Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125906

ABSTRACT

Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.


Subject(s)
Drug Delivery Systems , Humans , Animals , Drug Delivery Systems/methods , Bone and Bones/metabolism , Bone Diseases/therapy , Bone Development/drug effects , Genetic Therapy/methods
2.
Nutrients ; 16(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064775

ABSTRACT

The most widely used synthetic glucocorticoid, dexamethasone (DEX), causes stunted growth in children when used excessively or for long periods of time; however, there are still plenty of pediatric patients require long-term treatment with DEX. As an alternative, growth hormone is used in combination, but it has side effects, a high cost, and psychological factors, and it is not satisfactory in terms of effectiveness. It is necessary to develop a safe and affordable treatment that can replace it. The Korean Food and Drug Administration approved HT042, a standardized functional food ingredient, with the claim that it can help height growth of children. In this study, it was found that HT042 activated the Indian hedgehog/parathyroid hormone-related protein signaling pathway and enhanced the number of growth hormone receptors and insulin-like growth factor-1 receptors on the growth plate surface, which were reduced by DEX treatment, and restored growth retardation. In metatarsal bone and primary chondrocyte models, it was found that HT042 can promote the length of growth plate and recover DEX-induced growth retardation. It was also found that HT042 promotes cell proliferation using bromodeoxyuridine and terminal deoxynucleotidyl transferase dUTP nick end labeling assays; moreover, we verified increased expression of GHR/IGF-1R and Ihh/PTHrP pathway activity using qRT-PCR, western blotting, and siRNA analyses to verify its direct action on the growth plate. The anti-apoptotic effect of HT042 was identified by regulating the expression of apoptotic factors such as caspase-3, Bcl2, Bclx, and Bax. These results were identified using both ex vivo and in vitro models. Our study verified that co-administration of HT042 could recover the DEX induced growth retardation.


Subject(s)
Cell Proliferation , Dexamethasone , Growth Plate , Metatarsal Bones , Plant Extracts , Signal Transduction , Animals , Dexamethasone/pharmacology , Metatarsal Bones/drug effects , Growth Plate/drug effects , Rats , Cell Proliferation/drug effects , Signal Transduction/drug effects , Plant Extracts/pharmacology , Male , Hedgehog Proteins/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Parathyroid Hormone-Related Protein/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/genetics , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Bone Development/drug effects , Growth Disorders/chemically induced
3.
Aquat Toxicol ; 273: 107033, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084117

ABSTRACT

Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.


Subject(s)
Cadmium , Calcium , Water Pollutants, Chemical , Zebrafish , Animals , Cadmium/toxicity , Water Pollutants, Chemical/toxicity , Calcium/metabolism , Behavior, Animal/drug effects , Larva/drug effects , Calcification, Physiologic/drug effects , Bone Development/drug effects
4.
BMC Pediatr ; 24(1): 480, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068422

ABSTRACT

INTRODUCTION: HIV infection and its treatment compromises skeletal development (growth and maturation). Skeletal maturity is assessed as bone age (BA) on hand and wrist radiographs. BA younger than chronological age (CA) indicates delayed development. We conducted a cross-sectional study to determine differences between BA and CA (i.e., skeletal maturity deviation [SMD]), and risk factors associated with SMD in peripubertal children with and without HIV established on antiretroviral therapy (ART) including use of tenofovir disoproxil fumarate (TDF). METHODS: Children with HIV taking ART for at least two years and a comparison group of HIV-negative children, aged 8-16 years and frequency-matched by age and sex, were recruited from HIV clinics and local schools in the same catchment area, in Harare, Zimbabwe. BA was assessed from non-dominant hand-wrist radiographs using the Tanner Whitehouse 3 method. Negative SMD values correspond to delayed development, i.e., BA younger than CA. Multivariable linear regression models determined factors associated with SMD overall, and in children with HIV. RESULTS: In total, 534 participants (54% males) were included; by design CA was similar in males and females, whether living with or without HIV. Mean (SD) SMD was more negative in CWH than in HIV-negative children in both males [-1.4(1.4) vs. -0.4(1.1) years] and females [-1.1(1.3) vs. -0.0(1.2) years]. HIV infection and weight-for-age Z-score<-2 were associated with more negative SMD in both males and females after adjusting for socio-economic status, orphanhood, pubertal stage, and calcium intake. Age at ART initiation was associated with SMD in both males and females with those starting ART later more delayed: starting ART aged 4-8 years 1.14 (-1.84, -0.43), or over 8 years 1.47 (-2.30, -0.65) (p-value for trend < 0.001). Similar non-significant trends were seen in males. TDF exposure TDF exposure whether < 4years or ≥ 4 years was not associated with delayed development. CONCLUSION: Perinatally-acquired HIV infection and being underweight were independently associated with delayed skeletal maturation in both males and females. Starting ART later was independently associated with skeletal maturation delay in CWH. Given the known effects of delayed development on later health, it is important to find interventions to ensure healthy weight gain through early years and in CWH to initiate ART as early as possible.


Subject(s)
Age Determination by Skeleton , HIV Infections , Humans , Cross-Sectional Studies , Female , Male , Child , HIV Infections/drug therapy , Zimbabwe/epidemiology , Adolescent , Bone Development/drug effects , Tenofovir/therapeutic use , Risk Factors , Anti-HIV Agents/therapeutic use , Case-Control Studies
5.
Environ Res ; 258: 119483, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38914254

ABSTRACT

Due to the persistent nature and significant negative impacts of perfluorooctanoic acid (PFOA) on human health and other organisms, the emergence of new PFOA alternatives, such as perfluoro (2-methyl-3-oxhexanoic) acid (GenX) and perfluoro-3,6,9-trioxyundecanoic acid (PFO3TDA), have drawn significant attention. However, the toxic effects of PFOA and its substitutes on bones remain limited. In this study, we administered different concentrations of PFOA, GenX, and PFO3TDA via gavage to 3-week-old male BALB/C mice for four weeks. X-ray and micro-CT scans revealed shortening of the femur and tibia and significant reduction in bone density. Additionally, PFOA, GenX, and PFO3TDA promoted osteoblast senescence and impaired osteogenic capabilities. This was characterized by a decrease in the expression of osteogenesis-related genes (OCN, ALP, Runx2, etc.) and an increase in the expression of aging and inflammation-related factors (p16INK4a, P21, MMP3, etc). Furthermore, RNA sequencing revealed activation of the ferroptosis pathway in PFOA-treated osteoblasts, characterized by notable lipid peroxidation and excessive iron accumulation. Finally, by inhibiting the ferroptosis pathway with ferrostatin-1 (Fer-1), we effectively alleviated the senescence of MC3T3-E1 cells treated with PFOA, GenX, and PFO3TDA, and improved their osteogenic capabilities. Therefore, our study provides a new therapeutic insight into the impact of PFOA and its substitutes on bone growth and development.


Subject(s)
Cellular Senescence , Ferroptosis , Fluorocarbons , Mice, Inbred BALB C , Osteoblasts , Osteoblasts/drug effects , Animals , Fluorocarbons/toxicity , Mice , Ferroptosis/drug effects , Male , Cellular Senescence/drug effects , Osteogenesis/drug effects , Bone Development/drug effects , Caprylates/toxicity , Environmental Pollutants/toxicity
6.
Poult Sci ; 103(7): 103834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805999

ABSTRACT

Sodium dehydroacetate (DHA-Na) is a fungicidal preservative widely used in food and animal feed. DHA-Na can induce coagulation disorders in rats and poultry by inhibiting carboxylation of vitamin K-dependent proteins; it can also impair bone development in zebrafish. However, the effects of DHA-Na on broiler chicken bones remain unknown. Here, we assessed whether DHA-Na impairs bone development in broiler chickens. We administered Suji yellow chickens with 200 to 800 mg/kg DHA-Na, 2 mg/kg vitamin K, or both for 2 mo. Bone metabolite-related serum indicators, tissue micromorphology, and relevant protein expression were monitored during the treatment period. We also assessed primary chicken osteoblast activity, differentiation, and bone metabolite-related proteins after treatment with DHA-Na, vitamin K, or both. The results demonstrated that DHA-Na reduced bone index values and serum and bone osteoblast differentiation marker levels but blocked bone vitamin K cycle. DHA-Na also increased serum osteoclast differentiation marker levels, as well as the bone ratio of receptor activator of nuclear factor kappa-Β ligand to osteoprotegerin ratio. Moreover, DHA-Na reduced bone trabecular number, thickness, and area and increased trabecular separation considerably. In general, compared with the control group, the DHA-Na group demonstrated impairments in osteoblast activity and differentiation, as well as in the vitamin K cycle. By contrast, vitamin K supplementation led to considerable attenuation of the DHA-Na-induced decrease in osteogenic marker levels, along with a considerable increase in serum bone absorption marker levels and restoration of DHA-Na-induced bone microstructure damage. Vitamin K also attenuated DHA-Na-induced impairment in osteoclasts. In conclusion, the results indicated that in broiler chickens, DHA-Na supplementation can damage bones by inhibiting osteoblast function and increasing osteoclast activity; this damage can be prevented through vitamin K supplementation.


Subject(s)
Chickens , Osteoblasts , Animals , Osteoblasts/drug effects , Bone and Bones/drug effects , Animal Feed/analysis , Dietary Supplements/analysis , Vitamin K/pharmacology , Diet/veterinary , Fungicides, Industrial/pharmacology , Fungicides, Industrial/administration & dosage , Male , Dose-Response Relationship, Drug , Bone Development/drug effects , Pyrones
7.
Ecotoxicol Environ Saf ; 279: 116501, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38805831

ABSTRACT

6:2 Chlorinated polyfluoroalkyl ether sulfonate (F-53B) is a new type of perfluorinated and polyfluoroalkyl substance (PFAS) that is used extensively in industry and manufacturing. F-53B causes damage to multiple mammalian organs. However, the impacts of F-53B on bone are unknown. Maternal exposure to F-53B is of particular concern because of the vulnerability of the developing fetus and newborn to contaminants from the mother. The goal of this study was to examine the impacts of maternal F-53B exposure on bone growth and development in offspring and to explore its underlying mechanisms. Herein, C57BL/6 J mice were given free access to deionized water containing 0, 0.57, or 5.7 mg/L F-53B during pregnancy and lactation. F-53B exposure resulted in impaired liver function, decreased IGF-1 secretion, dysregulation of bone metabolism and disruption of the dynamic balance between osteoblasts and osteoclasts in male offspring. F-53B inhibits longitudinal bone growth and development and causes osteoporosis in male offspring. F-53B may affect the growth and development of offspring bone via the IGF-1/OPG/RANKL/CTSK signaling pathway. This study provides new insights for the study of short stature and bone injury caused by F-53B.


Subject(s)
Bone Development , Lactation , Maternal Exposure , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Male , Pregnancy , Mice , Maternal Exposure/adverse effects , Bone Development/drug effects , Insulin-Like Growth Factor I/metabolism , Fluorocarbons/toxicity , Osteoprotegerin/metabolism , Osteoclasts/drug effects , Bone and Bones/drug effects , Osteoblasts/drug effects , Sulfonic Acids/toxicity
8.
Life Sci ; 350: 122759, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38815897

ABSTRACT

AIMS: Amoxicillin is a broad-spectrum beta-lactam antibiotic used to treat infectious diseases in pregnant women. Studies have shown that prenatal amoxicillin exposure (PAmE) has developmental toxicity on fetal development. However, the effect of PAmE on long bone development has not been reported. This study aimed to investigate the "toxic window" of PAmE on long bone development and explore its possible mechanism in fetal mice. MATERIALS AND METHODS: Pregnant mice were administered amoxicillin by gavage at different stages (gestational day (GD)10-12 and GD16-18), different doses (150 and 300 mg/kg·d) and different courses (single and multiple courses). Fetal femurs were collected at GD18 and bone development related indicators were detected. KEY FINDINGS: The results showed that PAmE significantly reduced the length of the femur and primary ossification center of fetal mice, and inhibited the development of fetal growth plate. Meanwhile, PAmE inhibited the development of bone marrow mesenchymal stem cells, osteoclasts and endothelial cells in fetal long bone. Further, we found the fetal long bone developmental toxicity induced by PAmE was most significant at late-pregnancy (GD16-18), high dose (300 mg/kg·d) and multiple-course group. Besides, PAmE inhibited the expression of Wnt/ß-catenin signaling pathway in fetal long bone. The ß-catenin mRNA expression was significantly positively correlated with the development indexes of fetal long bone. SIGNIFICANCE: PAmE has toxic effects on long bone development, and there was an obvious "toxic window" of PAmE on the long bone development in fetal mice. The Wnt/ß-catenin signaling pathway may mediate PAmE-induced fetal long bone development inhibition.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Bone Development , Wnt Signaling Pathway , Animals , Female , Pregnancy , Mice , Amoxicillin/toxicity , Bone Development/drug effects , Wnt Signaling Pathway/drug effects , Anti-Bacterial Agents/toxicity , Fetal Development/drug effects , Femur/drug effects , Femur/embryology , Osteogenesis/drug effects , beta Catenin/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Male , Fetus/drug effects
9.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38752331

ABSTRACT

C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.


Subject(s)
Biphenyl Compounds , Bone Development , Mice, Inbred C57BL , Natriuretic Peptide, C-Type , Neprilysin , Animals , Neprilysin/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Natriuretic Peptide, C-Type/pharmacology , Natriuretic Peptide, C-Type/metabolism , Bone Development/drug effects , Mice , Biphenyl Compounds/pharmacology , Mice, Knockout , Aminobutyrates/pharmacology , Signal Transduction/drug effects , Male , Valsartan/pharmacology , Growth Plate/drug effects , Growth Plate/metabolism , Drug Combinations , Tetrazoles/pharmacology
10.
Cell Rep Med ; 5(5): 101574, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38776873

ABSTRACT

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Subject(s)
Bone Resorption , Osteoblasts , Osteogenesis , Animals , Humans , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Mice , Bone Resorption/pathology , Bone Resorption/metabolism , Anabolic Agents/pharmacology , Anabolic Agents/therapeutic use , Bone Remodeling/drug effects , Osteoporosis/pathology , Osteoporosis/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Bone Development/drug effects , Osteoprotegerin/metabolism , Female , Signal Transduction/drug effects , Peptides/pharmacology , Male , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology
11.
Endocr Pract ; 30(7): 687-694, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38631489

ABSTRACT

BACKGROUND: Skeletal modeling in childhood and adolescence and continuous remodeling throughout the lifespan are designed to adapt to a changing environment and resist external forces and fractures. The flux of sex steroids in men and women, beginning from fetal development and evolving through infancy, childhood, puberty, young adulthood, peri/menopause transition, and postmenopause, is critical for bone size, peak bone mass, and fracture resistance. OBJECTIVE: This review will highlight how changes in sex steroids throughout the lifespan affect bone cells and the consequence of these changes on bone architecture and strength. METHODS: Literature review and discussion. RESULTS: The contributions of estrogen and testosterone on skeletal development have been difficult to study due to the reciprocal and intertwining contributions of one on the other. Although orchiectomy in men renders circulating testosterone absent, circulating estrogen also declines due to testosterone being the substrate for estradiol. The discovery of men with absent estradiol or resistance to estrogen and the study of mouse models led to the understanding that estrogen has a larger direct role in skeletal development and maintenance in men and women. The mechanistic reason for larger bone size in men is incompletely understood but related to indirect effects of testosterone on the skeleton, such as higher muscle mass leading to larger mechanical loading. Declines in sex steroids during menopause in women and androgen deprivation therapies in men have profound and negative effects on the skeleton. Therapies to prevent such bone loss are available, but how such therapies can be tailored based on bone size and architecture remains an area of investigation. CONCLUSION: In this review, the elegant interplay and contribution of sex steroids on bone architecture in men and women throughout the lifespan is described.


Subject(s)
Fractures, Bone , Humans , Male , Female , Animals , Fractures, Bone/prevention & control , Bone and Bones/metabolism , Bone Development/physiology , Bone Development/drug effects , Testosterone/blood , Gonadal Steroid Hormones/physiology , Estrogens , Bone Density/physiology , Bone Density/drug effects
12.
J Bone Miner Res ; 39(6): 765-774, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38590263

ABSTRACT

Achondroplasia (ACH), the most common form of disproportionate short stature, is caused by gain-of-function point mutations in fibroblast growth factor receptor 3 (FGFR3). Abnormally elevated activation of FGFR3 modulates chondrocyte proliferation and differentiation via multiple signaling pathways, such as the MAPK pathway. Using a mouse model mimicking ACH (Fgfr3Y367C/+), we have previously shown that daily treatment with infigratinib (BGJ398), a selective and orally bioavailable FGFR1-3 inhibitor, at a dose of 2 mg/kg, significantly increased bone growth. In this study, we investigated the activity of infigratinib administered at substantially lower doses (0.2 and 0.5 mg/kg, given once daily) and using an intermittent dosing regimen (1 mg/kg every 3 days). Following a 15-day treatment period, these low dosages were sufficient to observe significant improvement of clinical hallmarks of ACH such as growth of the axial and appendicular skeleton and skull development. Immunohistological labeling demonstrated the positive impact of infigratinib on chondrocyte differentiation in the cartilage growth plate and the cartilage end plate of the vertebrae. Macroscopic and microcomputed analyses showed enlargement of the foramen magnum area at the skull base, thus improving foramen magnum stenosis, a well-recognized complication in ACH. No changes in FGF23 or phosphorus levels were observed, indicating that the treatment did not modify phosphate homeostasis. This proof-of-concept study demonstrates that infigratinib administered at low doses has the potential to be a safe and effective therapeutic option for children with ACH.


Subject(s)
Achondroplasia , Disease Models, Animal , Growth Plate , Pyrimidines , Animals , Achondroplasia/drug therapy , Achondroplasia/pathology , Growth Plate/drug effects , Growth Plate/pathology , Growth Plate/metabolism , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Mice , Phenylurea Compounds/pharmacology , Phenylurea Compounds/administration & dosage , Bone Development/drug effects , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Dose-Response Relationship, Drug , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/metabolism
13.
J Bone Miner Res ; 39(5): 595-610, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38477809

ABSTRACT

Ablation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development. Cyp27b1 null and WT females were mated to bear only Cyp27b1+/- offspring. Forty-eight hours after birth, pups were cross-fostered to dams of the same or opposite genotype that bore them. Maternal and offspring samples were collected on days 21 (weaning) and 42. Offspring measurements included minerals and hormones, BMC by DXA, ash weight and mineral content, gene expression, 3-point bending tests, and microCT. Maternal lactational behavior was evaluated. Milk was analyzed for nutritional content. At day 21, offspring fostered by nulls, independent of birth dam, had ~20% lower weight, BMC, ash weight, and ash calcium than pups fostered by WT dams. Adjustment for body weight accounted for the lower BMC but not the lower ash weight and ash calcium. Hormones and serum/urine minerals did not differ across offspring groups. Offspring fostered by nulls had shorter femurs and lower cortical thickness, mean polar moment of inertia, cortical area, trabecular bone volume, and trabecular number. Dam lactational behaviors and milk nutritional content did not differ between groups. At day 42, body weight, ash weight, lengths, BMC, and tibial bone strength were no longer different between pups fostered by null vs WT dams. In summary, pups fostered by Cyp27b1 nulls, regardless of birth dam, have proportionately smaller skeletons at 21 d, impaired microstructure, but normal mineral homeostasis. The skeletal effects are largely recovered by day 42 (3 wk after weaning). In conclusion, maternal loss of calcitriol impairs early postnatal cortical bone growth and trabecular bone mass, but affected offspring catch up after weaning.


Subject(s)
Bone Development , Calcitriol , Animals , Female , Calcitriol/blood , Calcitriol/metabolism , Bone Development/drug effects , Mice , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Bone Density/drug effects , Lactation , Male , Pregnancy , Mice, Knockout , Body Weight/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism
14.
J Clin Invest ; 134(10)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530358

ABSTRACT

Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.


Subject(s)
Gastrointestinal Microbiome , T-Lymphocytes, Regulatory , Animals , Gastrointestinal Microbiome/drug effects , Mice , Female , Male , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Bone Development/drug effects , Osteogenesis/drug effects , Bacteroides , Fecal Microbiota Transplantation , Humans
15.
J Orthop Res ; 42(7): 1599-1607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38323639

ABSTRACT

Osteoporosis is the most common chronic metabolic bone disease, and the prevalence of osteoporotic fractures is rapidly increasing with the aging population. While bisphosphonates can reduce bone loss and risk of fracture, these drugs are systemic, rely on long-term use, and patient compliance is low. Recombinant human bone morphogenetic protein-2 (BMP-2) is an FDA-approved protein that can offer a more targeted therapeutic than systemic treatments. DWIVA is a peptide sequence corresponding to the wrist epitope of BMP-2, and DWIVA-functionalized hydrogels feature osteoinductive propertiesin vitro and in vivo. This study reports that self-forming DWIVA-functionalized hydrogels injected into the intramedullary canal of rat femurs induce a local increase in trabecular bone in as little as 2 weeks. Increases in bone volume, trabecular thickness, and trabeculae count from DWIVA-laden hydrogels persist for at least 4 weeks, and the inclusion of mesenchymal stem cells (MSCs) significantly enhances the development of mineralized bone. Histological analysis of decalcified femurs also shows that hydrogel injections containing DWIVA peptide and MSCs stimulate unmineralized bone tissue formation and induce an increased count of osteoblasts and osteoclasts at the injection site after 4 weeks. Overall, the MSC-laden DWIVA peptide-functionalized hydrogels presented rapidly induce targeted bone formation and have the potential to form nascent bone within bones in jeopardy of an osteoporotic fracture such as the femur.


Subject(s)
Bone Morphogenetic Protein 2 , Hydrogels , Mesenchymal Stem Cells , Bone Morphogenetic Protein 2/administration & dosage , Animals , Mesenchymal Stem Cells/drug effects , Rats, Sprague-Dawley , Female , Mesenchymal Stem Cell Transplantation/methods , Femur/drug effects , Rats , Osteogenesis/drug effects , Bone Development/drug effects , Peptides/administration & dosage , Peptides/pharmacology
16.
J Endocrinol Invest ; 47(6): 1385-1394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38159174

ABSTRACT

PURPOSE: Acromegaly is a chronic disease characterized by growth hormone (GH) hypersecretion, usually caused by a pituitary adenoma, resulting in elevated circulating levels of insulin-like growth factor type I (IGF-I). Pegvisomant (PEG), the GH-receptor (GHR) antagonist, is used in treating acromegaly to normalize IGF-I hypersecretion. Exposure to increased levels of GH and IGF-I can cause profound alterations in bone structure that are not completely reverted by treatment of GH hypersecretion. Indeed, there is evidence that drugs used for the treatment of acromegaly might induce direct effects on skeletal health regardless of biochemical control of acromegaly. METHODS: We investigated, for the first time, the effect of PEG on cell proliferation, differentiation, and mineralization in the osteoblast cell lines MC3T3-E1 and hFOB 1.19 and its potential impact on bone development in zebrafish larvae. RESULTS: We observed that PEG did not affect osteoblast proliferation, apoptosis, alkaline phosphatase (ALP) activity, and mineralization. After PEG treatment, the analysis of genes related to osteoblast differentiation showed no difference in Alp, Runx2, or Opg mRNA levels in MC3T3-E1 cells. GH significantly decreased cell apoptosis (- 30 ± 11%, p < 0.001) and increased STAT3 phosphorylation; these effects were suppressed by the addition of PEG in MC3T3-E1 cells. GH and PEG did not affect Igf-I, Igfbp2, and Igfbp4 mRNA levels in MC3T3-E1 cells. Finally, PEG did not affect bone development in zebrafish larvae at 5 days post-fertilization. CONCLUSION: This study provides a first evidence of the impact of PEG on osteoblast functions both in vitro and in vivo. These findings may have clinically relevant implications for the management of skeletal health in subjects with acromegaly.


Subject(s)
Bone Development , Cell Differentiation , Cell Proliferation , Human Growth Hormone , Osteoblasts , Zebrafish , Osteoblasts/drug effects , Osteoblasts/metabolism , Animals , Mice , Cell Proliferation/drug effects , Bone Development/drug effects , Cell Differentiation/drug effects , Human Growth Hormone/analogs & derivatives , Human Growth Hormone/pharmacology , Humans , Insulin-Like Growth Factor I/metabolism , Apoptosis/drug effects
17.
Int. j. morphol ; 40(4): 1108-1116, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1405227

ABSTRACT

SUMMARY: Letrozole is mainly used for the treatment of unexplained infertility, breast cancer and polycystic ovarian syndrome, with secondary use in ovarian stimulation. In cases of unexpected or unknown pregnancy during the use of letrozole, letrozole may cause a teratogenic effect on the fetus. In this reason, in this study, we aimed to determine the effect of letrozole on fetal bone development. In this study, 32 pregnant Wistar albino rats were used. The rats were divided into four groups: Control (saline) and high; 0.3 mg/kg, medium; 0.03 mg/kg, low; 0.003 mg/ kg letrozole. Saline and letrozole were administered in 100 mL solutions by intraperitonaly from day 11 to day 15 of pregnancy. The skeletal system development of fetuses was examined with double skeletal staining, immunohistochemical staining methods and mineral density scanning electron microscopy. A total of 100 fetuses from female rats, 25 in each group, were included in the study. As a result of that, ossification rates were observed to decrease depending on the dose of letrozole in the forelimb limb (scapula, humerus, radius, ulna) and hindlimb (femur, tibia, fibula) limb bones. As a result of the statistical analysis, a statistically significant decrease was found in the ossification rates of all bones between the control group and low, medium, high letrozole groups (p<0.001). Exposure to letrozole during pregnancy adversely affected ossification and bone growth. However, the teratogenic effects of letrozole are unclear. Therefore, it needs to be investigated more extensively.


RESUMEN: Letrozol se usa principalmente para el tratamiento de la infertilidad inexplicable, el cáncer de mama y el síndrome de ovario poliquístico, con estimulación ovárica de uso secundario. En casos de embarazo inesperado o desconocido durante el uso de letrozol, puede causar un efecto teratogénico en el feto. Por esta razón, en este estudio, nuestro objetivo fue determinar el efecto de letrozol en el desarrollo óseo fetal. Se utilizaron 32 ratas albinas Wistar preñadas las cuales se distribuyeron en cuatro grupos: Control (solución salina) y alta; 0,3 mg/kg, medio; 0,03 mg/kg, bajo; 0,003 mg/kg de letrozol. Se administró solución salina y letrozol en soluciones de 100 mL por vía intraperitoneal desde el día 11 hasta el día 15 de la preñez. El desarrollo del sistema esquelético de los fetos se examinó con tinción esquelética doble, métodos de tinción inmunohistoquímica y microscopía electrónica de barrido de densidad mineral. Se incluyeron en el estudio un total de 100 fetos de ratas hembra, 25 en cada grupo. Como resultado, se observó que las tasas de osificación disminuían dependiendo de la dosis de letrozol en los huesos de los miembros torácicos (escápula, húmero, radio, ulna) y de las miembros pélvicos (fémur, tibia, fíbula). Se encontró una disminución estadísticamente significativa en las tasas de osificación de todos los huesos entre el grupo control y los grupos de letrozol bajo, medio y alto (p<0,001). La exposición a letrozol durante la preñez afectó negativamente la osificación y el crecimiento óseo. Sin embargo, los efectos teratogénicos del letrozol no están claros por lo que debe ser investigado más extensamente.


Subject(s)
Animals , Female , Rats , Teratogens/pharmacology , Bone Development/drug effects , Fetal Development/drug effects , Letrozole/pharmacology , Antineoplastic Agents/pharmacology , Osteogenesis/drug effects , Staining and Labeling/methods , Immunohistochemistry , Rats, Wistar , Letrozole/adverse effects , Antineoplastic Agents/adverse effects
18.
Rev. osteoporos. metab. miner. (Internet) ; 12(3): 98-104, jul.-sept. 2020. graf, ilus
Article in Spanish | IBECS | ID: ibc-200334

ABSTRACT

La pleitrofina (PTN) en un péptido implicado en el desarrollo y el mantenimiento del tejido óseo, y con importantes funciones en los procesos inflamatorios. Sin embargo, la deleción de la PTN en modelos murinos no produce un deterioro óseo significativo, sin que hasta la fecha se hayan estudiado los mecanismos que compensan su perdida. Con este estudio quisimos comprobar cómo afecta la deleción de PTN y la inflamación aguda a la expresión de factores óseos. Para ello empleamos ratones hembra de tres meses deficientes para la PTN (PTNKo) a las que indujimos una inflamación aguda por administración de lipopolisacárido (LPS). Se aislaron las vértebras y las tibias para poder medir la expresión de genes y realizar un recuento de osteocitos. En cultivos celulares comprobamos si la PTN podía proteger a células MC3T3 (osteoblásticas) y MLOY4 (osteocitos) de la inducción de muerte celular producida por etopósido. Nuestros resultados muestran que la expresión de osteocalcina está incrementada en las vértebras de los ratones PTNKo, y que la inflamación produjo el incremento de expresión de podaplanina (E11), conexina 43 (Cox43) y el péptido relacionado con la parathormona (PTHrP) en los ratones PTNKo tratados con LPS. La administración de PTN redujo de manera significativa la muerte inducida por etopósido en cultivos de células MC3T3 y MLOY4. En conclusión, la deficiencia de PTN indujo un aumento de la expresión de OCN, y la inflamación aguda produjo la sobrexpresión de E11, PTHrP, y Cox43 en ratones PTNKo. La PTN aumentó la viabilidad de células osteblásticas y osteocitos frente al tratamiento con etopósido


Pleiotrophin (PTN) is a peptide involved in the development and maintenance of bone tissue with important functions in inflammatory processes. However, the deletion of PTN in murine models does not produce a significant bone deterioration, but the mechanisms that compensate for its loss have not been studied to date. Our study was aimed at verifying how the deletion of PTN and acute inflammation affect the expression of bone factors. To this end, we used three-month-old female mice deficient for PTN (PTNKo) to which we induced acute inflammation by administration of lipopolysaccharide (LPS). Vertebrae and tibiae were isolated to measure gene expression and carry out an osteocyte count. In cell cultures, we checked whether PTN could protect MC3T3 (osteoblast) and MLOY4 (osteocyte) cells from the induction of cell death caused by etoposide. Our results show that the expression of osteocalcin is increased in the vertebrae of PTNKo mice, and that inflammation increased the expression of podhalanin (E11), connexin 43 (Cox43) and the parathormone-related peptide (PTHrP) in the PTNKo mice treated with LPS. Administering PTN significantly reduced etoposide-induced death in MC3T3 and MLOY4 cell cultures. Thus, PTN deficiency induced increased expression of OCN, and acute inflammation produced overexpression of E11, PTHrP, and Cox43 in PTNKo mice. PTN increased the viability of osteoblastic cells and osteocytes compared to etoposide treatment


Subject(s)
Animals , Mice , Anti-Inflammatory Agents/pharmacology , Carrier Proteins/biosynthesis , Bone Development/drug effects , Models, Animal , Inflammation/chemically induced , Cytokines/biosynthesis , Bone and Bones/drug effects , Gene Expression , Cervical Vertebrae/drug effects , Inflammation/veterinary , Epithelial Cells/drug effects , Polymerase Chain Reaction , Osteocytes
19.
Int. j. morphol ; 36(2): 391-394, jun. 2018. tab, graf
Article in English | LILACS | ID: biblio-954126

ABSTRACT

Resveratrol in cell culture media increases osteoblastic markers. Also results from previous studies provide evidence for resveratrol positive effects on bone healing and bone production. In this preclinical study we investigated bone healing in rats by resveratrol systemic application. 30 Wistar male rats were divided into two groups (study group and control group). At first, maxillary second molars of rats were extracted. The rats were kept in laboratory for next 28 days. Study group received resveratrol 20 mg/kg by abdominal injection every day. The control group received placebo in the same manner that study group. Rats were sacrificed after 28 days and bone samples were collected from center of maxillary second molar socket. Samples were evaluated histologically for new bone formation, inflammation, necrosis, fibrosis and foreign body reaction. The mean difference of new bone formation in control group (28.30 %) and study group (45 %) were statistically significant (P=0.014). There were no significant differences in inflammation, fibrosis, necrosis and foreign body reaction (P>0.05). Resveratrol has positive effects on bone healing but more evidence needed from more clinical and animal studies.


El resveratrol en los medios de cultivo celular aumenta los marcadores osteoblásticos. Los resultados de estudios anteriores proporcionan evidencia de efectos positivos del resveratrol sobre la curación ósea y la producción ósea. En este estudio preclínico, investigamos la curación ósea en ratas mediante la aplicación sistémica de resveratrol. Se dividieron 30 ratas macho Wistar en dos grupos (estudio y control). Inicialmente se extrajeron los segundos molares maxilares de las ratas y los animales se mantuvieron en el laboratorio durante los siguientes 28 días. El grupo de estudio recibió todos los días resveratrol 20 mg/kg por inyección abdominal . El grupo control recibió placebo de la misma manera que el grupo estudio. Las ratas fueron sacrificadas después de 28 días y se recogieron muestras de hueso del centro del segundo molar maxilar. Las muestras se evaluaron histológicamente para la formación de hueso nuevo, inflamación, necrosis, fibrosis y reacción de cuerpo extraño. La media de formación de hueso nuevo en el grupo control (28,30 %) y en el grupo estudio (45 %) fueron estadísticamente significativas (P=0,014). No hubo diferencias significativas en la inflamación, fibrosis, necrosis y reacción al cuerpo extraño (P>0,05). El resveratrol tiene efectos positivos sobre la curación de los huesos, pero aún es necesario realizar más pruebas de estudios clínicos, como también en animales.


Subject(s)
Animals , Rats , Osteoblasts/drug effects , Osteoclasts/drug effects , Stilbenes/pharmacology , Bone Development/drug effects , Osteogenesis/drug effects , Rats, Wistar , Dietary Supplements
20.
Int. j. morphol ; 32(4): 1449-1456, Dec. 2014. ilus
Article in Spanish | LILACS | ID: lil-734697

ABSTRACT

El déficit y exceso de vitamina A provoca malformaciones congénitas que afectan distintos órganos y sistemas. El objetivo de este estudio fue determinar el efecto que causa la administración de ácido retinoico a distintas dosis sobre la morfogénesis ósea del esqueleto axial en embriones de ratón Mus musculus. Mediante aleatorización simple se distribuyeron hembras recién preñadas en 4 categorías: A, B, C y D. El día 8 post fecundación (p.f), se administró 40 mg/kg de peso de ácido retinoico al grupo A, 20 mg/kg de peso de esta solución al grupo B, 1 ml/kg de peso de dimetil sulfóxido al grupo C, y el grupo D es grupo control. El día 17 de la gestación las hembras y sus fetos fueron anestesiadas y eutanasiadas con sobredosis de pentotal sódico intraperitoneal. Los fetos de cada camada fueron procesados mediante diafanización y tinción con azul de Alcian para destacar cartílago hialino y alizarina para observar tejido óseo. Los resultados se expresaron en porcentajes de malformaciones en los siguientes tres segmentos: 1) cráneo-columna cervical, 2) segmento torácico y abdominal y 3) cintura pélvica, considerándose un 100% cuando la totalidad de los elementos óseos se encontraban comprometidos. Se utilizó la prueba de Fisher para la comparación de frecuencias de malformaciones y se consideró estadísticamente significativo cuando p<0,05. En el grupo A se evidenciaron malformaciones mayores como ausencia de huesos frontales y parietales, exencefalia, defectos en el número de vértebras, y fusiones de costillas; y en el grupo B se observaron malformaciones menores como alteraciones numéricas y fusiones de costillas, existiendo diferencias significativas entre ambos grupos. En los grupos C y D no se consignaron malformaciones. El ácido retinoico administrado intraperitonealmente el dìa 8 p.f en dosis de 40 y 20 mg/kg de peso se comporta como un teratógeno en los embriones de ratón, existiendo además diferencias significativas entre las malformaciones generadas por ambas dosis de ácido retinoico. La primera concentración afecta los huesos de los tres segmentos estudiados (cráneo-cervical, toracoabdominal, y pélvico) y la segunda concentración sólo afecta a dos segmentos (cráneo-cervical y toracoabdominal). Ambos tratamientos afectan los segmentos en una gradiente céfalo caudal, independiente del origen embrionario de las estructuras. Esto se debería a que los cambios en las gradientes de ácido retinoico alteran el comportamiento de células de la cresta neural craneal y el orden de la expresión de genes Hox.


The deficit and excess of vitamin A causes birth defects affecting different organ systems. The objectives of this study are to determine the effect caused by the administration of different doses of retinoic acid on bone morphogenesis of the axial skeleton in embryonic mouse Mus musculus. By simple randomization newly pregnant females were distributed into 4 categories: A, B, C and D. On day 8 post fertilization, 40 mg/kg was administered by weight of retinoic acid to the group A, 20 mg/kg body weight of the group B solution 1 ml/kg body weight of dimethyl sulfoxide and group C. Group D is the control group. On day 17 of gestation the females and their fetuses were anesthetized and euthanized with an overdose of intraperitoneal sodium pentothal. Fetuses from each litter were processed using diaphanization and Alcian blue staining to hyaline cartilage and alizarin to observe bone tissue. The results are expressed as percentages of malformations in the following three segments: 1) cranio-cervical spine, 2) thoracic and abdominal segment and 3) pelvic segment, considering 100% when all the bony elements were compromised. Fisher's exact test for comparison of frequencies of malformations was used and considered statistically significant when p<0.05. In group A, major malformations and defects were evident in the indemnity of the cranial vault, exencephaly, defects in the number of vertebrae, and fusion of ribs. In group B minor malformations as numerical alterations and rib fusions were observed. Significant differences were found between both groups. In groups C and D no malformations were recorded. Retinoic acid administered intraperitoneally at doses of 40 and 20 mg/kg acts as a teratogen in mouse embryos. There are significant differences between the defects induced by concentrations of 40 mg/k and 20 mg/k of retinoic acid. Both concentrations affect the bones of the three segments studied (cranio cervical, thoraco-abdominal and pelvic) in a cephalo caudal gradient, independent of the embryonic origin of the structures. Changes in retinoic acid concentration alter the behavior of cranial neural crest and changing the order of the HOX gene expression in the axial skeleton.


Subject(s)
Animals , Male , Female , Mice , Tretinoin/administration & dosage , Abnormalities, Multiple/chemically induced , Bone Development/drug effects , Embryo, Mammalian/drug effects , Teratogens , Tretinoin/pharmacology , Embryonic Development/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL