatal treatment with SAMe of Submissive (Sub) mice that serve as a model for depression alleviated many of the behavioral depressive symptoms. In the present study, we treated pregnant Sub mice with 20 mg/kg of SAMe on days 12-15 of gestation and studied the levels of monoamines and the expression of genes related to monoamines metabolism in their prefrontal cortex (PFC) at the age of 3 months. The data were compared to normal saline-treated Sub mice that exhibit depressive-like symptoms. SAMe increased the levels of serotonin in the PFC of female Sub mice but not in males. The levels of 5-HIAA were not changed. SAMe increased the levels of dopamine and of DOPAC in males and females but increased the levels of HVA only in females. The levels of norepinephrine and its metabolite MHPG were unchanged. SAMe treatment changed the expression of several genes involved in the metabolism of these monoamines, also in a sex-related manner. The increase in several monoamines induced by SAMe in the PFC may explain the alleviation of depressive-like symptoms. Moreover, these changes in gene expression more than 3 months after treatment probably reflect the beneficial effects of SAMe as an epigenetic modulator in the treatment of depression.


Subject(s)
Dopamine , Serotonin , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Animals , Biogenic Monoamines/metabolism , Brain/metabolism , Catecholamines/metabolism , Depression/drug therapy , Depression/genetics , Dopamine/metabolism , Epigenesis, Genetic , Female , Hierarchy, Social , Hydroxyindoleacetic Acid/metabolism , Male , Methoxyhydroxyphenylglycol , Mice , Norepinephrine/metabolism , Saline Solution , Serotonin/metabolism
18.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296561

ABSTRACT

Two different pretreatment approaches have been used for the enrichment and separation of biogenic monoamines and metabolites in plasma for high performance liquid chromatography (HPLC) determination. The first approach, based on on-line packed-fiber solid-phase extraction (PFSPE) coupled with HPLC, allows for the simultaneous detection of epinephrine (E), norepinephrine (NE), dopamine (DA), 3-methoxyl epinephrine (MN), norepinephrine (NMN), 3-methoxytyramine (3-MT), and 5-hydroxytryptamin (5-HT). Using this developed on-line PFSPE-HPLC method, the limit of detections (LODs) of the seven analytes ranged from 1 ng/mL (NMN and MN) to 2 ng/mL (NE, E, DA, 3-MT and 5-HT). The reportable ranges were 5-300 ng/mL for NE and DA, 5-100 ng/mL for E, and 5-200 ng/mL for NMN, MN, 3-MT and 5-HT. The off-line PFSPE-HPLC was employed in the second approach and could provide simultaneous detection of NE, E, DA, NMN, and MN. The linearity was verified in the range of 0.5-20 ng/mL (NE, E, and DA) and 20-250 ng/mL (NMN and MN). The LODs of the five analytes ranged from 0.2 ng/mL (NE, E, and DA) to 5 ng/mL (NMN and MN). This study verified the possibility of using nanofibers as an adsorbent in an on-line PFSPE-HPLC system for the determination of biogenic monoamines and their metabolites in human plasma. Compared with the off-line PFSPE approach, the on-line PFSPE method deserves attention mainly due to its greener character, derived from the automation of the process and high-throughput with less operators' handling.


Subject(s)
Dopamine , Nanofibers , Humans , Nanofibers/chemistry , Serotonin , Solid Phase Extraction/methods , Biogenic Monoamines , Chromatography, High Pressure Liquid/methods , Norepinephrine , Epinephrine
19.
Int Immunopharmacol ; 104: 108488, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35042170

ABSTRACT

Depression is a risk factor for Alzheimer's (AD) and cardiovascular diseases (CVD). Therefore, depression treatment restricts its deteriorating effects on mood, memory and CV system. Fluoxetine is the most widely used antidepressant drug, it has neuroprotective effect through its antioxidant/anti-inflammatory properties. The current study investigated for the first-time the cross link between depression, AD and CVD besides, role of fluoxetine in mitigating such disorders. Depression was induced in rats by social isolation (SI) for 12 weeks, AlCL3 (70 mg/kg/day, i.p.) was used to induce AD which was administered either in SI or normal control (NC) grouped rats starting at 8th week till the end of the experiment, fluoxetine (10 mg/kg/day, p.o) treatment also was started at 8th week. SI and AD showed a statistically significant deteriorated effect on behavioral, neurochemical and histopathological analysis which was exaggerated when two disorder combined than each alone. Fluoxetine treatment showed protective effect against SI, AD and prevents exacerbation of CVD. Fluoxetine improved animals' behavior, increased brain monoamines, BDNF besides increased antioxidant defense mechanism of SOD, TAC contents and increased protein expression of Nrf2/HO-1 with significant decrease of AChE activity, ß-amyloid, Tau protein, MDA, TNF-α, IL1ß contents as well as decreased protein expression of NF-kB, TLR4, NLRP3 and caspase1. It also showed cardioprotective effects as it improved lipid profile with pronounced decrease of cardiac enzymes of CK-MB, troponin and MEF2. In conclusion, fluoxetine represents as a promising drug against central and peripheral disorders through its anti-inflammatory/antioxidant effects via targeting antioxidant Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.


Subject(s)
Alzheimer Disease/drug therapy , Antidepressive Agents/therapeutic use , Depression/drug therapy , Fluoxetine/therapeutic use , Neuroprotective Agents/therapeutic use , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Antidepressive Agents/pharmacology , Antioxidants/metabolism , Behavior, Animal/drug effects , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Depression/metabolism , Depression/pathology , Disease Progression , Fluoxetine/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Inflammasomes/metabolism , Male , Myocardium/pathology , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Social Isolation , Toll-Like Receptor 4/metabolism
20.
Aquat Toxicol ; 242: 106048, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34875488

ABSTRACT

Nowadays, microplastics (MPs) and adsorbed pollutants are considered a global thread to marine ecosystems. This study describes the effects of pollutants and MPs ingestion on fish brains through the assessment of oxidative stress biomarkers and monoaminergic neurotransmitters using gilthead seabream (Sparus aurata) as fish model. Juveniles were experimentally exposed to three different dietary treatments for 90 days: Control treatment (C) consisted of standard feed; Virgin treatment (V) contained feed enriched with 10% of MPs; and Exposed treatment (E) consisted of feed with 10% of MPs that were exposed to seawater in an anthropogenically impacted area for 2 months in order to enrich the plastic with the pollutants within the water column. Sampling was made at the start of the experiment (T0), at the end of the dietary treatments (T90) and after a posterior detoxification period of 30 days (T120). Results evidenced that a MPs and pollutants enriched diet increases the activity of some of the oxidative stress biomarkers (e.g. CAT and GST), and it was shown for the first time alterations on dopaminergic and serotonergic system activity on seabream brains, indicating potential neurofunctional effects associated to MPs and pollutants ingestion. In addition, results showed a tendency to recover enzymatic and brain monoaminergic neurotransmitter levels after a 30-day detoxification period. In conclusion, MPs and pollutants exposure for 90 days induced oxidative stress and changes on monoaminergic activity in the brain of S. aurata.


Subject(s)
Brain/drug effects , Microplastics/toxicity , Oxidative Stress , Sea Bream , Water Pollutants, Chemical , Animals , Biogenic Monoamines , Eating , Ecosystem , Neurotransmitter Agents , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...