Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.421
1.
Nat Commun ; 15(1): 4779, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839782

Despite the profound implications of self-organization in animal groups for collective behaviors, understanding the fundamental principles and applying them to swarm robotics remains incomplete. Here we propose a heuristic measure of perception of motion salience (MS) to quantify relative motion changes of neighbors from first-person view. Leveraging three large bird-flocking datasets, we explore how this perception of MS relates to the structure of leader-follower (LF) relations, and further perform an individual-level correlation analysis between past perception of MS and future change rate of velocity consensus. We observe prevalence of the positive correlations in real flocks, which demonstrates that individuals will accelerate the convergence of velocity with neighbors who have higher MS. This empirical finding motivates us to introduce the concept of adaptive MS-based (AMS) interaction in swarm model. Finally, we implement AMS in a swarm of ~102 miniature robots. Swarm experiments show the significant advantage of AMS in enhancing self-organization of the swarm for smooth evacuations from confined environments.


Birds , Robotics , Animals , Birds/physiology , Motion Perception/physiology , Behavior, Animal/physiology , Motion , Flight, Animal/physiology , Social Behavior
2.
Glob Chang Biol ; 30(6): e17340, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840515

Grassy ecosystems cover more than 40% of the world's terrestrial surface, supporting crucial ecosystem services and unique biodiversity. These ecosystems have experienced major losses from conversion to agriculture with the remaining fragments threatened by global change. Woody plant encroachment, the increase in woody cover threatening grassy ecosystems, is a major global change symptom, shifting the composition, structure, and function of plant communities with concomitant effects on all biodiversity. To identify generalisable impacts of encroachment on biodiversity, we urgently need broad-scale studies on how species respond to woody cover change. Here, we make use of bird atlas, woody cover change data (between 2007 and 2016) and species traits, to assess: (1) population trends and woody cover responses using dynamic occupancy models; (2) how outcomes relate to habitat, diet and nesting traits; and (3) predictions of future occupancy trends, for 191 abundant, southern African bird species. We found that: (1) 63% (121) of species showed a decline in occupancy, with 18% (34) of species' declines correlated with increasing woody cover (i.e. losers). Only 2% (4) of species showed increasing population trends linked with increased woody cover (i.e. winners); (2) Open habitat specialist, invertivorous, ground nesting birds were the most frequent losers, however, we found no definitive evidence that the selected traits could predict outcomes; and (3) We predict open habitat loser species will take on average 52 years to experience 50% population declines with current rates of encroachment. Our results bring attention to concerning region-wide declining bird population trends and highlight woody plant encroachment as an important driver of bird population dynamics. Importantly, these findings should encourage improved management and restoration of our remaining grassy ecosystems. Furthermore, our findings show the importance of lands beyond protected areas for biodiversity, and the urgent need to mitigate the impacts of woody plant encroachment on bird biodiversity.


Biodiversity , Birds , Ecosystem , Population Dynamics , Animals , Birds/physiology , Conservation of Natural Resources , South Africa
3.
PLoS One ; 19(6): e0295098, 2024.
Article En | MEDLINE | ID: mdl-38837957

Artificial light at night (ALAN) is negatively impacting numerous species of nocturnally active birds. Nocturnal positive phototaxis, the movement towards ALAN, is exhibited by many marine birds and can result in stranding on land. Seabird species facing major population declines may be most at risk. Leach's Storm-Petrels (Hydrobates leucorhous) are small, threatened seabirds with an extensive breeding range in the North Atlantic and North Pacific Oceans. The Atlantic population, which represents approximately 40-48% of the global population, is declining sharply. Nocturnal positive phototaxis is considered to be a key contributing factor. The Leach's Storm-Petrel is the seabird species most often found stranded around ALAN in the North Atlantic, though there is little experimental evidence that reduction of ALAN decreases the occurrence of stranded storm-petrels. During a two-year study at a large, brightly illuminated seafood processing plant adjacent to the Leach's Storm-Petrel's largest colony, we compared the number of birds that stranded when the lights at the plant were on versus significantly reduced. We recorded survival, counted carcasses of adults and juveniles, and released any rescued individuals. Daily morning surveys revealed that reducing ALAN decreased strandings by 57.11% (95% CI: 39.29% - 83.01%) per night and night surveys revealed that reducing ALAN decreased stranding of adult birds by 11.94% (95% CI: 3.47% - 41.13%) per night. The peak stranding period occurred from 25 September to 28 October, and 94.9% of the birds found during this period were fledglings. These results provide evidence to support the implementation of widespread reduction and modification of coastal artificial light as a conservation strategy, especially during avian fledging and migration periods.


Birds , Lighting , Animals , Birds/physiology , Conservation of Natural Resources/methods , Phototaxis , Light , Animal Migration/physiology , Atlantic Ocean
4.
PLoS One ; 19(6): e0303834, 2024.
Article En | MEDLINE | ID: mdl-38837960

We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.


Flight, Animal , Wings, Animal , Animals , Wings, Animal/physiology , Wings, Animal/anatomy & histology , Flight, Animal/physiology , Animal Fins/physiology , Chiroptera/physiology , Whales/physiology , Spheniscidae/physiology , Birds/physiology , Models, Biological , Swimming/physiology , Insecta/physiology
5.
PLoS One ; 19(6): e0304279, 2024.
Article En | MEDLINE | ID: mdl-38837968

This paper delves into the intricate relationship between changes in Magnetic inclination and declination at specific geographical locations and the navigational decisions of migratory birds. Leveraging a dataset sourced from a prominent bird path tracking web resource, encompassing six distinct bird species' migratory trajectories, latitudes, longitudes, and observation timestamps, we meticulously analyzed the interplay between these avian movements and corresponding alterations in Magnetic inclination and declination. Employing a circular von Mises distribution assumption for the latitude and longitude distributions within each subdivision, we introduced a pioneering circular-circular regression model, accounting for von Mises error, to scrutinize our hypothesis. Our findings, predominantly supported by hypothesis tests conducted through circular-circular regression analysis, underscore the profound influence of Magnetic inclination and declination shifts on the dynamic adjustments observed in bird migration paths. Moreover, our meticulous examination revealed a consistent adherence to von Mises distribution across all bird directions. Notably, we unearthed compelling correlations between specific bird species, such as the Black Crowned Night Heron and Brown Pelican, exhibiting a noteworthy negative correlation with Magnetic inclination and a contrasting positive correlation with Magnetic declination. Similarly, the Pacific loon demonstrated a distinct negative correlation with Magnetic inclination and a positive association with Magnetic declination. Conversely, other avian counterparts showcased positive correlations with both Magnetic declination and inclination, further elucidating the nuanced dynamics between avian navigation and the Earth's magnetic field parameters.


Animal Migration , Birds , Earth, Planet , Magnetic Fields , Animals , Birds/physiology , Animal Migration/physiology , Spatial Navigation/physiology
6.
Sci Rep ; 14(1): 12707, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830929

Understanding the determinants of biodiversity in fragmented habitats is fundamental for informing sustainable landscape development, especially in urban landscapes that substantially fragment natural habitat. However, the relative roles of landscape and habitat characteristics, as emphasized by two competing frameworks (the island biogeography theory and the habitat diversity hypothesis), in structuring species assemblages in fragmented habitats have not been fully explored. This study investigated bird assemblages at 26 habitat patches (ranging in size from 0.3 to 290.4 ha) in an urban landscape, southwest China, among which habitat type composition and woody plant species composition varied significantly. Through 14 bird surveys conducted over six breeding seasons from 2017 to 2022, we recorded 70 breeding bird species (excluding birds recorded only once and fly-overs, such as raptors, swallows and swifts), with an average of 26 ± 10 (SD) species per patch. We found that patch area had significant direct and indirect effects on bird richness, with the indirect effects mediated by habitat richness (i.e., the number of habitat types). Isolation (measured as the distance to the nearest patch), perimeter to area ratio (PAR), and woody plant richness did not significantly predict variation in bird richness. Furthermore, none of these factors significantly sorted bird species based on their functional traits. However, the overall makeup of bird assemblages was significantly associated with the specific habitat types and woody plant species present in the patches. The results suggest that neither the island biogeography theory nor the habitat diversity hypothesis can fully explain the impacts of habitat fragmentation on bird richness in our study system, with their roles primarily being linked to patch area. The findings that habitat and plant compositions were the major drivers of variation in bird assemblage composition offer valuable insights into urban planning and green initiatives. Conservation efforts should focus not only on preserving large areas, but also on preventing urban monocultures by promoting diverse habitats within those areas, contributing to the persistence of meta-communities.


Biodiversity , Birds , Ecosystem , Animals , Birds/physiology , China , Conservation of Natural Resources , Plants/classification , Cities
7.
J R Soc Interface ; 21(214): 20230737, 2024 May.
Article En | MEDLINE | ID: mdl-38689546

Patterns of collective escape of a bird flock from a predator are fascinating, but difficult to study under natural conditions because neither prey nor predator is under experimental control. We resolved this problem by using an artificial predator (RobotFalcon) resembling a peregrine falcon in morphology and behaviour. We imitated hunts by chasing flocks of corvids, gulls, starlings and lapwings with the RobotFalcon, and compared their patterns of collective escape to those when chased by a conventional drone and, in case of starlings, hunted by wild peregrine falcons. Active pursuit of flocks, rather than only flying nearby by either the RobotFalcon or the drone, made flocks collectively escape more often. The RobotFalcon elicited patterns of collective escape in flocks of all species more often than the drone. Attack altitude did not affect the frequency of collective escape. Starlings escaped collectively equally often when chased by the RobotFalcon or a wild peregrine falcon. Flocks of all species reacted most often by collective turns, second most often by compacting and third by splitting into subflocks. This study demonstrates the potential of an artificial aerial predator for studying the collective escape behaviour of free-living birds, opening exciting avenues in the empirical study of prey-predator interactions.


Escape Reaction , Falconiformes , Robotics , Animals , Escape Reaction/physiology , Falconiformes/physiology , Predatory Behavior/physiology , Birds/physiology , Species Specificity
8.
Ecol Lett ; 27(5): e14427, 2024 May.
Article En | MEDLINE | ID: mdl-38698677

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Arthropods , Biodiversity , Birds , Climate , Predatory Behavior , Trees , Animals , Arthropods/physiology , Birds/physiology , Food Chain , Larva/physiology
9.
Hear Res ; 448: 109035, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763033

The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.


Saccule and Utricle , Animals , Saccule and Utricle/physiology , Biological Evolution , Humans , Birds/physiology , Mammals/physiology , Hair Cells, Vestibular/physiology , Vestibule, Labyrinth/physiology , Hair Cells, Auditory/physiology , Species Specificity , Regeneration
10.
Ecol Lett ; 27(5): e14430, 2024 May.
Article En | MEDLINE | ID: mdl-38714364

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Biodiversity , Birds , Climate Change , Seasons , Animals , Birds/physiology , United States
11.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38771864

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Birds , Flight, Animal , Wind , Animals , Flight, Animal/physiology , Birds/physiology , Orientation/physiology , Homing Behavior/physiology , Orientation, Spatial/physiology , Animal Migration/physiology
12.
Nat Commun ; 15(1): 4240, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762491

Despite a wealth of studies documenting prey responses to perceived predation risk, researchers have only recently begun to consider how prey integrate information from multiple cues in their assessment of risk. We conduct a systematic review and meta-analysis of studies that experimentally manipulated perceived predation risk in birds and evaluate support for three alternative models of cue integration: redundancy/equivalence, enhancement, and antagonism. One key insight from our analysis is that the current theory, generally applied to study cue integration in animals, is incomplete. These theories specify the effects of increasing information level on mean, but not variance, in responses. In contrast, we show that providing multiple complementary cues of predation risk simultaneously does not affect mean response. Instead, as information richness increases, populations appear to assess risk more accurately, resulting in lower among-population variance in response to manipulations of perceived predation risk. We show that this may arise via a statistical process called maximum-likelihood estimation (MLE) integration. Our meta-analysis illustrates how explicit consideration of variance in responses can yield important biological insights.


Birds , Predatory Behavior , Animals , Predatory Behavior/physiology , Birds/physiology , Risk Assessment , Cues , Food Chain , Likelihood Functions
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230184, 2024 Jul 08.
Article En | MEDLINE | ID: mdl-38768199

To benefit from group living, individuals need to maintain cohesion and coordinate their activities. Effective communication thus becomes critical, facilitating rapid coordination of behaviours and reducing consensus costs when group members have differing needs and information. In many bird and mammal species, collective decisions rely on acoustic signals in some contexts but on movement cues in others. Yet, to date, there is no clear conceptual framework that predicts when decisions should evolve to be based on acoustic signals versus movement cues. Here, we first review how acoustic signals and movement cues are used for coordinating activities. We then outline how information masking, discrimination ability (Weber's Law) and encoding limitations, as well as trade-offs between these, can identify which types of collective behaviours likely rely on acoustic signals or movement cues. Specifically, our framework proposes that behaviours involving the timing of events or expression of specific actions should rely more on acoustic signals, whereas decisions involving complex choices with multiple options (e.g. direction and destination) should generally use movement cues because sounds are more vulnerable to information masking and Weber's Law effects. We then discuss potential future avenues of enquiry, including multimodal communication and collective decision-making by mixed-species animal groups. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamic'.


Cues , Decision Making , Animals , Birds/physiology , Movement , Animal Communication , Social Behavior , Mammals/physiology , Vocalization, Animal/physiology
14.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230186, 2024 Jul 08.
Article En | MEDLINE | ID: mdl-38768210

Communication takes place within a network of multiple signallers and receivers. Social network analysis provides tools to quantify how an individual's social positioning affects group dynamics and the subsequent biological consequences. However, network analysis is rarely applied to animal communication, likely due to the logistical difficulties of monitoring natural communication networks. We generated a simulated communication network to investigate how variation in individual communication behaviours generates network effects, and how this communication network's structure feeds back to affect future signalling interactions. We simulated competitive acoustic signalling interactions among chorusing individuals and varied several parameters related to communication and chorus size to examine their effects on calling output and social connections. Larger choruses had higher noise levels, and this reduced network density and altered the relationships between individual traits and communication network position. Hearing sensitivity interacted with chorus size to affect both individuals' positions in the network and the acoustic output of the chorus. Physical proximity to competitors influenced signalling, but a distinctive communication network structure emerged when signal active space was limited. Our model raises novel predictions about communication networks that could be tested experimentally and identifies aspects of information processing in complex environments that remain to be investigated. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Auditory Perception , Animals , Auditory Perception/physiology , Vocalization, Animal/physiology , Animal Communication , Models, Biological , Birds/physiology , Acoustics , Social Behavior
15.
Proc Biol Sci ; 291(2023): 20240866, 2024 May.
Article En | MEDLINE | ID: mdl-38808444

Patterns of habitat use directly influence a species' fitness, yet for many species an individual's age can influence patterns of habitat use. However, in tropical rainforests, which host the greatest terrestrial species diversity, little is known about how age classes of different species use different adjacent habitats of varying quality. We use long-term mist net data from the Amazon rainforest to assess patterns of habitat use among adult, adolescent (teenage) and young understory birds in forest fragments, primary and secondary forest at the Biological Dynamics of Forest Fragments Project in Brazil. Insectivore adults were most common in primary forest, adolescents were equally likely in primary and secondary forest, and all ages were the least common in forest fragments. In contrast to insectivores, frugivores and omnivores showed no differences among all three habitat types. Our results illustrate potential ideal despotic distributions among breeding populations of some guilds of understory birds where adult insectivores may competitively exclude adolescent individuals from primary forest. Secondary forest recovery appears to hold promise as a breeding habitat for frugivore and omnivore species but only as a pre-breeding habitat for insectivores, but as the forest ages, the demographic structure of bird populations should match that of primary forest.


Birds , Ecosystem , Rainforest , Animals , Birds/physiology , Brazil , Age Factors , Feeding Behavior
16.
An Acad Bras Cienc ; 96(1): e20220691, 2024.
Article En | MEDLINE | ID: mdl-38808806

We evaluated the bird composition, forest dependence, trophic guilds and avian representativeness associated with 7, 10 and 15 years old reforestations and mature forest patches in order to verify the successional process and avian contribution to the forest restoration. Analyses revealed a segregation of bird composition with a gradual increasing in forest dependent species from 7 years to mature forest. Detrended Correspondence Analysis ranged from those birds often present in semi-open habitats to forest birds, canopy frugivorous and understory insectivorous as the successional stages progressed from the most recent reforestation to the most mature. Although 7 and 10 years of reforestation had the largest composition range, the more generalist, granivorous and forest independent birds, three years were enough to have different bird diversity between them. Avifauna of 15 years patches resembled most closely that of mature forest but still lacked 18 species. In this way, we addressed: 1) planting of herbaceous/shrub and freshy-fruited species in reforestations and; 2) establish riparian forest corridors along the Paraná river to connect these reforestation patches with mature forest. These measures will allow higher avian beta-diversity to maximize the diaspores dispersed by birds to expand and accelerate the rehabilitation of this threatened for forest.


Biodiversity , Birds , Conservation of Natural Resources , Forests , Animals , Birds/physiology , Birds/classification , Brazil , Time Factors , Population Dynamics
17.
Biol Open ; 13(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38752596

Despite its wide distribution, relatively little is known of the foraging ecology and habitat use of the black-faced cormorant (Phalacrocorax fuscescens), an Australian endemic seabird. Such information is urgently required in view of the rapid oceanic warming of south-eastern Australia, the stronghold of the species. The present study used a combination of opportunistically collected regurgitates and GPS/dive behaviour data loggers to investigate diet, foraging behaviour and habitat-use of black-faced cormorants during four chick-rearing periods (2020-2023) on Notch Island, northern Bass Strait. Observed prey species were almost exclusively benthic (95%), which is consistent with the predominantly benthic diving behaviour recorded. Males foraged at deeper depths than females (median depth males: 18 m; median depth females: 8 m), presumably due to a greater physiological diving capacity derived from their larger body size. This difference in dive depths was associated with sexual segregation of foraging locations, with females predominantly frequenting shallower areas closer to the coastline. These findings have strong implications for the management of the species, as impacts of environmental change may disproportionally affect the foraging range of one sex and, thereby, reproductive success.


Birds , Ecosystem , Feeding Behavior , Animals , Birds/physiology , Australia , Female , Male
18.
Nat Commun ; 15(1): 4111, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750018

Clarifying migration timing and its link with underlying drivers is fundamental to understanding the evolution of bird migration. However, previous studies have focused mainly on environmental drivers such as the latitudes of seasonal distributions and migration distance, while the effect of intrinsic biological traits remains unclear. Here, we compile a global dataset on the annual cycle of migratory birds obtained by tracking 1531 individuals and 177 populations from 186 species, and investigate how body mass, a key intrinsic biological trait, influenced timings of the annual cycle using Bayesian structural equation models. We find that body mass has a strong direct effect on departure date from non-breeding and breeding sites, and indirect effects on arrival date at breeding and non-breeding sites, mainly through its effects on migration distance and a carry-over effect. Our results suggest that environmental factors strongly affect the timing of spring migration, while body mass affects the timing of both spring and autumn migration. Our study provides a new foundation for future research on the causes of species distribution and movement.


Animal Migration , Bayes Theorem , Birds , Seasons , Animal Migration/physiology , Animals , Birds/physiology , Body Weight , Time Factors
19.
PLoS One ; 19(5): e0295106, 2024.
Article En | MEDLINE | ID: mdl-38753609

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments. Here, we present methods to test the evolution of colour patterns on physical prey items, under selection from wild predators in the field. Our techniques expand on a recently-developed open-access pattern generation and genetic algorithm framework, modified to operate alongside artificial predation experiments. In this system, predators freely interact with prey, and the order of attack determines the survival and reproduction of prey patterns into future generations. We demonstrate the feasibility of these methods with a case study, in which free-flying birds feed on artificial prey deployed in semi-natural conditions, against backgrounds differing in three-dimensional complexity. Wild predators reliably participated in this experiment, foraging for 11 to 16 generations of artificial prey and encountering a total of 1,296 evolved prey items. Changes in prey pattern across generations indicated improvements in several metrics of similarity to the background, and greater edge disruption, although effect sizes were relatively small. Computer-based replicates of these trials, with human volunteers, highlighted the importance of starting population parameters for subsequent evolution, a key consideration when applying these methods. Ultimately, these methods provide pathways for integrating complex genetic algorithms into more naturalistic predation trials. Customisable open-access tools should facilitate application of these tools to investigate a wide range of visual pattern types in more ecologically-relevant contexts.


Algorithms , Biological Evolution , Predatory Behavior , Animals , Predatory Behavior/physiology , Birds/physiology , Selection, Genetic
20.
PLoS One ; 19(5): e0302007, 2024.
Article En | MEDLINE | ID: mdl-38776305

Supplementary feeding, the intentional provision of food to wild birds is a common activity in developed nations during the winter. The energy inputs represented by supplementary feeding are vast, and thus it is likely an important mechanism shaping bird communities in urban areas. However, research in this regard has mainly occurred in temperate and non-urban settings. Moreover, few studies have been informed by supplementary feeding habits of local community members limiting their inference. We evaluated the effects of two commonly provided wild bird foods on the abundance and species diversity of birds in yards over two winters in San Antonio, Texas, United States, a city located in a subtropical region. We used a reversed Before-After-Control-Impact experimental design in which yards were randomly allocated either mixed seed, Nyjer, or no food (control) between November 2019 and March 2020 (Year One). Between November 2020 and March 2021 (Year Two) supplementary food was not provided in any yards. Point counts conducted during both years of the study revealed that overall bird abundance was consistent between years in control yards and yards provided with Nyjer. In contrast, overall bird abundance was statistically significantly higher when supplementary food was present in mixed seed yards, driven by an increase in granivorous and omnivorous species. In contrast, supplementary feeding had no statistically significant effect on the abundance of insectivorous species or on species diversity, although species diversity tended to be higher in the presence of mixed seed. Our study demonstrates that wild bird food commonly provided by community members influences measures of avian community structure during the winter in urban yards in a subtropical city. However, these results depend on the type of bird food provided. Our results provide insight into the processes underlying the effects of urbanization on bird communities, and thus have implications for the management of urban birds more broadly.


Birds , Feeding Behavior , Seasons , Animals , Birds/physiology , Biodiversity , Texas , Cities , Animal Feed
...