Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.897
1.
Transl Psychiatry ; 14(1): 207, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789433

Previous evidence suggests elevated levels of oxidatively-induced DNA damage, particularly 8-hydroxy-2'-deoxyguanosine (8-OH-dG), and abnormalities in the repair of 8-OH-dG by the base excision repair (BER) in bipolar disorder (BD). However, the genetic disposition of these abnormalities remains unknown. In this study, we aimed to investigate the levels of oxidatively-induced DNA damage and BER mechanisms in individuals with BD and their siblings, as compared to healthy controls (HCs). 46 individuals with BD, 41 siblings of individuals with BD, and 51 HCs were included in the study. Liquid chromatography-tandem mass spectrometry was employed to evaluate the levels of 8-OH-dG in urine, which were then normalized based on urine creatinine levels. The real-time-polymerase chain reaction was used to measure the expression levels of 8-oxoguanine DNA glycosylase 1 (OGG1), apurinic/apyrimidinic endonuclease 1 (APE1), poly ADP-ribose polymerase 1 (PARP1), and DNA polymerase beta (POLß). The levels of 8-OH-dG were found to be elevated in both individuals with BD and their siblings when compared to the HCs. The OGG1 and APE1 expressions were downregulated, while POLß expressions were upregulated in both the patient and sibling groups compared to the HCs. Age, smoking status, and the number of depressive episodes had an impact on APE1 expression levels in the patient group while body mass index, smoking status, and past psychiatric history had an impact on 8-OH-dG levels in siblings. Both individuals with BD and unaffected siblings presented similar abnormalities regarding oxidatively-induced DNA damage and BER, suggesting a link between abnormalities in DNA damage/BER mechanisms and familial susceptibility to BD. Our findings suggest that targeting the oxidatively-induced DNA damage and BER pathway could offer promising therapeutic strategies for reducing the risk of age-related diseases and comorbidities in individuals with a genetic predisposition to BD.


8-Hydroxy-2'-Deoxyguanosine , Bipolar Disorder , DNA Damage , DNA Glycosylases , DNA Repair , Oxidative Stress , Siblings , Humans , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Female , Male , Adult , DNA Glycosylases/genetics , Oxidative Stress/genetics , Middle Aged , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Case-Control Studies , Young Adult , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Excision Repair
2.
Nat Commun ; 15(1): 3803, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778015

Human endogenous retroviruses (HERVs) are repetitive elements previously implicated in major psychiatric conditions, but their role in aetiology remains unclear. Here, we perform specialised transcriptome-wide association studies that consider HERV expression quantified to precise genomic locations, using RNA sequencing and genetic data from 792 post-mortem brain samples. In Europeans, we identify 1238 HERVs with expression regulated in cis, of which 26 represent expression signals associated with psychiatric disorders, with ten being conditionally independent from neighbouring expression signals. Of these, five are additionally significant in fine-mapping analyses and thus are considered high confidence risk HERVs. These include two HERV expression signatures specific to schizophrenia risk, one shared between schizophrenia and bipolar disorder, and one specific to major depressive disorder. No robust signatures are identified for autism spectrum conditions or attention deficit hyperactivity disorder in Europeans, or for any psychiatric trait in other ancestries, although this is likely a result of relatively limited statistical power. Ultimately, our study highlights extensive HERV expression and regulation in the adult cortex, including in association with psychiatric disorder risk, therefore providing a rationale for exploring neurological HERV expression in complex neuropsychiatric traits.


Bipolar Disorder , Depressive Disorder, Major , Endogenous Retroviruses , Genome-Wide Association Study , Schizophrenia , Transcriptome , Humans , Endogenous Retroviruses/genetics , Schizophrenia/genetics , Schizophrenia/virology , Bipolar Disorder/genetics , Risk Factors , Depressive Disorder, Major/genetics , Depressive Disorder, Major/virology , Mental Disorders/genetics , Brain/metabolism , Brain/virology , Female , Male , Genetic Predisposition to Disease , Attention Deficit Disorder with Hyperactivity/genetics , Adult
3.
Science ; 384(6699): 939, 2024 May 31.
Article En | MEDLINE | ID: mdl-38815019

Last week, Science, Science Advances, and Science Translational Medicine published an extensive set of papers from the PsychENCODE Consortium, a multi-institutional collaboration whose aim is to study the genetics of neuropsychiatric disorders such as bipolar disorder, autism spectrum disorder, and schizophrenia. The papers, collectively called PsychENCODE2, apply advances in single-cell and multi-omic technologies to postmortem brain tissue to elucidate factors that may help explain and develop treatments for neuropsychiatric conditions. The new insights gained from these considerable data will hopefully inspire new ways in which the clinical community can find common ground with researchers, something that is not always guaranteed in the contentious mental health field.


Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/genetics , Brain , Schizophrenia/genetics , Single-Cell Analysis , Autistic Disorder/genetics , Autistic Disorder/psychology , Bipolar Disorder/genetics , Bipolar Disorder/psychology
4.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806495

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Mice , Cadherins/genetics , Locomotion/genetics , Protocadherins , Male , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Behavior, Animal , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics
5.
J Affect Disord ; 358: 416-421, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38735581

BACKGROUND: The therapeutic response to lithium in patients with bipolar disorder is highly variable and has a polygenic basis. Genome-wide association studies investigating lithium response have identified several relevant loci, though the precise mechanisms driving these associations are poorly understood. We aimed to prioritise the most likely effector gene and determine the mechanisms underlying an intergenic lithium response locus on chromosome 21 identified by the International Consortium on Lithium Genetics (ConLi+Gen). METHODS: We conducted in-silico functional analyses by integrating and synthesising information from several publicly available functional genetic datasets and databases including the Genotype-Tissue Expression (GTEx) project and HaploReg. RESULTS: The findings from this study highlighted TMPRSS15 as the most likely effector gene at the ConLi+Gen lithium response locus. TMPRSS15 encodes enterokinase, a gastrointestinal enzyme responsible for converting trypsinogen into trypsin and thus aiding digestion. Convergent findings from gene-based lookups in human and mouse databases as well as co-expression network analyses of small intestinal RNA-seq data (GTEx) implicated TMPRSS15 in the regulation of intestinal nutrient absorption, including ions like sodium and potassium, which may extend to lithium. LIMITATIONS: Although the findings from this study indicated that TMPRSS15 was the most likely effector gene at the ConLi+Gen lithium response locus, the evidence was circumstantial. Thus, the conclusions from this study need to be validated in appropriately designed wet-lab studies. CONCLUSIONS: The findings from this study are consistent with a model whereby TMPRSS15 impacts the efficacy of lithium treatment in patients with bipolar disorder by modulating intestinal lithium absorption.


Bipolar Disorder , Computer Simulation , Intestinal Absorption , Serine Endopeptidases , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Humans , Intestinal Absorption/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lithium/therapeutic use , Lithium/pharmacology , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Genome-Wide Association Study , Lithium Compounds/pharmacology , Lithium Compounds/therapeutic use , Lithium Compounds/pharmacokinetics
6.
Sci Transl Med ; 16(749): eadh9974, 2024 May 29.
Article En | MEDLINE | ID: mdl-38781321

Many psychiatric disorders exhibit sex differences, but the underlying mechanisms remain poorly understood. We analyzed transcriptomics data from 2160 postmortem adult prefrontal cortex brain samples from the PsychENCODE consortium in a sex-stratified study design. We compared transcriptomics data of postmortem brain samples from patients with schizophrenia (SCZ), bipolar disorder (BD), and autism spectrum disorder (ASD) with transcriptomics data of postmortem control brains from individuals without a known history of psychiatric disease. We found that brain samples from females with SCZ, BD, and ASD showed a higher burden of transcriptomic dysfunction than did brain samples from males with these disorders. This observation was supported by the larger number of differentially expressed genes (DEGs) and a greater magnitude of gene expression changes observed in female versus male brain specimens. In addition, female patient brain samples showed greater overall connectivity dysfunction, defined by a higher proportion of gene coexpression modules with connectivity changes and higher connectivity burden, indicating a greater degree of gene coexpression variability. We identified several gene coexpression modules enriched in sex-biased DEGs and identified genes from a genome-wide association study that were involved in immune and synaptic functions across different brain cell types. We found a number of genes as hubs within these modules, including those encoding SCN2A, FGF14, and C3. Our results suggest that in the context of psychiatric diseases, males and females exhibit different degrees of transcriptomic dysfunction and implicate immune and synaptic-related pathways in these sex differences.


Autopsy , Brain , Mental Disorders , Sex Characteristics , Transcriptome , Humans , Female , Male , Transcriptome/genetics , Brain/metabolism , Brain/pathology , Mental Disorders/genetics , Mental Disorders/pathology , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Gene Expression Profiling , Genome-Wide Association Study , Adult , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Gene Regulatory Networks , Middle Aged
7.
BMC Psychiatry ; 24(1): 261, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594691

BACKGROUND: Major depressive disease (MDD), schizophrenia (SCZ), and bipolar disorder (BD) are common psychiatric disorders, and their relationship with thyroid cancer has been of great interest. This study aimed to investigate the potential causal effects of MDD, SCZ, BD, and thyroid cancer. METHODS: We used publicly available summary statistics from large-scale genome-wide association studies to select genetic variant loci associated with MDD, SCZ, BD, and thyroid cancer as instrumental variables (IVs), which were quality controlled and clustered. Additionally, we used three Mendelian randomization (MR) methods, inverse variance weighted (IVW), MR-Egger regression and weighted median estimator (WME) methods, to estimate the bidirectional causal relationship between psychiatric disorders and thyroid cancer. In addition, we performed heterogeneity and multivariate tests to verify the validity of the IVs. RESULTS: We used two-sample bidirectional MR analysis to determine whether there was a positive causal association between MDD and thyroid cancer risk. The results of the IVW analysis (OR = 3.956 95% CI = 1.177-13.299; P = 0.026) and the WME method (OR = 5.563 95% CI = 0.998-31.008; P = 0.050) confirmed that MDD may increase the risk of thyroid cancer. Additionally, our study revealed a correlation between genetic susceptibility to SCZ and thyroid cancer (OR = 1.532 95% CI = 1.123-2.088; P = 0.007). The results of the WME method analysis based on the median estimate (OR = 1.599 95% CI = 1.014-2.521; P = 0.043) also suggested that SCZ may increase the risk of thyroid cancer. Furthermore, our study did not find a causal relationship between BD and thyroid cancer incidence. In addition, the results of reverse MR analysis showed no significant causal relationships between thyroid cancer and MDD, SCZ, or BD (P > 0.05), ruling out the possibility of reverse causality. CONCLUSIONS: This MR method analysis provides new evidence that MDD and SCZ may be positively associated with thyroid cancer risk while also revealing a correlation between BD and thyroid cancer. These results may have important implications for public health policy and clinical practice. Future studies will help elucidate the biological mechanisms of these associations and potential confounders.


Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Thyroid Neoplasms , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/genetics , Bipolar Disorder/complications , Bipolar Disorder/genetics , Schizophrenia/genetics , Depression , Genome-Wide Association Study , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/genetics
8.
Transl Psychiatry ; 14(1): 174, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570518

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3ß. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.


Bipolar Disorder , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Lithium/therapeutic use , Retrospective Studies , Immunogenetics , Glycogen Synthase Kinase 3 beta , Phenotype
9.
J Affect Disord ; 356: 507-518, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38640977

AIM: We investigated the predictive value of polygenic risk scores (PRS) derived from the schizophrenia GWAS (Trubetskoy et al., 2022) (SCZ3) for phenotypic traits of bipolar disorder type-I (BP-I) in 1878 BP-I cases and 2751 controls from Romania and UK. METHODS: We used PRSice-v2.3.3 and PRS-CS for computing SCZ3-PRS for testing the predictive power of SCZ3-PRS alone and in combination with clinical variables for several BP-I subphenotypes and for pathway analysis. Non-linear predictive models were also used. RESULTS: SCZ3-PRS significantly predicted psychosis, incongruent and congruent psychosis, general age-of-onset (AO) of BP-I, AO-depression, AO-Mania, rapid cycling in univariate regressions. A negative correlation between the number of depressive episodes and psychosis, mainly incongruent and an inverse relationship between increased SCZ3-SNP loading and BP-I-rapid cycling were observed. In random forest models comparing the predictive power of SCZ3-PRS alone and in combination with nine clinical variables, the best predictions were provided by combinations of SCZ3-PRS-CS and clinical variables closely followed by models containing only clinical variables. SCZ3-PRS performed worst. Twenty-two significant pathways underlying psychosis were identified. LIMITATIONS: The combined RO-UK sample had a certain degree of heterogeneity of the BP-I severity: only the RO sample and partially the UK sample included hospitalized BP-I cases. The hospitalization is an indicator of illness severity. Not all UK subjects had complete subphenotype information. CONCLUSION: Our study shows that the SCZ3-PRS have a modest clinical value for predicting phenotypic traits of BP-I. For clinical use their best performance is in combination with clinical variables.


Bipolar Disorder , Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Phenotype , Schizophrenia , Humans , Bipolar Disorder/genetics , Multifactorial Inheritance/genetics , Female , Male , Adult , Schizophrenia/genetics , Genetic Predisposition to Disease/genetics , United Kingdom , Romania , Middle Aged , Case-Control Studies , Polymorphism, Single Nucleotide , Psychotic Disorders/genetics , Genetic Risk Score
10.
J Affect Disord ; 356: 647-656, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38657774

BACKGROUND: Patients with certain psychiatric disorders have increased lung cancer incidence. However, establishing a causal relationship through traditional epidemiological methods poses challenges. METHODS: Available summary statistics of genome-wide association studies of cigarette smoking, lung cancer, and eight psychiatric disorders, including attention deficit/hyperactivity disorder (ADHD), autism, depression, major depressive disorder, bipolar disorder, insomnia, neuroticism, and schizophrenia (range N: 46,350-1,331,010) were leveraged to estimate genetic correlations using Linkage Disequilibrium Score Regression and assess causal effect of each psychiatric disorder on lung cancer using two-sample Mendelian randomization (MR) models, comprising inverse-variance weighted (IVW), weighted median, MR-Egger, pleiotropy residual sum and outlier testing (MR-PRESSO), and a constrained maximum likelihood approach (cML-MR). RESULTS: Significant positive correlations were observed between each psychiatric disorder and both smoking and lung cancer (all FDR < 0.05), except for the correlation between autism and lung cancer. Both univariable and the cML-MA MR analyses demonstrated that liability to schizophrenia, depression, ADHD, or insomnia was associated with an increased risk of overall lung cancer. Genetic liability to insomnia was linked specifically to squamous cell carcinoma (SCC), while genetic liability to ADHD was associated with an elevated risk of both SCC and small cell lung cancer (all P < 0.05). The later was further supported by multivariable MR analyses, which accounted for smoking. LIMITATIONS: Participants were constrained to European ancestry populations. Causal estimates from binary psychiatric disorders may be biased. CONCLUSION: Our findings suggest appropriate management of several psychiatric disorders, particularly ADHD, may potentially reduce the risk of developing lung cancer.


Attention Deficit Disorder with Hyperactivity , Genome-Wide Association Study , Lung Neoplasms , Mendelian Randomization Analysis , Mental Disorders , Schizophrenia , Humans , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology , Schizophrenia/genetics , Schizophrenia/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/epidemiology , Genetic Predisposition to Disease/genetics , Autistic Disorder/genetics , Autistic Disorder/epidemiology , Bipolar Disorder/genetics , Bipolar Disorder/epidemiology , Risk Factors , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Neuroticism , Causality , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/epidemiology , Cigarette Smoking/epidemiology , Cigarette Smoking/genetics , Linkage Disequilibrium
11.
Transl Psychiatry ; 14(1): 131, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38429270

Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.


Bipolar Disorder , Shelterin Complex , Adult , Aged , Humans , Aging , Aging, Premature , Bipolar Disorder/genetics , Telomere/genetics , Telomere Shortening/genetics , Telomere-Binding Proteins/genetics
13.
J Affect Disord ; 355: 86-94, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38521135

BACKGROUND: Immune imbalances are associated with the pathogenesis and pharmacological efficacy of bipolar disorder (BD). The underlying mechanisms remain largely obscure but may involve immunometabolic dysfunctions of T-lymphocytes. METHODS: We investigated if inflammatory cytokines and the immunometabolic function of T-lymphocytes, including frequencies of subsets, mitochondrial mass (MM), and low mitochondrial membrane potential (MMPLow) differed between BD patients (n = 47) and healthy controls (HC, n = 43). During lithium treatment of hospitalized patients (n = 33), the association between weekly T-lymphocyte immune metabolism and clinical symptoms was analyzed, and preliminary explorations on possible mechanisms were conducted. RESULTS: In comparison to HC, BD patients predominantly showed a trend toward CD4+ naïve T (Tn) activation and exhibited mitochondrial metabolic disturbances such as decreased MM and increased MMPLow. Lower CD4+ Tn-MM correlated with elevated IL-6, IL-8, and decreased IL-17 A in BD patients. With lithium treatment effective, MM of CD4+ T/Tn was negatively correlated with depression score HAMD. When lithium intolerance was present, MM of CD4+ T/Tn was positively correlated with depression score HAMD and mania score BRMS. Lithium does not mediate through the inositol depletion hypothesis, but the mRNA level of IMPA2 in peripheral blood is associated with mitochondrial function in CD8+ T cells. LIMITATIONS: The cross-sectional design and short-term follow-up meant that we could not directly examine the causality of BD and immune dysregulation. CONCLUSION: The altered metabolism of CD4+ Tn was strongly associated with remodeling of the inflammatory landscape in BD patients and can also be used to reflect the short-term therapeutic effects of lithium.


Bipolar Disorder , Humans , Bipolar Disorder/genetics , Lithium/pharmacology , Lithium/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , Cross-Sectional Studies , Mitochondria/metabolism , Lithium Compounds/therapeutic use , Lithium Compounds/pharmacology
14.
Hum Genomics ; 18(1): 27, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38509615

BACKGROUND: Hemorrhoids and psychiatric disorders exhibit high prevalence rates and a tendency for relapse in epidemiological studies. Despite this, limited research has explored their correlation, and these studies are often subject to reverse causality and residual confounding. We conducted a Mendelian randomization (MR) analysis to comprehensively investigate the association between several mental illnesses and hemorrhoidal disease. METHODS: Genetic associations for four psychiatric disorders and hemorrhoidal disease were obtained from large consortia, the FinnGen study, and the UK Biobank. Genetic variants associated with depression, bipolar disorder, anxiety disorders, schizophrenia, and hemorrhoidal disease at the genome-wide significance level were selected as instrumental variables. Screening for potential confounders in genetic instrumental variables using PhenoScanner V2. Bidirectional MR estimates were employed to assess the effects of four psychiatric disorders on hemorrhoidal disease. RESULTS: Our analysis revealed a significant association between genetically predicted depression and the risk of hemorrhoidal disease (IVW, OR=1.20,95% CI=1.09 to 1.33, P <0.001). We found no evidence of associations between bipolar disorder, anxiety disorders, schizophrenia, and hemorrhoidal disease. Inverse MR analysis provided evidence for a significant association between genetically predicted hemorrhoidal disease and depression (IVW, OR=1.07,95% CI=1.04 to 1.11, P <0.001). CONCLUSIONS: This study offers MR evidence supporting a bidirectional causal relationship between depression and hemorrhoidal disease.


Bipolar Disorder , Hemorrhoids , Schizophrenia , Humans , Bipolar Disorder/complications , Bipolar Disorder/genetics , Schizophrenia/complications , Schizophrenia/epidemiology , Schizophrenia/genetics , Mendelian Randomization Analysis , Anxiety Disorders/epidemiology , Anxiety Disorders/genetics , Genome-Wide Association Study
15.
Transl Psychiatry ; 14(1): 171, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38555309

There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Mental Disorders , Schizophrenia , Humans , Depressive Disorder, Major/genetics , Autism Spectrum Disorder/genetics , Mental Disorders/genetics , Mental Disorders/psychology , Bipolar Disorder/genetics , Bipolar Disorder/epidemiology , Schizophrenia/genetics , Schizophrenia/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/epidemiology
16.
J Affect Disord ; 355: 378-384, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38537754

BACKGROUND: The study of clinical biological indicators in bipolar disorder (BD) is important. In recent years, basic experiments have associated the pathophysiological mechanism of BD is related to mitochondrial dysfunction, but few clinical studies have confirmed this finding. OBJECT: The present study aimed to evaluate whether plasma circulating cell-free mitochondrial DNA (ccf-mtDNA) levels, which can represent the degree of mitochondrial damage in vivo, are altered in patients with BD in early onset and during treatment compared with controls. METHOD: A total of 75 first-diagnosed drug-naive patients with BD and 60 HCs were recruited and followed up for 1 month. The clinical symptoms were assessed using HAMD, HAMA, and YMRS, and ccf-mtDNA levels were measured by qPCR before and after drug treatment in BD. RESULT: (1) The plasma ccf-mtDNA levels in first-diagnosed drug-naive patients with BD increased compared with those in HCs (p = 0.001). (2) Drug treatment for 1 month can decrease the expression of ccf-mtDNA in BD (p < 0.001). (3) No significant correlation was observed between the changes in ccf-mtDNA levels and the improvement of clinical symptoms in BD after drug treatment. CONCLUSION: The plasma ccf-mtDNA level was increased in BD, and decreased after pharmacological treatment. These outcomes suggested that plasma ccf-mtDNA level is likely to be sensitive to the drug response in BD, and mitochondrial pathway is a potential target for further therapy.


Bipolar Disorder , Humans , Bipolar Disorder/diagnosis , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Follow-Up Studies , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Case-Control Studies
17.
J Psychiatry Neurosci ; 49(2): E109-E125, 2024.
Article En | MEDLINE | ID: mdl-38490647

The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.


Bipolar Disorder , Induced Pluripotent Stem Cells , Schizophrenia , Humans , Induced Pluripotent Stem Cells/physiology , Bipolar Disorder/genetics
18.
Psychiatry Res ; 335: 115868, 2024 May.
Article En | MEDLINE | ID: mdl-38554494

Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.


Bipolar Disorder , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/genetics , Genetic Profile , Magnetic Resonance Imaging/methods , Neuroimaging , Gyrus Cinguli/diagnostic imaging , Brain/diagnostic imaging
19.
Math Biosci Eng ; 21(1): 392-414, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303428

Bipolar disorder (BD) is a psychiatric disorder that affects an increasing number of people worldwide. The mechanisms of BD are unclear, but some studies have suggested that it may be related to genetic factors with high heritability. Moreover, research has shown that chronic stress can contribute to the development of major illnesses. In this paper, we used bioinformatics methods to analyze the possible mechanisms of chronic stress affecting BD through various aspects. We obtained gene expression data from postmortem brains of BD patients and healthy controls in datasets GSE12649 and GSE53987, and we identified 11 chronic stress-related genes (CSRGs) that were differentially expressed in BD. Then, we screened five biomarkers (IGFBP6, ALOX5AP, MAOA, AIF1 and TRPM3) using machine learning models. We further validated the expression and diagnostic value of the biomarkers in other datasets (GSE5388 and GSE78936) and performed functional enrichment analysis, regulatory network analysis and drug prediction based on the biomarkers. Our bioinformatics analysis revealed that chronic stress can affect the occurrence and development of BD through many aspects, including monoamine oxidase production and decomposition, neuroinflammation, ion permeability, pain perception and others. In this paper, we confirm the importance of studying the genetic influences of chronic stress on BD and other psychiatric disorders and suggested that biomarkers related to chronic stress may be potential diagnostic tools and therapeutic targets for BD.


Bipolar Disorder , Humans , Bipolar Disorder/genetics , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Brain/metabolism , Computational Biology , Biomarkers/metabolism , Gene Expression
20.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395906

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Bipolar Disorder , Lithium , Humans , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome-Wide Association Study , Multiomics , Focal Adhesions
...