Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.047
Filter
1.
Chemosphere ; 364: 143304, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251158

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) constitute a class of persistent organic pollutants with strong lipophilicity, which readily accumulate within organisms and have the effect to induce disorders in lipid metabolism. The present study aimed to investigate the accumulation localization and pattern of PAHs in Ruditapes philippinarum, and to reveal the association between PAHs and lipids metabolism. The 21-day exposure experiment was conducted using a mixture of phenanthrene, chrysene, and benzo[a]pyrene (the proportion is 1:1:1) at concentrations of 0.4 µg/L, 2 µg/L, and 10 µg/L. The tissue distribution of PAHs indicated that the digestive gland was the primary site of PAHs accumulation. Meanwhile, fluorescence colocalization suggested that PAHs primarily accumulated within the lipid droplets of digestive gland cells. This study further determined the transcriptomic and lipidomic profiles of the digestive gland to analyze the key genes involved in disrupted lipid metabolism and the major lipids affected. Lipidomic analysis identified the key differential metabolites as triglycerides (TGs). Furthermore, TGs were upregulated in the digestive gland had a total carbon atom number of 50-64 and a total number of 3-9 double bonds in the acyl side chains. Biochemical analysis experiments and oil red O stained frozen sections confirmed that the content of TGs steadily increased in various tissues during the experiment, leading to an elevated digestive gland index. Changes of lipid metabolism associated genes expression level also indicated that the synthesis of lipid in digestive gland were up-regulated while the decomposition was down-regulated. This study is the first to demonstrate the cellular localization of PAHs accumulation in bivalves and confirms the pattern of variation in TGs, providing new insights into the mechanisms of PAHs bioaccumulation and lipid metabolism disruption.


Subject(s)
Bivalvia , Lipid Metabolism , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Animals , Bivalvia/metabolism , Water Pollutants, Chemical/metabolism , Lipids , Phenanthrenes/metabolism , Benzo(a)pyrene/metabolism , Chrysenes/metabolism , Triglycerides/metabolism
2.
Bull Environ Contam Toxicol ; 113(3): 38, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225809

ABSTRACT

Polymesoda erosa is a mangrove clam known for its water filtration ability. This clam was investigated for its bioremediation potential and growth in synthetic wastewater during 40 days of incubation. Variation in the nutrient composition of water, biochemical composition of the clams, and metagenomic analysis of the microorganisms associated with clam tissue were carried out. Significant differences in the concentration of ammonia (p ≤ 0.01), nitrite (p ≤ 0.001), and nitrate (p ≤ 0.05) in the wastewater were observed between day 0 and day 40. A reduction of approximately 89% in ammonia concentration at the end of the experiment was recorded indicating nitrification activity. However, biochemical parameters showed negligible differences before and after the incubation experiment. Thus suggesting that the chemosynthetic-based nutrition aids in the survival of the clam as no organic matter was added to the medium. The substantial decline in levels of ammonia in the presence of clams as compared to its absence suggests the significant role of clams in improving the water quality. Furthermore, the metagenomic analysis of the gill tissue of P. erosa revealed ~ 50% of the microbial population to consist of nitrifiers. The study highlights the contribution by the nitrifers associated with the clams not only to its growth and resilience but also to bioremediation.


Subject(s)
Ammonia , Biodegradation, Environmental , Bivalvia , Nitrification , Wastewater , Animals , Bivalvia/metabolism , Bivalvia/microbiology , Ammonia/metabolism , Wastewater/microbiology , Water Pollutants, Chemical/metabolism , Nitrites/metabolism , Nitrates/metabolism , Waste Disposal, Fluid/methods
3.
Mar Environ Res ; 201: 106672, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128428

ABSTRACT

Aquaculture of bivalve shellfish and algae offers significant ecological benefits, yet the complex interactions between these organisms can substantially impact local carbon dynamics. This study investigated the effects of co-culturing four intertidal bivalve species Pacific oysters (Crassostrea gigas), Manila clams (Ruditapes philippinarum), Chinese clams (Cyclina sinensis), and hard clams (Mercenaria mercenaria) with microalgae (Isochrysis galbana) on specific water quality parameters, including total particulate matter (TPM), total organic matter (TOM), dissolved inorganic carbon (DIC), dissolved carbon dioxide (dCO2), dissolved oxygen (DO), and ammonium (NH4+) concentrations. The bivalves were divided into smaller and larger groups and cultured under two conditions: with algae (WP) and without (NP), along with matched controls. Total particulate matter (TPM), total organic matter (TOM), dissolved oxygen (DO), ammonium nitrogen (NH4+), dissolved inorganic carbon (DIC), and CO2 (dCO2) were measured before and after 3-h cultivation. Results revealed species-specific impacts on water chemistry. C. gigas, C. sinensis and R. philippinarum showed the strongest reduction in DIC and dCO2 in WP groups, indicating synergistic bioremediation with algae. M. mercenaria notably reduced TPM, highlighting its particle carbon sequestration potential. DO concentrations decreased in most WP or NP groups, reflecting respiration of the cultured bivalves or microalgae. NH4+ levels also declined for most species, indicating nitrogen assimilation by these creatures. Overall, the bivalve size significantly impacted carbon and nitrogen processing capacities. These findings reveal species-specific capabilities in regulating water carbon dynamics. Further research should explore integrating these bivalves in carbon-negative aquaculture systems to mitigate environmental impacts. This study provides valuable insights underlying local carbon dynamics in shallow marine ecosystems.


Subject(s)
Aquaculture , Bivalvia , Carbon , Microalgae , Water Quality , Animals , Bivalvia/metabolism , Bivalvia/physiology , Carbon/metabolism , Coculture Techniques , Nitrogen/metabolism
4.
J Hazard Mater ; 478: 135486, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39151364

ABSTRACT

The neurotoxin ß-N-methylamino-L-alanine (BMAA), produced by cyanobacteria and diatoms, has been implicated as an environmental risk factor for neurodegenerative diseases. This study first investigated the occurrence and monthly distributions of BMAA and its isomers, 2,4-diaminobutyric acid (DAB) and N-2-aminoethylglycine (AEG), in phytoplankton and mussels from 11 sites along the South Sea Coast of Korea throughout 2021. These toxins were quantified using LC-MS/MS, revealing elevated BMAA concentrations from late autumn to spring, with phase lags observed between phytoplankton and mussels. The highest concentration of BMAA in phytoplankton was detected in November (mean: 1490 ng g-1 dry weight (dw)), while in mussels, it peaked in December (mean: 1240 ng g-1 dw). DAB was detected in phytoplankton but was absent in mussels, indicating limited bioaccumulation potential. In February, the peak mean DAB concentration in phytoplankton was 89 ng g-1 dw. AEG was not detected in any samples. Chlorophyll-a concentrations consistently showed an inverse correlation with BMAA concentrations in mussels throughout the year. Through correlation analysis, four diatom genera, Bacillaria, Hemiaulus, Odontella, and Pleurosigma, were identified as potential causative microalgae of BMAA. This study offers insights into identifying the causative microalgae for BMAA and informs future regulatory efforts regarding unmanaged biotoxins.


Subject(s)
Amino Acids, Diamino , Bivalvia , Cyanobacteria Toxins , Microalgae , Neurotoxins , Phytoplankton , Amino Acids, Diamino/analysis , Republic of Korea , Animals , Phytoplankton/metabolism , Microalgae/metabolism , Microalgae/chemistry , Bivalvia/metabolism , Bivalvia/chemistry , Neurotoxins/analysis , Environmental Monitoring , Aminobutyrates/analysis , Glycine/analogs & derivatives , Glycine/analysis , Diatoms/metabolism , Seasons , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
5.
Chemosphere ; 364: 143069, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39127194

ABSTRACT

Mussels are commonly used as bioarchives in environmental monitoring, yet the impact of vital effects on the trace element or isotope ratios used as biogeochemical proxies is often only ill constrained. A prime example of such trace elements are the Rare Earth elements and Yttrium (REY) which have become (micro)contaminants in freshwater systems worldwide. We here report on the distribution of REY in different soft tissues and in the shells of freshwater bivalve A. anatina, commonly known as "duck mussel", from the Danube River in Hungary and the Vistula River in Poland. Both rivers are contaminated with anthropogenic Gd from contrast agents used in magnetic resonance imaging (MRI). Regardless of the mussels' origin, all of their compartments show very similar shale-normalised REY patterns. None of the samples show any anthropogenic Gd anomaly, implying that in freshwater anthropogenic Gd from MRI contrast agents is either not bioavailable or that REY from ambient river water are insignificant for the REY budget of freshwater mussels. Compared to ambient water, the bivalves bioaccumulate the REY with preferential uptake of Ce and of light REY over heavy REY. However, REY concentrations in mussels are similar to or lower than those in their potential food source, with minor fractionation along the REY series besides slight preferential uptake of La and Y. Comparison of shells and tissues reveals the systematic oxidative decoupling of Ce from its REY neighbours, probably due to the presence of Ce(IV) solution-complexes in the mussels' extrapallial fluid. Despite possible REY fractionation during their initial uptake, vital effects do not impose any major control on REY fractionation during REY transfer within the mussels or during formation of their shells. Mussel shells may, therefore, conveniently be used for environmental monitoring of REY without major disturbance from vital effects.


Subject(s)
Animal Shells , Bivalvia , Environmental Monitoring , Fresh Water , Metals, Rare Earth , Water Pollutants, Chemical , Yttrium , Animals , Yttrium/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Bivalvia/metabolism , Metals, Rare Earth/analysis , Fresh Water/chemistry , Poland , Animal Shells/chemistry , Animal Shells/metabolism , Hungary , Rivers/chemistry , Chemical Fractionation
6.
Sci Total Environ ; 951: 175699, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39179039

ABSTRACT

Whether shellfish mariculture should be included in the blue carbon profile as a strategy to combat climate change has been controversial. It is highly demanding not only to provide calibration quantitation, but also to provide an ecosystem-based mechanism. In this study, we chose mussel farms as a case study to evaluate their contributions to carbon sinks and their responses to sedimentary carbon fixation and sequestration. First, we quantified the air-sea CO2 flux in the mussel aquacultural zone and observed a weak carbon sink (-0.15 ± 0.07 mmol·m-2·d-1) during spring. Next, by analyzing the carbon composition in the sediment, we recorded a noticeable and unexpected increase in the sedimentary recalcitrant carbon (RC) content in the mussel farming case. To address this surprising sedimentary phenomenon, a long-term indoor experimental test was conducted to distinguish the consequences of mussel engagement with sedimentary RC. Our observational data support the idea that mussel engagement promotes accumulation of RC in sediments by 2.5-fold. Furthermore, the relative intensity of carboxylic-rich alicyclic molecule (CRAM)-like compounds (recalcitrant dissolved organic matter (RDOM)) increased by 451.4 % in the mussel-engaged sedimentary dissolved organic matter (DOM) in comparison to the initial state. Mussel engagement had a significantly positive effect on the abundance of sedimentary carbon-fixing genes. Therefore, we definitively conclude that mussel farming is blue carbon positive and propose a new alternative theory that mussel farming areas may have high carbon sequestration potential via an ecologically integrated "3 M" (microalgae-mussel-microbiota) consortium. The "mussel pump" accelerates carbon sequestration and enhances climate-related ecosystem services.


Subject(s)
Carbon Sequestration , Shellfish , Animals , Climate Change , Environmental Monitoring , Aquaculture , Geologic Sediments/chemistry , Bivalvia/metabolism , Oceans and Seas , Ecosystem , Carbon/analysis
7.
Environ Pollut ; 360: 124665, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39116928

ABSTRACT

The biological response to nanomaterials exposure depends on their properties, route of exposure, or model organism. Titanium dioxide nanoparticles (TiO2 NPs) are among the most used nanomaterials; however, concerns related to oxidative stress and metabolic effects resulting from their ingestion are rising. Therefore, in the present work, we addressed the metabolic effects of citrate-coated 45 nm TiO2 NPs combining bioaccumulation, tissue ultrastructure, and proteomics approaches on gilthead seabream, Sparus aurata and Japanese carpet shell, Ruditapes philippinarum. Sparus aurata was exposed through artificially contaminated feeds, while R. philippinarum was exposed using TiO2 NPs-doped microalgae solutions. The accumulation of titanium and TiO2 NPs in fish liver is associated with alterations in hepatic tissue structure, and alteration to the expression of proteins related to lipid and fatty acid metabolism, lipid breakdown for energy, lipid transport, and homeostasis. While cellular structure alterations and the expression of proteins were less affected than in gilthead seabream, atypical gill cilia and microvilli and alterations in metabolic-related proteins were also observed in the bivalve. Overall, the effects of TiO2 NPs exposure through feeding appear to stem from various interactions with cells, involving alterations in key metabolic proteins, and changes in cell membranes, their structures, and organelles. The possible appearance of metabolic disorders and the environmental risks to aquatic organisms posed by TiO2 NPs deserve further study.


Subject(s)
Sea Bream , Titanium , Animals , Titanium/toxicity , Sea Bream/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Bivalvia/metabolism , Nanoparticles/toxicity , Liver/metabolism , Liver/drug effects , Gills/metabolism , Gills/drug effects , Metal Nanoparticles/toxicity , Oxidative Stress
8.
J Proteomics ; 307: 105267, 2024 09 15.
Article in English | MEDLINE | ID: mdl-39089615

ABSTRACT

Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.


Subject(s)
Proteomics , Spheniscidae , Animals , Spheniscidae/metabolism , Proteomics/methods , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Extracellular Matrix Proteins/metabolism , Proteome/metabolism , Proteome/analysis , Bivalvia/metabolism , Animal Shells/metabolism , Animal Shells/ultrastructure , Animal Shells/chemistry , Biological Evolution
9.
Mar Pollut Bull ; 206: 116783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089206

ABSTRACT

Metal concentrations were determined in tissues of finfish, crabs, and bivalve molluscs collected from marine waters near Port Pirie, South Australia, the site of a long-standing multi-metals smelter and refinery. A general trend of tissue metal concentrations in order of highest to lowest was observed in bivalves > crabs > finfish. A lead concentration of 158 ± 6.6 mg/kg (wet wt.) was observed in blue mussels (Mytilus galloprovincialis) sampled close to the smelter. Lead concentrations correlated positively with proximity to the smelter in all biota analysed. Similar relationships were observed for cadmium, copper, zinc and selenium in all biota except razorfish (Pinna bicolor; Bivalvia: Pinnidae), which showed no correlation with proximity to the smelter for these metals. Inorganic arsenic concentrations were below the limit of reporting in the majority of the analysed samples, however inorganic arsenic concentrations in blue swimmer crabs (Portunus armatus) and blue mussels correlated with proximity to the smelter. Mercury concentrations in the biota analysed were generally low and showed variable relationships with proximity to the smelter, with no significant correlation observed in finfish and razorfish, a significant positive correlation in blue mussels, and a significant negative correlation in blue swimmer crabs. This is the first major study of metal concentrations in recreationally-targeted marine species near Port Pirie species for more than two decades. Comparison with data from previous studies conducted shows little change in tissue metal concentrations in marine biota near Port Pirie over the past 40 years.


Subject(s)
Bivalvia , Brachyura , Environmental Monitoring , Fishes , Metals , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brachyura/metabolism , Bivalvia/metabolism , Metals/metabolism , Metals/analysis , Fishes/metabolism , South Australia , Metallurgy , Metals, Heavy/analysis , Metals, Heavy/metabolism
10.
Environ Sci Technol ; 58(33): 14618-14628, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39118541

ABSTRACT

Bivalves are often employed for biomonitoring contaminants in marine environments; however, in these large-scale programs, unavoidably, using multiple species presents a significant challenge. Interspecies differences in contaminant bioaccumulation can complicate data interpretation, and direct comparisons among species may result in misleading conclusions. Here, we propose a robust framework based on toxicokinetic measurements that accounts for interspecies differences in bioaccumulation. Specifically, via a recently developed double stable isotope tracer technique, we determined the toxicokinetics of cadmium (Cd)─a metal known for its high concentrations in bivalves and significant interspecies bioaccumulation variability─in six widespread bivalve species including mussels (Perna viridis, Mytilus unguiculatus, Mytilus galloprovincialis) and oysters (Magallana gigas, Magallana hongkongensis, Magallana angulata). Results show that oysters generally have higher Cd uptake rate constants (ku: 1.18-3.09 L g-1 d-1) and lower elimination rate constants (ke: 0.008-0.017 d-1) than mussels (ku: 0.21-0.64 L g-1 d-1; ke: 0.018-0.037 d-1). The interspecies differences in tissue Cd concentrations are predominantly due to Cd uptake rather than elimination. Utilizing toxicokinetic parameters to back-calculate Cd concentrations in seawater, we found that the ranking of Cd contamination levels at the six sites markedly differs from those based on tissue Cd concentrations. We propose that this approach will be useful for interpreting data from past and future biomonitoring programs.


Subject(s)
Bivalvia , Cadmium , Toxicokinetics , Water Pollutants, Chemical , Animals , Cadmium/metabolism , Cadmium/pharmacokinetics , Cadmium/toxicity , Bivalvia/metabolism , Environmental Monitoring/methods , Mytilus/metabolism , Biological Monitoring , Species Specificity
11.
Chemosphere ; 363: 142934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053781

ABSTRACT

Microplastics (MPLs) are contaminants of emerging concern (CECs) ubiquitous in aquatic environments, which can be bioaccumulated along the food chain. In this study, the accumulation of polyethylene (PE), polystyrene (PS) and polyethylene terephthalate (PET) microplastics (MPLs) of sizes below 63 µm was assessed in Mediterranean mussels (Mytilus galloprovincialis spp). Moreover, the potential of mussels to uptake and bioaccumulate other organic contaminants, such as triclosan (TCS) and per- and polyfluoroalkyl substances (PFASs), was evaluated with and without the presence of MPLs. Then, the modulation of MPLs in the human bioaccessibility of co-contaminants was assessed by in vitro assays that simulated the human digestion process. Exposure experiments were carried out in 15 L marine microcosms. The bioaccumulation and bioaccessibility of PE, PS, PET, and co-contaminants were assessed by means of liquid chromatography -size exclusion chromatography-coupled to high-resolution mass spectrometry (LC(SEC)-HRMS). Our outcomes confirm that MPL bioaccumulation in filter-feeding organisms is a function of MPL chemical composition and particle sizes. Finally, despite the lower accumulation and bioaccumulation of PFASs in the presence of MPLs, the bioaccessibility assays revealed that PFASs bioaccessibility was favoured in the presence of MPLs. Since part of the bioaccumulated PFASs are adsorbed onto MPL surfaces by hydrophobic and electrostatic interactions, these interactions easily change with the pH during digestion, and the PFASs bioaccessibility increases.


Subject(s)
Bioaccumulation , Microplastics , Mytilus , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Mytilus/metabolism , Polyethylene/chemistry , Polyethylene/metabolism , Polystyrenes/chemistry , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Humans , Bivalvia/metabolism , Triclosan/metabolism , Food Chain , Environmental Monitoring
12.
J Steroid Biochem Mol Biol ; 243: 106594, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084493

ABSTRACT

The estrogen receptor (ER), a ligand-dependent transcription factor, is critical for vertebrate reproduction. However, its role in bivalves is not well understood, with ongoing debates regarding its function in regulating reproduction similarly to vertebrates. To investigate ER's function, we conducted a 21-day RNA interference experiment focusing on its role in gonadal development in bivalves. Histological analyses revealed that ER inhibition significantly suppressed ovarian development in females and, conversely, promoted gonadal development in males. Additionally, levels of 17ß-estrogen (E2) were markedly reduced in the gonads of both sexes following ER suppression. Transcriptomic analysis from RNA-seq of testes and ovaries after ER interference showed changes in the expression of key genes such as Vtg, CYP17, 3ß-HSD, and 17ß-HSD. These genes are involved in the estrogen signaling pathway and steroid hormone biosynthesis. Furthermore, ER suppression significantly affected the expression of genes linked to gametogenesis and the reproductive cycle. Our findings highlight ER's crucial, yet complex and sex-specific roles in gonadal development in bivalves, emphasizing the need for further detailed studies.


Subject(s)
Bivalvia , Gonads , Ovary , Receptors, Estrogen , Testis , Animals , Bivalvia/genetics , Bivalvia/growth & development , Bivalvia/metabolism , Female , Male , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Ovary/metabolism , Ovary/growth & development , Gonads/metabolism , Gonads/growth & development , Testis/metabolism , Testis/growth & development , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , RNA Interference
13.
Mar Biotechnol (NY) ; 26(4): 810-826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39046591

ABSTRACT

This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-ß signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.


Subject(s)
Bivalvia , Gene Expression Regulation , Heat-Shock Response , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Bivalvia/genetics , Bivalvia/metabolism , Heat-Shock Response/genetics , Hot Temperature , Gene Expression Profiling , RNA, Messenger/metabolism , RNA, Messenger/genetics , Signal Transduction
14.
Environ Int ; 190: 108882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996798

ABSTRACT

The role of the gut microbiota in host physiology has been previously elucidated for some marine organisms, but little information is available on their metabolic activity involved in transformation of environmental pollutants. This study assessed the metabolic profiles of the gut microbial cultures from grouper (Epinephelus coioides), green mussel (Perna viridis) and giant tiger prawn (Penaeus monodon) and investigated their transformation mechanisms to typical plastic additives. Community-level physiological profiling analysis confirmed the utilization profiles of the microbial cultures including carbon sources of carbohydrates, amines, carboxylic acids, phenolic compounds, polymers and amino acids, and the plastic additives of organophosphate flame retardants, tetrabromobisphenol A derivates and bisphenols. Using in vitro incubation, triphenyl phosphate (TPHP) was found to be rapidly metabolized into diphenyl phosphate by the gut microbiota as a representative ester-containing plastic additive, whereas the transformation of BPA (a representative phenol) was relatively slower. Interestingly, all three kinds of microbial cultures efficiently transformed the hepatic metabolite of BPA (BPA-G) back to BPA, thereby increasing its bioavailability in the body. The specific enzyme analysis confirmed the ability of the gut microbiota to perform the metabolic reactions. The results of 16S rRNA sequencing and network analysis revealed that the genera Escherichia-Shigella, Citrobacter, and Anaerospora were functional microbes, and their collaboration with fermentative microbes played pivotal roles in the transformation of the plastic additives. The structure-specific transformations by the gut microbiota and their distinct bioavailability deserve more attention in the future.


Subject(s)
Gastrointestinal Microbiome , Plastics , Animals , Gastrointestinal Microbiome/physiology , Plastics/metabolism , Water Pollutants, Chemical/metabolism , Penaeidae/metabolism , Penaeidae/microbiology , Aquatic Organisms/metabolism , RNA, Ribosomal, 16S/genetics , Bacteria/metabolism , Bacteria/genetics , Bass/metabolism , Bass/microbiology , Biotransformation , Bivalvia/microbiology , Bivalvia/metabolism , Phenols/metabolism , Benzhydryl Compounds
15.
Article in English | MEDLINE | ID: mdl-39033794

ABSTRACT

With global warming and increasing eutrophication of water bodies, a variety of algal toxins, including microcystin (MC), released into water by cyanobacterial blooms pose a serious threat to the survival of aquatic organisms. To investigate the mechanism of the Nrf2/Keap1a pathway on resisting MC-induced oxidative stress and apoptosis in Cristata plicata, we cloned the full-length cDNA of CpBcl-2. The cDNA full-length of CpBcl-2 was 760 bp, encoded a 177 amino acid peptide, and contained a highly conserved Bcl-2-like superfamily domain. MC stimulation increased the expression and activity levels of related antioxidant enzymes. After CpNrf2 knockdown, the transcription levels of NAD(P)H quinone redox Enzyme-1 (NQO1) and related antioxidant enzymes activity in the gills and kidney of C. plicata were significantly down-regulated upon MC stress, but that was significantly upregulated after knockdown of CpKeap1a. Additionally, Upon MC stress, the mRNA levels of CpBcl-2 were increased in the gills and kidney after knockdown of CpNrf2 at 24 h, and that of CpBcl-2 were decreased at 72 and 96 h in the CpKeap1a-siRNA+MC group. Moreover, MC stimulation significantly inhibited CpJNK expression in the gills and kidney, but which regulated the Nrf2/Keap1a pathway in C. plicata. However, the JNK inhibitor SP600125 promoted the expression of CpNrf2 and related enzymes with antioxidant response element (ARE-driven enzyme) in the gills and kidney. Then, we speculated that CpKeap1a was a negative regulator of CpNrf2, and C. plicata resisted MC-induced oxidative damage and apoptosis by inhibiting JNK transcription via the Nrf2/Keap1a pathway.


Subject(s)
Apoptosis , Microcystins , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Microcystins/toxicity , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Apoptosis/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Gills/metabolism , Gills/drug effects , Signal Transduction/drug effects , Bivalvia/drug effects , Bivalvia/metabolism
16.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891762

ABSTRACT

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Subject(s)
Bivalvia , Spermatogenesis , Testis , Transcription Factors , Animals , Spermatogenesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Testis/metabolism , Testis/growth & development , Bivalvia/genetics , Bivalvia/metabolism , Bivalvia/growth & development , Gene Expression Regulation, Developmental , Gonads/metabolism , Gonads/growth & development , Hermaphroditic Organisms/genetics , Hermaphroditic Organisms/metabolism , Cloning, Molecular , Phylogeny , Amino Acid Sequence
17.
Environ Res ; 257: 119331, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851371

ABSTRACT

Toxicological stress in aquatic organisms is caused by the discharge of hundreds of toxic pollutants and contaminants among which the current study concentrates on the toxic effect of non-steroidal anti-inflammatory drug ibuprofen (IBF) and the trace element selenium (Se). In this study, IBF and Se toxicity on freshwater mussel Lamellidens marginalis was studied for 14 days, and in silico predictions for their degradation were made using Molecular modelling and Quantum Mechanical approaches. The degrading propensity of cytochrome c oxidase proteins from Trametes verticillatus and Thauera selenatis (Turkey tail fungi and Gram-negative bacteria) is examined into atom level. The results of molecular modelling study indicate that ionic interactions occur in the T. selenatis-HEME bound complex by Se interacting directly with HEME, and in the T. versicolor-HEME bound complex by IBF bound to a nearby region of HEME. Experimental and theoretical findings suggest that, the toxicological effects of Se and IBF pollution can be reduced by bioremediation with special emphasis on T. versicolor, and T. selenatis, which can effectively interact with Se and IBF present in the environment and degrade them. Besides, this is the first time in freshwater mussel L. marginalis that ibuprofen and selenium toxicity have been studied utilizing both experimental and computational methodologies for their bioremediation study.


Subject(s)
Ibuprofen , Selenium , Water Pollutants, Chemical , Animals , Ibuprofen/toxicity , Ibuprofen/metabolism , Ibuprofen/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Selenium/toxicity , Selenium/chemistry , Selenium/metabolism , Biodegradation, Environmental , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Quantum Theory , Unionidae/metabolism , Bivalvia/drug effects , Bivalvia/metabolism , Models, Molecular , Fresh Water/chemistry
18.
Mar Environ Res ; 199: 106562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870558

ABSTRACT

For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.


Subject(s)
Lipid Peroxidation , Oxidative Stress , Animals , Antioxidants/metabolism , Environmental Monitoring , Tidal Waves , Protein Carbonylation , Carotenoids/metabolism , Bivalvia/physiology , Bivalvia/metabolism , Mytilidae/metabolism , Mytilidae/physiology
19.
Food Chem ; 456: 140078, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38878550

ABSTRACT

This study comprehensively characterised a protected designation of origin mussel 'Cozza di Scardovari' (Mytilus galloprovincialis) by examining how it is affected by the farming site (outer vs. inner area of the lagoon) and harvest time (21 April vs. 18 May vs. 16 June). Harvest time affected the marketable traits and fatty acid profile of mussels, whereas farming site scarcely affected marketable traits and mussel yields. Mussels from the inner area of the lagoon displayed a superior nutritional profile, including higher contents of proteins (7.8% vs. 7.4%; P < 0.05), lipids (1.2% vs. 1.0%; P < 0.001) and essential amino acids such as tryptophan (+24%; P < 0.05) and valine (+8%; P < 0.05), with a more favourable n-3/n-6 ratio (7.7 vs. 7.0; P < 0.001) than those from the close-to-sea area. Volatile organic compounds, mainly octanoic acid, dimethyl sulphide and 1-penten-3-ol, differed between farming sites within the same lagoon.


Subject(s)
Fatty Acids , Nutritive Value , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Fatty Acids/analysis , Fatty Acids/chemistry , Fatty Acids/metabolism , Shellfish/analysis , Mytilus/chemistry , Mytilus/metabolism , Mytilus/growth & development , Aquaculture , Bivalvia/chemistry , Bivalvia/metabolism , Bivalvia/growth & development
20.
Biol Lett ; 20(6): 20240066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836647

ABSTRACT

Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.


Subject(s)
Cues , Introduced Species , Predatory Behavior , Temperature , Animals , Brachyura/physiology , Bivalvia/physiology , Bivalvia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL