Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.712
Filter
2.
Cell Mol Life Sci ; 81(1): 348, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136766

ABSTRACT

The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.


Subject(s)
Caenorhabditis elegans , Lipid Droplets , Pseudomonas aeruginosa , Humans , Lipid Droplets/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , HEK293 Cells , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Biological Clocks/genetics , Biological Evolution , Lipid Metabolism/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology
3.
Front Immunol ; 15: 1444426, 2024.
Article in English | MEDLINE | ID: mdl-39139571

ABSTRACT

Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.


Subject(s)
Aging , Breast Neoplasms , Circadian Rhythm , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Breast Neoplasms/immunology , Circadian Rhythm/immunology , Female , Aging/immunology , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Biological Clocks
4.
Arch Med Res ; 55(5): 103033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955096

ABSTRACT

Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.


Subject(s)
Aging , DNA Methylation , Epigenesis, Genetic , Humans , Aging/genetics , Epigenomics/methods , Biological Clocks/genetics
5.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000578

ABSTRACT

Aging clocks are predictive models of biological age derived from age-related changes, such as epigenetic changes, blood biomarkers, and, more recently, the microbiome. Gut and skin microbiota regulate more than barrier and immune function. Recent studies have shown that human microbiomes may predict aging. In this narrative review, we aim to discuss how the gut and skin microbiomes influence aging clocks as well as clarify the distinction between chronological and biological age. A literature search was performed on PubMed/MEDLINE databases with the following keywords: "skin microbiome" OR "gut microbiome" AND "aging clock" OR "epigenetic". Gut and skin microbiomes may be utilized to create aging clocks based on taxonomy, biodiversity, and functionality. The top contributing microbiota or metabolic pathways in these aging clocks may influence aging clock predictions and biological age. Furthermore, gut and skin microbiota may directly and indirectly influence aging clocks through the regulation of clock genes and the production of metabolites that serve as substrates or enzymatic regulators. Microbiome-based aging clock models may have therapeutic potential. However, more research is needed to advance our understanding of the role of microbiota in aging clocks.


Subject(s)
Aging , Gastrointestinal Microbiome , Microbiota , Skin , Humans , Skin/microbiology , Skin/metabolism , Gastrointestinal Microbiome/physiology , Epigenesis, Genetic , Animals , Biological Clocks
6.
Reproduction ; 168(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39028584

ABSTRACT

In Brief: The mechanisms that determine the length of pregnancy remain undetermined. Here, we review what has been previously published on the topic and incorporate new data to describe a molecular model in which placental stress and fetal signaling ultimately lead to labor onset in uncomplicated pregnancies. Abstract: The mechanisms that govern the length of human pregnancy have not been determined, while preterm birth remains the leading cause of death and disability in newborns worldwide. Here, we review recent data to generate a novel hypothesis about how the pregnancy clock may function to initiate human labor in uncomplicated pregnancies. In this model, placental stress induced by the growing fetus drives placental production of NFKB, which is then activated by exosomes containing platelet-activating factor and complement 4-binding protein-A from the mature fetus, to drive pro-labor genes in the placenta. A better understanding of the clock that triggers labor may lead to new, more effective therapies to prevent spontaneous preterm birth.


Subject(s)
Placenta , Humans , Female , Pregnancy , Placenta/metabolism , Placenta/physiology , Biological Clocks , Premature Birth/metabolism , Labor Onset/physiology
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159530, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964437

ABSTRACT

STUDY OBJECTIVES: This study aimed to examine the effect of sleep deprivation (SD) on lipid metabolism or lipid metabolism regulation in the liver and white adipose tissue (WAT) during the light and dark phases and explored the possible mechanisms underlying the diurnal effect of SD on lipid metabolism associated with clock genes. METHODS: Male C57BL/6J mice aged 2 months were deprived of sleep daily for 20 h for ten consecutive days with weakly forced locomotion. The body weights and food consumption levels of the SD and control mice were recorded, and the mice were then sacrificed at ZT (zeitgeber time) 2 and ZT 14. The peripheral clock genes, enzymes involved in fat synthesis and catabolism in the WAT, and melatonin signalling pathway-mediated lipid metabolism in the liver were assessed. Untargeted metabolomics and tandem mass tag (TMT) proteomics were used to identify differential lipid metabolism pathways in the liver. RESULTS: Bodyweight gain and daily food consumption were dramatically elevated after SD. Profound disruptions in the diurnal regulation of the hepatic peripheral clock and enzymes involved in fat synthesis and catabolism in the WAT were observed, with a strong emphasis on hepatic lipid metabolic pathways, while melatonin signalling pathway-mediated lipid metabolism exhibited moderate changes. CONCLUSIONS: In mice, ten consecutive days of SD increased body weight gain and daily food consumption. In addition, SD profoundly disrupted lipid metabolism in the WAT and liver during the light and dark periods. These diurnal changes may be related to disorders of the peripheral biological clock.


Subject(s)
Adipose Tissue, White , Circadian Rhythm , Lipid Metabolism , Liver , Mice, Inbred C57BL , Sleep Deprivation , Animals , Sleep Deprivation/metabolism , Male , Mice , Liver/metabolism , Adipose Tissue, White/metabolism , Melatonin/metabolism , Biological Clocks/genetics , Body Weight , Signal Transduction
9.
Sci Rep ; 14(1): 15001, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951618

ABSTRACT

Daylight saving time (DST) is currently utilized in many countries with the rationale that it enhances the alignment between daylight hours and activity peaks in the population. The act of transitioning into and out of DST introduces disruptions to the circadian rhythm, thereby impacting sleep and overall health. Despite the substantial number of individuals affected, the consequences of this circadian disruption have often been overlooked. Here, we employ a mathematical model of the human circadian pacemaker to elucidate how the biological clock interacts with daytime and evening exposures to both natural and electrical light. This interaction plays a crucial role in determining the adaptation to the 1 hour time zone shift imposed by the transition to or from DST. In global discussions about DST, there is a prevailing assumption that individuals easily adjust to DST transitions despite a few studies indicating that the human circadian system requires several days to fully adjust to a DST transition. Our study highlights that evening light exposure changes can be the main driving force for re-entrainment, with chronobiological models predicting that people with longer intrinsic period (i.e. later chronotype) entrain more slowly to transitions to or from DST as compared to people with a shorter intrinsic period (earlier chronotype). Moreover, the model forecasts large inter-individual differences in the adaptation speed, in particular during the spring transition. The predictions derived from our model offer circadian biology-based recommendations for light exposure strategies that facilitate a more rapid adaptation to DST-related transitions or travel across a single time zone. As such, our study contributes valuable insights to the ongoing discourse on DST and its implications for human circadian rhythms.


Subject(s)
Circadian Rhythm , Photoperiod , Humans , Circadian Rhythm/physiology , Light , Sleep/physiology , Models, Theoretical , Adaptation, Physiological , Biological Clocks/physiology , Circadian Clocks/physiology , Models, Biological
10.
Cell Syst ; 15(7): 595-596, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024922

ABSTRACT

Rhythmic gene expression can originate not only from the autonomous rhythm of clock genes but likely also from sleep-wake cycles. Jan and colleagues used a novel model-based approach to dissect these individual effects and found that both factors contribute to gene expression rhythms, varying in degree within and across tissues.


Subject(s)
Circadian Rhythm , Sleep , Sleep/genetics , Sleep/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Humans , Animals , Gene Expression Regulation/genetics , Circadian Clocks/genetics , Biological Clocks/genetics
11.
J Hazard Mater ; 476: 134912, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38909469

ABSTRACT

Acrylamide (ACR) is a known carcinogen and neurotoxin. It is chronically consumed in carbohydrate-rich snacks processed at high temperatures. This calls for systematic research into the effects of ACR intake, best performed in an experimental model capable of detecting symptoms of its neurotoxicity at both high and low doses. Here, we study the influence of 10 µg/g (corresponding to the concentrations found in food products) and, for comparison, 60, 80 and 110 µg/g dietary ACR, on the fruit fly Drosophila melanogaster. We show that chronic administration of ACR affects lifespan, activity level and, most importantly, the daily and circadian pattern of locomotor activity of Drosophila. ACR-treated flies show well-defined and concentration-dependent symptoms of ACR neurotoxicity; a reduced anticipation of upcoming changes in light conditions and increased arrhythmicity in constant darkness. The results suggest that the rhythm-generating neural circuits of their circadian oscillator (biological clock) are sensitive to ACR even at low concentrations if the exposure time is sufficiently long. This makes the behavioural readout of the clock, the rhythm of locomotor activity, a useful tool for studying the adverse effects of ACR and probably other compounds.


Subject(s)
Acrylamide , Drosophila melanogaster , Animals , Acrylamide/toxicity , Drosophila melanogaster/drug effects , Locomotion/drug effects , Biological Clocks/drug effects , Circadian Rhythm/drug effects , Male , Diet , Female , Longevity/drug effects
12.
Ecol Evol Physiol ; 97(3): 157-163, 2024.
Article in English | MEDLINE | ID: mdl-38875139

ABSTRACT

AbstractTwo prominent theories of aging, one based on telomere dynamics and the other on mass-specific energy flux, propose biological time clocks of senescence. The relationship between these two theories, and the biological clocks proposed by each, remains unclear. Here, we examine the relationships between telomere shortening rate, mass-specific metabolic rate, and lifespan among vertebrates (mammals, birds, fishes). Results show that telomere shortening rate increases linearly with mass-specific metabolic rate and decreases nonlinearly with increasing body mass in the same way as mass-specific metabolic rate. Results also show that both telomere shortening rate and mass-specific metabolic rate are similarly related to lifespan and that both strongly predict differences in lifespan, although the slopes of the relationships are less than linear. On average, then, telomeres shorten a fixed amount per unit of mass-specific energy flux. So the mitotic clock of telomere shortening and the energetics-based clock described by metabolic rate can be viewed as alternative measures of the same biological clock. These two processes may be linked, we speculate, through the process of cell division.


Subject(s)
Aging , Biological Clocks , Telomere , Animals , Telomere/metabolism , Aging/genetics , Aging/physiology , Biological Clocks/physiology , Biological Clocks/genetics , Telomere Shortening , Longevity/genetics , Longevity/physiology , Energy Metabolism/physiology , Vertebrates/genetics , Vertebrates/physiology
13.
Adv Exp Med Biol ; 1455: 51-78, 2024.
Article in English | MEDLINE | ID: mdl-38918346

ABSTRACT

Extracting temporal regularities and relations from experience/observation is critical for organisms' adaptiveness (communication, foraging, predation, prediction) in their ecological niches. Therefore, it is not surprising that the internal clock that enables the perception of seconds-to-minutes-long intervals (interval timing) is evolutionarily well-preserved across many species of animals. This comparative claim is primarily supported by the fact that the timing behavior of many vertebrates exhibits common statistical signatures (e.g., on-average accuracy, scalar variability, positive skew). These ubiquitous statistical features of timing behaviors serve as empirical benchmarks for modelers in their efforts to unravel the processing dynamics of the internal clock (namely answering how internal clock "ticks"). In this chapter, we introduce prominent (neuro)computational approaches to modeling interval timing at a level that can be understood by general audience. These models include Treisman's pacemaker accumulator model, the information processing variant of scalar expectancy theory, the striatal beat frequency model, behavioral expectancy theory, the learning to time model, the time-adaptive opponent Poisson drift-diffusion model, time cell models, and neural trajectory models. Crucially, we discuss these models within an overarching conceptual framework that categorizes different models as threshold vs. clock-adaptive models and as dedicated clock/ramping vs. emergent time/population code models.


Subject(s)
Models, Neurological , Time Perception , Animals , Time Perception/physiology , Humans , Biological Clocks/physiology , Computer Simulation , Neurons/physiology
14.
Proc Natl Acad Sci U S A ; 121(25): e2318229121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865277

ABSTRACT

Animals from all major clades have evolved a segmented trunk, reflected in the human spine or the insect segments. These units emerge during embryogenesis from a posterior segment addition zone (SAZ), where repetitive gene activity is regulated by a mechanism described by the clock and wavefront/speed gradient model. In the red flour beetle Tribolium castaneum, RNA interference (RNAi) has been used to continuously knock down the function of primary pair-rule genes (pPRGs), caudal or Wnt pathway components, which has led to the complete breakdown of segmentation. However, it has remained untested, if this breakdown was reversible by bringing the missing gene function back to the system. To fill this gap, we established a transgenic system in T. castaneum, which allows blocking an ongoing RNAi effect with temporal control by expressing a viral inhibitor of RNAi via heat shock. We show that the T. castaneum segmentation machinery was able to reestablish after RNAi targeting the pPRGs Tc-eve, Tc-odd, and Tc-runt was blocked. However, we observed no rescue after blocking RNAi targeting Wnt pathway components. We conclude that the insect segmentation system contains both robust feedback loops that can reestablish and labile feedback loops that break down irreversibly. This combination may reconcile conflicting needs of the system: Labile systems controlling initiation and maintenance of the SAZ ensure that only one SAZ is formed. Robust feedback loops confer developmental robustness toward external disturbances.


Subject(s)
Body Patterning , RNA Interference , Tribolium , Animals , Tribolium/genetics , Body Patterning/genetics , Gene Expression Regulation, Developmental , Feedback, Physiological , Animals, Genetically Modified , Biological Clocks/genetics
15.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928497

ABSTRACT

Aging is a complex and time-dependent decline in physiological function that affects most organisms, leading to increased risk of age-related diseases. Investigating the molecular underpinnings of aging is crucial to identify geroprotectors, precisely quantify biological age, and propose healthy longevity approaches. This review explores pathways that are currently being investigated as intervention targets and aging biomarkers spanning molecular, cellular, and systemic dimensions. Interventions that target these hallmarks may ameliorate the aging process, with some progressing to clinical trials. Biomarkers of these hallmarks are used to estimate biological aging and risk of aging-associated disease. Utilizing aging biomarkers, biological aging clocks can be constructed that predict a state of abnormal aging, age-related diseases, and increased mortality. Biological age estimation can therefore provide the basis for a fine-grained risk stratification by predicting all-cause mortality well ahead of the onset of specific diseases, thus offering a window for intervention. Yet, despite technological advancements, challenges persist due to individual variability and the dynamic nature of these biomarkers. Addressing this requires longitudinal studies for robust biomarker identification. Overall, utilizing the hallmarks of aging to discover new drug targets and develop new biomarkers opens new frontiers in medicine. Prospects involve multi-omics integration, machine learning, and personalized approaches for targeted interventions, promising a healthier aging population.


Subject(s)
Aging , Biological Clocks , Biomarkers , Longevity , Humans , Longevity/physiology , Aging/metabolism , Animals , Healthy Aging/metabolism
16.
Arch Dermatol Res ; 316(6): 326, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822910

ABSTRACT

Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.


Subject(s)
Epigenesis, Genetic , Machine Learning , MicroRNAs , Skin Aging , Skin , Humans , MicroRNAs/genetics , Middle Aged , Aged , Adult , Skin Aging/genetics , Aged, 80 and over , Skin/metabolism , Skin/pathology , Female , Young Adult , Male , Adolescent , Gene Expression Profiling , Biological Clocks/genetics
17.
Commun Biol ; 7(1): 735, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890525

ABSTRACT

Utilizing a microfluidic chip with serpentine channels, we inoculated the chip with an agar plug with Neurospora crassa mycelium and successfully captured individual hyphae in channels. For the first time, we report the presence of an autonomous clock in hyphae. Fluorescence of a mCherry reporter gene driven by a clock-controlled gene-2 promoter (ccg-2p) was measured simultaneously along hyphae every half an hour for at least 6 days. We entrained single hyphae to light over a wide range of day lengths, including 6,12, 24, and 36 h days. Hyphae tracked in individual serpentine channels were highly synchronized (K = 0.60-0.78). Furthermore, hyphae also displayed temperature compensation properties, where the oscillation period was stable over a physiological range of temperatures from 24 °C to 30 °C (Q10 = 1.00-1.10). A Clock Tube Model developed could mimic hyphal growth observed in the serpentine chip and provides a mechanism for the stable banding patterns seen in race tubes at the macroscopic scale and synchronization through molecules riding the growth wave in the device.


Subject(s)
Hyphae , Neurospora crassa , Neurospora crassa/genetics , Neurospora crassa/physiology , Neurospora crassa/growth & development , Hyphae/growth & development , Hyphae/genetics , Temperature , Lab-On-A-Chip Devices , Gene Expression Regulation, Fungal , Biological Clocks/genetics
18.
Front Endocrinol (Lausanne) ; 15: 1320605, 2024.
Article in English | MEDLINE | ID: mdl-38872971

ABSTRACT

Due to the Earth's rotation, the natural environment exhibits a light-dark diurnal cycle close to 24 hours. To adapt to this energy intake pattern, organisms have developed a 24-hour rhythmic diurnal cycle over long periods, known as the circadian rhythm, or biological clock. With the gradual advancement of research on the biological clock, it has become increasingly evident that disruptions in the circadian rhythm are closely associated with the occurrence of type 2 diabetes (T2D). To further understand the progress of research on T2D and the biological clock, this paper reviews the correlation between the biological clock and glucose metabolism and analyzes its potential mechanisms. Based on this, we discuss the potential factors contributing to circadian rhythm disruption and their impact on the risk of developing T2D, aiming to explore new possible intervention measures for the prevention and treatment of T2D in the future. Under the light-dark circadian rhythm, in order to adapt to this change, the human body forms an internal biological clock involving a variety of genes, proteins and other molecules. The main mechanism is the transcription-translation feedback loop centered on the CLOCK/BMAL1 heterodimer. The expression of important circadian clock genes that constitute this loop can regulate T2DM-related blood glucose traits such as glucose uptake, fat metabolism, insulin secretion/glucagon secretion and sensitivity in various peripheral tissues and organs. In addition, sleep, light, and dietary factors under circadian rhythms also affect the occurrence of T2DM.


Subject(s)
Circadian Rhythm , Diabetes Mellitus, Type 2 , Diabetes Mellitus, Type 2/metabolism , Humans , Circadian Rhythm/physiology , Animals , Biological Clocks , Circadian Clocks/physiology , Blood Glucose/metabolism
19.
Curr Top Dev Biol ; 159: 372-405, 2024.
Article in English | MEDLINE | ID: mdl-38729682

ABSTRACT

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Mesoderm , Somites , Animals , Body Patterning/genetics , Somites/embryology , Somites/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Mesoderm/cytology , Zebrafish/embryology , Zebrafish/genetics , Signal Transduction , Biological Clocks/genetics
20.
Circ Res ; 134(10): 1348-1378, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723033

ABSTRACT

Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating ß-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.


Subject(s)
Heart Rate , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Sinoatrial Node , Humans , Animals , Sinoatrial Node/metabolism , Sinoatrial Node/physiopathology , Sinoatrial Node/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Biological Clocks
SELECTION OF CITATIONS
SEARCH DETAIL