Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.086
Filter
1.
Zhonghua Fu Chan Ke Za Zhi ; 59(7): 548-558, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39056132

ABSTRACT

Objective: To explore the correlation between blastomere count variations "skip value" which extracted from by time-lapse technology (TLT) combined with artificial intelligence (AI) and morphological features of in vitro fertilization (IVF) embryo, and to test its feasibility in clinical applications. Methods: This study was a diagnostic experiment (AI reassessment of embryo transferred patients), a total of 6 545 embryos from 1 226 patients who underwent IVF at the Women and Children's Hospital of Chongqing Medical University from December 2020 to December 2021 were retrospectively analyzed, of which 2 869 embryos were attempted to cultured to blastocyst stage by TLT. The embryo dynamic map (EDM) was drawn by Embryo Viewer, a TLT recording software, based on embryo developmental kinetics. The self-developed AI embryo evaluation software identified and recorded the number of cleavages in real time during embryonic development, and compared with the EDM, the correlation between the skip value formed by the change of cleavage sphere counts and the outcomes of the embryos was analyzed. The correlation among skip value, morphological score of embryo, implantation rate and live birth rate were performed by Spearman and step-up logistic regression. The receiver operating characteristic (ROC) curve was selected for reporting there relationship of skip value and morphology. Finally, predicting power of skip value for implantation and live birth rate were performed by ROC analysis. Results: The total skip values extracted from the blastomere count of embryos (72 hours post-fertilization) were negatively correlated with abnormal cleavage, blastocyst formation rate, day 3 (D3)-cell score, uneven size and fragmentation (the ß values were -0.268, -0.116, -0.213, -0.159 and -0.222, respectively; all P<0.001); positively correlated with D3-cell number (ß=0.034; P<0.001); negatively correlated with blastocyst formation rate and implantation rate (OR=0.97, 95%CI: 0.93-0.99, P=0.034; OR=0.96, 95%CI: 0.93-0.98, P=0.044). The power of predicting implantation were similar between the order selection of skip values and traditional morphology criteria [area under curve (AUC): 0.679 vs 0.620]. Live birth rate were negatively correlated with female age (OR=0.91, 95%CI: 0.88-0.93; P<0.001), D3 general score (OR=0.77, 95%CI: 0.59-0.99; P=0.045) and order selection of skip values (OR=0.98, 95%CI: 0.96-0.99; P=0.038), while positively correlated with retrieved oocyte number and endometrial thickness in embryo transferred (OR=1.08, 95%CI:1.05-1.11, P<0.001; OR=1.09, 95%CI:1.06-0.12, P<0.001, respectively) from multivariate regression analysis, and the power of predicting live birth was 0.666 for AUC. Conclusions: The skip value and its order form is a systematic quantification of embryo development, correlated with embryo developmental quality and clinical outcome. It could be an addition parameter for embryo culture and selection.


Subject(s)
Artificial Intelligence , Blastocyst , Blastomeres , Embryo Culture Techniques , Embryonic Development , Fertilization in Vitro , Humans , Fertilization in Vitro/methods , Retrospective Studies , Female , Blastomeres/cytology , Pregnancy , Embryo Culture Techniques/methods , Blastocyst/cytology , Embryo Transfer/methods , Pregnancy Rate , Embryo Implantation , Adult , Software , Embryo, Mammalian/cytology
2.
Reprod Fertil Dev ; 362024 Jun.
Article in English | MEDLINE | ID: mdl-38902907

ABSTRACT

Context Current methods to obtain bovine embryos of high genetic merit include approaches that require skilled techniques for low-efficiency cloning strategies. Aims The overall goal herein was to identify the efficacy of alternative methods for producing multiple embryos through blastomere complementation while determining maintenance of cell pluripotency. Methods Bovine oocytes were fertilised in vitro to produce 4-cell embryos from which blastomeres were isolated and cultured as 2-cell aggregates using a well-of-the-well system. Aggregates were returned to incubation up to 7days (Passage 1). A second passage of complement embryos was achieved by splitting 4-cell Passage 1 embryos. Passaged embryos reaching the blastocyst stage were characterised for cell number and cell lineage specification in replicate with non-reconstructed zona-intact embryos. Key results Passage 1 and 2 embryo complements yielded 29% and 25% blastocyst development, respectively. Passage 1 embryos formed blastocysts, but with a reduction in expression of SOX2 and decreased size compared to non-reconstructed zona-intact embryos. Passage 2 embryos had a complete lack of SOX2 expression and a reduction in transcript abundance of SOX2 and SOX17, suggesting loss of pluripotency markers that primarily affected inner cell mass (ICM) and hypoblast formation. Conclusions In vitro fertilised bovine embryos can be reconstructed with multiple passaging to generate genetically identical embryos. Increased passaging drives trophectoderm cell lineage specification while compromising ICM formation. Implications These results may provide an alternative strategy for producing genetically identical bovine embryos through blastomere complementation with applications towards the development of trophoblast and placental models of early development.


Subject(s)
Blastocyst , Blastomeres , Embryo Culture Techniques , Embryonic Development , Fertilization in Vitro , Animals , Cattle , Blastocyst/metabolism , Fertilization in Vitro/veterinary , Embryo Culture Techniques/veterinary , Embryonic Development/physiology , Blastomeres/metabolism , Blastomeres/cytology , Female , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Cloning, Organism/methods , Cloning, Organism/veterinary , Cell Lineage , Embryo, Mammalian/metabolism
3.
Reprod Domest Anim ; 59(6): e14627, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837827

ABSTRACT

The efficiency of bovine in vitro embryo production can be significantly improved by splitting embryos at different stages. However, the blastocyst quality of in vitro-produced demi-embryos remains unexplored. The objective of this research was to compare embryo developmental rates and quality of bovine demi-embryos produced by two different strategies: (a) embryo bisection (BSEC) and (b) 2-cell blastomere separation (BSEP). To determine demi-embryos quality, we evaluated total blastocyst cell number and proportion of SOX2+ cells. Additionally, the expression of SOX2, NANOG, OCT4, CDX2, IFNT, BAX and BCL genes and let-7a and miRNA-30c Micro RNAs was analysed. BSEP resulted in improved blastocyst development, higher ICM cells and a significantly higher expression of IFNΤ than demi-embryos produced by BSEC. Let-7a, which is associated with low pregnancy establishment was detected in BSEC, while miRNA-30c expression was observed in all treatments. In conclusion, BSEP of 2-cell embryos is more efficient to improve in vitro bovine embryo development and to produce good quality demi-embryos based on ICM cell number and the expression pattern of the genes explored compared to BSEC.


Subject(s)
Blastocyst , Blastomeres , Embryo Culture Techniques , Embryonic Development , Animals , Cattle/embryology , Female , Embryo Culture Techniques/veterinary , Blastomeres/cytology , Fertilization in Vitro/veterinary , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Developmental , Pregnancy
4.
Cell ; 187(13): 3284-3302.e23, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38843832

ABSTRACT

The cleavage of zygotes generates totipotent blastomeres. In human 8-cell blastomeres, zygotic genome activation (ZGA) occurs to initiate the ontogenesis program. However, capturing and maintaining totipotency in human cells pose significant challenges. Here, we realize culturing human totipotent blastomere-like cells (hTBLCs). We find that splicing inhibition can transiently reprogram human pluripotent stem cells into ZGA-like cells (ZLCs), which subsequently transition into stable hTBLCs after long-term passaging. Distinct from reported 8-cell-like cells (8CLCs), both ZLCs and hTBLCs widely silence pluripotent genes. Interestingly, ZLCs activate a particular group of ZGA-specific genes, and hTBLCs are enriched with pre-ZGA-specific genes. During spontaneous differentiation, hTBLCs re-enter the intermediate ZLC stage and further generate epiblast (EPI)-, primitive endoderm (PrE)-, and trophectoderm (TE)-like lineages, effectively recapitulating human pre-implantation development. Possessing both embryonic and extraembryonic developmental potency, hTBLCs can autonomously generate blastocyst-like structures in vitro without external cell signaling. In summary, our study provides key criteria and insights into human cell totipotency.


Subject(s)
Cell Differentiation , Spliceosomes , Animals , Humans , Mice , Blastocyst/metabolism , Blastocyst/cytology , Blastomeres/metabolism , Blastomeres/cytology , Cellular Reprogramming , Embryonic Development/genetics , Germ Layers/metabolism , Germ Layers/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , RNA Splicing , Spliceosomes/metabolism , Totipotent Stem Cells/metabolism , Totipotent Stem Cells/cytology , Zygote/metabolism , Cells, Cultured , Models, Molecular , Protein Structure, Tertiary , Genome, Human , Single-Cell Analysis , Growth Differentiation Factor 15/chemistry , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Epigenomics , Cell Lineage
5.
Development ; 151(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38940293

ABSTRACT

Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.


Subject(s)
Cell Differentiation , Hematopoiesis , Hematopoietic Stem Cells , Zebrafish , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mice , Cell Differentiation/drug effects , Hematopoiesis/drug effects , Receptors, Notch/metabolism , Signal Transduction/drug effects , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Cilia/metabolism , Cilia/drug effects , Blastomeres/cytology , Blastomeres/metabolism , Blastomeres/drug effects , Cells, Cultured
6.
Cell ; 187(11): 2838-2854.e17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38744282

ABSTRACT

Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta). We show that the majority of epiblast cells originate from only one blastomere of the 2-cell stage embryo. We observe that only one to three cells become internalized at the 8-to-16-cell stage transition. Moreover, these internalized cells are more frequently derived from the first cell to divide at the 2-cell stage. We propose that cell division dynamics and a cell internalization bottleneck in the early embryo establish asymmetry in the clonal composition of the future human body.


Subject(s)
Blastomeres , Cell Lineage , Embryo, Mammalian , Female , Humans , Blastomeres/cytology , Blastomeres/metabolism , Cell Division , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development , Germ Layers/cytology , Germ Layers/metabolism , Male , Animals , Mice
7.
Eur J Obstet Gynecol Reprod Biol ; 297: 209-213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688135

ABSTRACT

The present study investigated whether day 3 blastomere number has an effect on the clinical outcomes during single vitrified-warmed blastocyst transfer cycles. A total of 3294 vitrified-warmed single day 5 blastocyst transferred cycles were analyzed in this retrospective study from January 2018 to December 2021. The cycles were divided into ≥ 7 and < 7 blastomere groups depending on the day 3 embryo blastomere number. The clinical outcomes were compared between the two groups, moreover multivariate logistic regression analysis was conducted to investigate the correlation between the number of day 3 blastomeres and clinical outcomes. The chi-square test demonstrated that the rates of clinical pregnancy and live birth were significantly higher in the ≥ 7 blastomere group compared to the < 7 blastomere group with respect to single high-quality blastocyst transfer cycles. Conversely, these rates were similar in the two groups with respect to single low-quality blastocyst transfer cycles. These results were confirmed by multivariate logistic regression analysis. However, the miscarriage rate was higher in the < 7 blastomere group than in ≥ 7 group during low-quality blastocyst transfer cycles. These results suggested that day 3 blastomere number should be considered during single vitrified-warmed blastocyst transfer cycles. Thus, blastocsyts derived from ≥ 7 blastomere embryos are preferred when choosing the same quality blastocysts.


Subject(s)
Blastomeres , Embryo Transfer , Pregnancy Rate , Vitrification , Humans , Female , Retrospective Studies , Pregnancy , Blastomeres/cytology , Embryo Transfer/methods , Adult , Cryopreservation
8.
In Vitro Cell Dev Biol Anim ; 60(7): 708-715, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38379097

ABSTRACT

The generation of genetically engineered pig models that develop pancreas-specific tumors has the potential to advance studies and our understanding of pancreatic cancer in humans. TP53 mutation causes organ-nonspecific cancers, and PDX1-knockout results in the loss of pancreas development. The aim of the present study was to generate a PDX1-knockout pig chimera carrying pancreas complemented by TP53 mutant cells via phytohemagglutinin (PHA)-mediated blastomere aggregation using PDX1 and TP53 mutant blastomeres, as a pig model for developing tumors in the pancreas with high frequency. First, the concentration and exposure time to PHA to achieve efficient blastomere aggregation were optimized. The results showed that using 300 µg/mL PHA for 10 min yielded the highest rates of chimeric blastocyst formation. Genotyping analysis of chimeric blastocysts derived from aggregated embryos using PDX1- and TP53-edited blastomere indicated that approximately 28.6% carried mutations in both target regions, while 14.3-21.4% carried mutations in one target. After the transfer of the chimeric blastocysts into one recipient, the recipient became pregnant with three fetuses. Deep sequencing analysis of the PDX1 and TP53 regions using ear and pancreas samples showed that one fetus carried mutations in both target genes, suggesting that the fetus was a chimera derived from embryo-aggregated PDX1 and TP53 mutant blastomeres. Two out of three fetuses carried only the PDX1 mutation, indicating that the fetuses developed from embryos not carrying TP53-edited blastomeres. The results of the present study could facilitate the further improvement and design of high-frequency developing pancreatic tumor models in pigs.


Subject(s)
Blastomeres , Homeodomain Proteins , Mutation , Phytohemagglutinins , Trans-Activators , Tumor Suppressor Protein p53 , Animals , Blastomeres/metabolism , Blastomeres/cytology , Trans-Activators/genetics , Trans-Activators/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mutation/genetics , Swine , Phytohemagglutinins/pharmacology , Chimera/genetics , Blastocyst/metabolism , Female
9.
Reprod Biol Endocrinol ; 20(1): 52, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35300691

ABSTRACT

Embryo transfer is a crucial step in IVF cycle, with increasing trend during the last decade of transferring a single embryo, preferably at the blastocyst stage. Despite increasing evidence supporting Day 5 blastocyst-stage transfer, the optimal day of embryo transfer remains controversial. The crucial questions are therefore, whether the mechanisms responsible to embryos arrest are embryo aneuploidy or others, and whether those embryos arrested in-vitro between the cleavage to the blastocyst stage would survive in-vivo if transferred on the cleavage-stage. We therefore aim to explore whether aneuploidy can directly contribute to embryo development to the blastocyst stage. Thirty Day-5 embryos, that their Day-3 blastomere biopsy revealed a single-gene defect, were donated by 10 couples undergoing preimplantation genetic testing treatment at our center. Affected high quality Day-3 embryos were cultured to Day-5, and were classified to those that developed to the blastocyst-stage and those that were arrested. Each embryo underwent whole genome amplification. Eighteen (60%) embryos were arrested, did not develop to the blastocyst stage and 12 (40%) have developed to the blastocyst stage. Nineteen embryos (63.3%) were found to be euploid. Of them, 12 (66.6%) were arrested embryos and 7 (58.3%) were those that developed to the blastocyst-stage. These figures were not statistically different (p = 0.644). Our observation demonstrated that the mechanism responsible to embryos arrest in vitro is not embryo aneuploidy, but rather other, such as culture conditions. If further studies will confirm that Day-5 blastocyst transfer might cause losses of embryos that would have been survived in vivo, cleavage-stage embryo transfer would be the preferred timing. This might reduce the cycle cancellations due to failure of embryo to develop to the blastocyst stage and will provide the best cumulative live birth-rate per started cycle.


Subject(s)
Blastocyst/metabolism , Cleavage Stage, Ovum/metabolism , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Trophoblasts/metabolism , Adult , Aneuploidy , Blastocyst/cytology , Blastomeres/cytology , Blastomeres/metabolism , Cells, Cultured , Cleavage Stage, Ovum/cytology , Comparative Genomic Hybridization/methods , Embryo Transfer , Embryo, Mammalian/cytology , Female , Fertilization in Vitro , Genetic Testing/methods , Humans , Live Birth , Pregnancy , Pregnancy Rate , Trophoblasts/cytology
10.
J Assist Reprod Genet ; 39(1): 97-106, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34993708

ABSTRACT

PURPOSE: To study the morphometric and morphokinetic profiles of pronuclei (PN) between male and female human zygotes. METHOD(S): This retrospective cohort study included 94 consecutive autologous single day 5 transfer cycles leading to a singleton live birth. All oocytes were placed in the EmbryoScope + incubator post-sperm injection with all annotations performed retrospectively by one embryologist (L-SO). Timing parameters included 2nd polar body extrusion (tPB2), sperm-originated PN (tSPNa) or oocyte-originated PN (tOPNa) appearance, and PN fading (tPNF). Morphometrics were evaluated at 8 (stage 1), 4 (stage 2), and 0 h before PNF (stage 3), measuring PN area (um2), PN juxtaposition, and nucleolar precursor bodies (NPB) arrangement. RESULTS: Male zygotes had longer time intervals of tPB2_tSPNa than female zygotes (4.8 ± 0.2 vs 4.2 ± 0.1 h, OR = 1.442, 95% CI 1.009-2.061, p = 0.044). SPN increased in size from stage 1 through 2 to 3 (435.3 ± 7.2, 506.7 ± 8.0, and 556.3 ± 8.9 um2, p = 0.000) and OPN did similarly (399.0 ± 6.1, 464.3 ± 6.7, and 513.8 ± 6.5 um2, p = 0.000), with SPN being significantly larger than OPN at each stage (p < 0.05 respectively). More male than female zygotes reached central PN juxtaposition at stage 1 (76.7% vs 51.0%, p = 0.010), stage 2 (97.7% vs 86.3%, p = 0.048), and stage 3 (97.7% vs 86.3%, p = 0.048). More OPN showed aligned NPBs than in SPN at stage 1 only (44.7% vs 28.7%, p = 0.023). CONCLUSION(S): Embryos with different sexes display different morphokinetic and morphometric features at the zygotic stage. Embryo selection using such parameters may lead to unbalanced sex ratio in resulting offspring.


Subject(s)
Oocytes/cytology , Spermatozoa/cytology , Zygote/cytology , Adult , Blastomeres/cytology , Blastomeres/microbiology , Blastomeres/physiology , Cell Nucleus/microbiology , Female , Humans , Logistic Models , Male , Oocytes/microbiology , Retrospective Studies , Spermatozoa/microbiology , Time-Lapse Imaging/methods , Zygote/microbiology
11.
J Assist Reprod Genet ; 39(1): 201-209, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837160

ABSTRACT

PURPOSE: To assess whether live birth rates (LBR) and maternal/neonatal complications differed following single fresh and frozen-warmed blastocyst transfer. METHODS: The present retrospective observational study analyzed 4,613 single embryo transfers (SET) (646 fresh and 3,967 frozen) from January 1, 2014, to December 31, 2018. Fresh embryo transfer at blastocyst stage was considered according to the age of the patient and her prognosis. In case of the risk of ovarian hyperstimulation syndrome, premature progesterone rise, non-optimal endometrial growth, or supernumerary embryos, cryopreservation with subsequent frozen embryo transfer (FET) was indicated. RESULTS: No differences in LBR were recorded. Fresh embryo transfers yielded an increase both in neonatal complications OR 2.15 (95% CI 1.20-3.86, p 0.010), with a higher prevalence of singletons weighting below the 5th percentile (p 0.013) and of intrauterine growth retardation (p 0.015), as well as maternal complications, with a higher placenta previa occurrence OR 3.58 (95% CI 1.54-8.28, p 0.003), compared to FET. CONCLUSION: LBR appears not to be affected by the transfer procedure preferred. Fresh embryo transfer is associated with higher risk of neonatal complications (specifically a higher prevalence of singletons weighting below the 5th percentile and of intrauterine growth retardation) and placenta previa. Reflecting on the increased practice of ART procedures, it is imperative to understand whether a transfer procedure yields less complications than the other and if it is time to switch to a "freeze-all" procedure as standard practice. TRIAL REGISTRATION: Clinical Trial Registration Number: NCT04310761. Date of registration: March 17, 2020, retrospectively registered.


Subject(s)
Blastomeres/cytology , Embryo Transfer/standards , Pregnancy Outcome/epidemiology , Adult , Blastomeres/physiology , Cryopreservation/methods , Cryopreservation/standards , Cryopreservation/statistics & numerical data , Embryo Transfer/methods , Embryo Transfer/statistics & numerical data , Female , Humans , Pregnancy , Retrospective Studies
12.
J Assist Reprod Genet ; 39(1): 67-73, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34845576

ABSTRACT

PURPOSE: To study whether a new combination of different warming kits is clinically effective for vitrified human blastocysts. METHODS: This is a longitudinal cohort study analysing two hundred fifty-five blastocysts warming cycles performed between January and October 2018. Embryos were vitrified using only one brand of ready-to-use kits (Kitazato), whereas the warming procedure was performed with three of the most widely used vitrification/warming kits (Kitazato, Sage and Irvine) after patient stratification for oocyte source. The primary endpoint was survival rate, while the secondary endpoints were clinical pregnancy, live birth and miscarriage rates. RESULTS: We observed a comparable survival rate across all groups of 100% (47/47) in KK, 97.6% (49/50) in KS, 97.6% (41/42) in KI, 100% (38/38) in dKK, 100% (35/35) in dKS and 100% (43/43) in dKI. Clinical pregnancy rates were also comparable: 38.3% (18/47) in KK, 49% (24/49) in KS, 56.1% (23/ 41) in KI, 47.4% (18/38) in dKK, 31.4% (11/35) in dKS and 48.8% (21/ 43) in dKI. Finally, live birth rates were 29.8% (14/47) in KK, 36.7% (18/49) in KS, 46.3% (19/41) in KI, 36.8% (14/38) in dKK, 25.7% (9/35) in dKS and 41.9% (18/43) in dKI, showing no significant differences. CONCLUSION: This study confirmed the efficacy of applying a single warming protocol, despite what the "industry" has led us to believe, supporting the idea that it is time to proceed in the cryopreservation field and encouraging embryologists worldwide to come out and reveal that such a procedure is possible and safe.


Subject(s)
Blastomeres/physiology , Hot Temperature/therapeutic use , Vitrification , Adult , Blastomeres/cytology , Cohort Studies , Embryo Transfer/methods , Female , Humans , Longitudinal Studies , Male , Middle Aged , Oocytes/cytology , Oocytes/parasitology
13.
Sci Rep ; 11(1): 21422, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728646

ABSTRACT

During preimplantation development, mammalian embryo cells (blastomeres) cleave, gradually losing their potencies and differentiating into three primary cell lineages: epiblast (EPI), trophectoderm (TE), and primitive endoderm (PE). The exact moment at which cells begin to vary in their potency for multilineage differentiation still remains unknown. We sought to answer the question of whether single cells isolated from 2- and 4-cell embryos differ in their ability to generate the progenitors and cells of blastocyst lineages. We revealed that twins were often able to develop into blastocysts containing inner cell masses (ICMs) with PE and EPI cells. Despite their capacity to create a blastocyst, the twins differed in their ability to produce EPI, PE, and TE cell lineages. In contrast, quadruplets rarely formed normal blastocysts, but instead developed into blastocysts with ICMs composed of only one cell lineage or completely devoid of an ICM altogether. We also showed that quadruplets have unequal capacities to differentiate into TE, PE, and EPI lineages. These findings could explain the difficulty of creating monozygotic twins and quadruplets from 2- and 4-cell stage mouse embryos.


Subject(s)
Blastocyst/cytology , Blastomeres/cytology , Cell Differentiation , Cell Lineage , Embryo Implantation , Embryo, Mammalian/cytology , Embryonic Development , Animals , Female , Mice , Mice, Inbred C57BL
14.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34831338

ABSTRACT

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are 'true' totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely 'cluster 3', as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.


Subject(s)
Blastomeres/cytology , Embryo, Mammalian/cytology , Mouse Embryonic Stem Cells/cytology , Single-Cell Analysis , Totipotent Stem Cells/cytology , Transcriptome/genetics , Animals , Cluster Analysis , Gene Expression Regulation , Gene Ontology , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Zygote/metabolism
15.
Biochem Biophys Res Commun ; 584: 1-6, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34741809

ABSTRACT

GATA factors are essential transcription factors for embryonic development that broadly control the transcription of other genes. This study aimed to examine GATA2 protein localization in mouse embryos at the 2-cell stage, when drastic transformation in gene expression occurs for subsequent development in early embryos. We first analyzed GATA2 localization in 2-cell embryos at the interphase and mitotic phases by immunofluorescence analysis. In the interphase, GATA2 protein was localized in the nucleus, as a common transcription factor. In the mitotic phase, GATA2 protein was observed as a focally-aggregated spot around the nucleus of each blastomere. To explore the relationship between GATA2 protein localization and cell cycle progression in mouse 2-cell stage embryos, GFP-labeled GATA2 protein was overexpressed in the blastomere of 2-cell embryos. Overexpression of GFP-labeled GATA2 protein arrested cellular mitosis, focally aggregated GATA2 protein expression was not observed. This mitotic arrest by GATA2 overexpression was not accompanied with the upregulation of a 2-cell stage specific gene, murine endogenous retrovirus-L. These results suggest that GATA2 protein localization changes dynamically depending on cell cycle progression in mouse 2-cell embryos; in particular, focally aggregated localization of GATA2 in the mitotic phase requires appropriate cell cycle progression.


Subject(s)
Blastocyst/metabolism , Cell Cycle/genetics , Cell Nucleus/genetics , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Animals , Blastocyst/cytology , Blastomeres/cytology , Blastomeres/metabolism , Cell Nucleus/metabolism , Female , GATA2 Transcription Factor/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interphase/genetics , Mice, Inbred ICR , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
16.
Biochem Biophys Res Commun ; 577: 116-123, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34509723

ABSTRACT

The zona pellucida (ZP) plays an important role in both the fertilization and embryonic development. For the successful handling of early stage blastomeres for differentiation analysis, the production of identical twins or quadruplets, nuclear transfer or gene introduction requires the removal of the ZP (ZPR). Although single use of either acidic Tyrode's solution or pronase are commonly used for ZPR, long-term exposure to these agents can result in the inhibition of development with the collapse of the three-dimensional blastomere structure. Here, we demonstrate the benefits of using a two-step combined ZPR method, which relies upon a customized well-of-well (cWOW) system with smaller well size, on developmental competence and the quality of the zona free (ZF) mouse embryos. We first isolated 2-cell embryos using acid Tyrode's solution and then cultured these embryos using either commercially available or cWOW, which had a smaller microwell size. The rate of blastocyst was significantly increased by use of cWOW when compared to other culture systems. Then we evaluated the use of a two-step ZPR protocol, relying on acid Tyrode's solution and proteinase K, and subsequent culture in the cWOW system. Although acid Tyrode's solution treatment alone reduced ZPR time, blastomere morphology became wrinkled, significant decrease in blastocyst rate associated with increased number of apoptotic cells and increased expression of apoptosis-related genes were observed. Using proteinase K alone increased ZPR time and significantly decreased the blastocyst rate, but did not induce an increase in apoptotic cell number or apoptosis-related gene expression. In contrast, two-step method significantly reduced ZPR time and improved blastocyst rate by increasing the total number of cells in these wells an reducing the number of apoptotic cells in these experiments. These results suggest that the two-step ZPR protocol is beneficial for reducing the toxic effects of zona removal on ZF embryo development and quality when combined with a suitable culture system.


Subject(s)
Blastocyst/physiology , Blastomeres/physiology , Embryo Culture Techniques/methods , Embryonic Development/physiology , Zona Pellucida/physiology , Animals , Apoptosis/genetics , Blastocyst/cytology , Blastomeres/cytology , DNA Fragmentation , Endopeptidase K/metabolism , Female , In Situ Nick-End Labeling/methods , Isotonic Solutions/chemistry , Male , Mice, Inbred ICR , Microscopy, Fluorescence/methods
17.
Cell ; 184(11): 2843-2859.e20, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33991488

ABSTRACT

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.


Subject(s)
Totipotent Stem Cells/cytology , Totipotent Stem Cells/metabolism , Animals , Blastomeres/cytology , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Embryo, Mammalian/cytology , Embryonic Stem Cells/cytology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mouse Embryonic Stem Cells/cytology , Totipotent Stem Cells/physiology
18.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972425

ABSTRACT

Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cerebral Cortex/metabolism , Formins/metabolism , Signal Transduction/physiology , rhoA GTP-Binding Protein/metabolism , Actomyosin/genetics , Actomyosin/metabolism , Animals , Animals, Genetically Modified , Blastomeres/cytology , Blastomeres/metabolism , Body Patterning/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cerebral Cortex/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Formins/genetics , Functional Laterality/genetics , Functional Laterality/physiology , Signal Transduction/genetics , Torque , rhoA GTP-Binding Protein/genetics
19.
Sci Rep ; 11(1): 11167, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045607

ABSTRACT

In multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


Subject(s)
Blastomeres/cytology , Embryo, Mammalian/cytology , Embryonic Development/physiology , Totipotent Stem Cells/cytology , Zygote/cytology , Animals , Blastocyst/cytology , Embryo Culture Techniques , Mice
20.
Sci Rep ; 11(1): 9228, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927296

ABSTRACT

Apoptosis is a physiological process that occurs commonly during the development of the preimplantation embryo. The present work examines the ability of apoptotic embryonic cells to express a signal promoting their phagocytosis, and quantifies the ability of neighbouring, normal embryonic cells to perform that task. Microscopic analysis of mouse blastocysts revealed phosphatidylserine externalization to be 10 times less common than incidence of apoptotic cells (as detected by TUNEL). In spite of the low frequency of phosphatidylserine-flipping (in inner cell mass, no annexin V staining was recorded), fluorescence staining of the plasma membrane showed more than 20% of apoptotic cells to have been engulfed by neighbouring blastomeres. The mean frequency of apoptotic cells escaping phagocytosis by their extrusion into blastocyst cavities did not exceed 10%. Immunochemically visualised RAC1 (an enzyme important in actin cytoskeleton rearrangement) was seen in phagosome-like structures containing a nucleus with a condensed morphology. Gene transcript analysis showed that the embryonic cells expressed 12 receptors likely involved in phagocytic process (Scarf1, Msr1, Cd36, Itgav, Itgb3, Cd14, Scarb1, Cd44, Stab1, Adgrb1, Cd300lf, Cd93). In conclusion, embryonic cells possess all the necessary mechanisms for recognising, engulfing and digesting apoptotic cells, ensuring the clearance of most dying blastomeres.


Subject(s)
Blastocyst/cytology , Blastomeres/cytology , Phosphatidylserines/metabolism , Animals , Apoptosis/physiology , Blastocyst/metabolism , Blastomeres/metabolism , Cells, Cultured , Embryonic Development , Female , Mice , Models, Animal , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL