Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.094
Filter
1.
Anticancer Res ; 44(6): 2671-2679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821581

ABSTRACT

BACKGROUND/AIM: Osteopenia, the loss of bone mineral density (BMD), was recently reported as a prognostic factor in various cancers. However, the prognostic significance of preoperative osteopenia in breast cancer remains unclear. This study aimed to clarify the clinical significance of preoperative osteopenia in breast cancer. PATIENTS AND METHODS: We retrospectively analyzed the relationship between osteopenia and clinical factors and prognosis in 532 patients with pathological Stage I-III primary breast cancer between 2009 and 2017. Osteopenia was assessed by measuring the average pixel density (Hounsfield unit) in the midvertebral core of the 11th thoracic vertebra on enhanced preoperative computed tomography. RESULTS: Osteopenia was diagnosed in 186 (35.0%) patients. The recurrence-free survival (RFS) rate was significantly worse in the osteopenia group than in the non-osteopenia group (p=0.0275), but there was no significant difference in overall survival (OS) between the two groups. When evaluated by menopausal status, RFS and OS were significantly worse in the osteopenia group than in the non-osteopenia group (p=0.0094 and p=0.0264, respectively) in premenopausal patients. However, there were no significant differences in RFS and OS between the two groups among postmenopausal patients. In premenopausal patients, osteopenia was an independent prognostic factor for RFS in a multivariate analysis (p=0.0266). CONCLUSION: Preoperative osteopenia was independently associated with recurrence of breast cancer.


Subject(s)
Bone Diseases, Metabolic , Breast Neoplasms , Humans , Breast Neoplasms/surgery , Breast Neoplasms/complications , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/pathology , Bone Diseases, Metabolic/etiology , Middle Aged , Prognosis , Adult , Aged , Retrospective Studies , Bone Density , Preoperative Period , Aged, 80 and over , Disease-Free Survival
2.
Matrix Biol ; 131: 46-61, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806135

ABSTRACT

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.


Subject(s)
Aging , Bone Diseases, Metabolic , Homeostasis , Mice, Knockout , Syndecan-4 , Animals , Mice , Syndecan-4/metabolism , Syndecan-4/genetics , Aging/metabolism , Aging/genetics , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , X-Ray Microtomography , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Spine/metabolism , Spine/pathology , Spine/diagnostic imaging , Annulus Fibrosus/metabolism , Annulus Fibrosus/pathology , Osteoclasts/metabolism
3.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38529810

ABSTRACT

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Subject(s)
Cerebellar Neoplasms , Chromogranins , GTP-Binding Protein alpha Subunits, Gs , Medulloblastoma , Ossification, Heterotopic , Skin Diseases, Genetic , Humans , GTP-Binding Protein alpha Subunits, Gs/genetics , Male , Chromogranins/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Ossification, Heterotopic/genetics , Ossification, Heterotopic/pathology , Skin Diseases, Genetic/genetics , Skin Diseases, Genetic/pathology , Skin Diseases, Genetic/complications , Infant , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/complications , Prognosis , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Mutation
4.
Ann Biomed Eng ; 52(6): 1744-1762, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38517621

ABSTRACT

Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 µg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.


Subject(s)
Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Osseointegration , Rats, Sprague-Dawley , Wnt Proteins , Animals , Wnt Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Cell Proliferation/drug effects , Osseointegration/drug effects , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Male , Titanium , Disease Models, Animal , Cells, Cultured
5.
J Bone Miner Res ; 39(3): 341-356, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477771

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1ß treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.


Rheumatoid arthritis (RA) is a disease caused by an abnormal immune system, resulting in inflammation, swelling, and bone destruction in the joints, along with systemic bone loss. While new medications have dramatically improved treatment efficacy, these therapies are not universally effective for all patients. Therefore, we need to understand the regulatory mechanisms behind RA, including associated bone loss, to develop better therapies. In this study, we found that Budding uninhibited by benzimidazoles 1 (Bub1) was highly expressed in inflamed joints, especially in myeloid cells, which are a type of immune cells. To explore its role, we created myeloid cell­specific Bub1 conditional knockout (cKO) mice and induced arthritis to analyze its role during arthritis. The cKO mice exhibited lower bone mineral density when compared with control mice under inflammatory arthritis because of increased osteoclastic bone resorption, without significant differences in joint inflammation or bone erosion. Further investigation showed that Bub1 prevents excessive osteoclast differentiation induced by inflammation in bone marrow macrophages. These data suggest that Bub1 in macrophages protects against bone loss caused by inflammatory arthritis, offering potential insights for developing treatments that focus on bone health.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Bone Diseases, Metabolic , Bone Resorption , Animals , Humans , Mice , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Bone Diseases, Metabolic/pathology , Bone Resorption/genetics , Inflammation/pathology , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
J Cell Physiol ; 239(6): e31257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504496

ABSTRACT

Bone diseases are increasing with aging populations and it is important to identify clues to develop innovative treatments. Vasn, which encodes vasorin (Vasn), a transmembrane protein involved in the pathophysiology of several organs, is expressed during the development in intramembranous and endochondral ossification zones. Here, we studied the impact of Vasn deletion on the osteoblast and osteoclast dialog through a cell Coculture model. In addition, we explored the bone phenotype of Vasn KO mice, either constitutive or tamoxifen-inducible, or with an osteoclast-specific deletion. First, we show that both osteoblasts and osteoclasts express Vasn. Second, we report that, in both KO mouse models but not in osteoclast-targeted KO mice, Vasn deficiency was associated with an osteopenic bone phenotype, due to an imbalance in favor of osteoclastic resorption. Finally, through the Coculture experiments, we identify a dysregulation of the Wnt/ß-catenin pathway together with an increase in RANKL release by osteoblasts, which led to an enhanced osteoclast activity. This study unravels a direct role of Vasn in bone turnover, introducing a new biomarker or potential therapeutic target for bone pathologies.


Subject(s)
Bone Remodeling , Coculture Techniques , Osteoblasts , Osteoclasts , Wnt Signaling Pathway , Animals , Mice , Bone and Bones/metabolism , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Bone Remodeling/physiology , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , RANK Ligand/metabolism , RANK Ligand/genetics
7.
Calcif Tissue Int ; 114(2): 119-128, 2024 02.
Article in English | MEDLINE | ID: mdl-38036697

ABSTRACT

The study was aimed to investigate microarchitecture of osteochondral junction in patients with osteonecrosis of the femoral head (ONFH). We hypothesis that there were microarchitecture alternations in osteochondral junction and regional differences between the necrotic region (NR) and adjacent non-necrotic region(ANR) in patients with ONFH. Femoral heads with ONFH or femoral neck fracture were included in ONFH group (n = 11) and control group (n = 11). Cylindrical specimens were drilled on the NR/ANR of femoral heads in ONFH group and matched positions in control group (CO.NR/ CO.ANR). Histology, micro-CT, and scanning electron microscope were used to investigate microarchitecture of osteochondral junction. Layered analysis of subchondral bone plate was underwent. Mankin scores on NR were higher than that on ANR or CO.NR, respectively (P < 0.001, P < 0.001). Calcified cartilage zone on the NR and ANR was thinner than that on the CO.NR and CO.ANR, respectively (P = 0.002, P = 0.002). Tidemark roughness on the NR was larger than that on the ANR (P = 0.002). Subchondral bone plate of NR and ANR was thicker than that on the CON.NR and CON.ANR, respectively (P = 0.002, P = 0.009). Bone volume fraction of subchondral bone plate on the NR was significantly decreasing compared to ANR and CON.NR, respectively (P = 0.015, P = 0.002). Subchondral bone plate on the NR had larger area percentages and more numbers of micropores than ANR and CON.NR (P = 0.002/0.002, P = 0.002/0.002). Layered analysis showed that bone mass loss and hypomineralization were mainly on the cartilage side of subchondral bone plate in ONFH. There were microarchitecture alternations of osteochondral junction in ONFH, including thinned calcified cartilage zone, thickened subchondral bone plate, decreased bone mass, altered micropores, and hypomineralization of subchondral bone plate. Regional differences in microarchitecture of osteochondral junction were found between necrotic regions and adjacent non-necrotic regions. Subchondral bone plate in ONFH had uneven distribution of bone volume fraction and bone mineral density, which might aggravate cartilage degeneration by affecting the transmission of mechanical stresses.


Subject(s)
Bone Diseases, Metabolic , Cartilage, Articular , Femur Head Necrosis , Humans , Femur Head/pathology , Bone Density , Cartilage, Articular/pathology , Stress, Mechanical , Bone Diseases, Metabolic/pathology
8.
Sci Rep ; 13(1): 11418, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452111

ABSTRACT

Notch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu-Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation. HCS mice, displaying high turnover osteopenia in the non-fractured skeleton, exhibited only minor morphologic alterations in the progression of bone regeneration, evidenced by static radiological and histological outcome measurements. Histomorphometry showed increased osteoclast parameters in the callus of HCS mice, which was accompanied by an increased expression of osteoclast and osteoblast markers. These observations were accompanied by inferior biomechanical stability of healed femora in HCS mice. Together, our data demonstrate that structural indices of bone regeneration are normal in HCS mice, which, however, exhibit signs of increased callus turnover and display impaired biomechanical stability of healed fractures.


Subject(s)
Bone Diseases, Metabolic , Hajdu-Cheney Syndrome , Osteoporosis , Humans , Mice , Animals , Fracture Healing , Hajdu-Cheney Syndrome/genetics , Hajdu-Cheney Syndrome/metabolism , Hajdu-Cheney Syndrome/pathology , Bone Diseases, Metabolic/pathology , Osteoporosis/pathology , Osteoclasts/metabolism , Receptor, Notch2/metabolism
9.
BMC Musculoskelet Disord ; 24(1): 508, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349814

ABSTRACT

BACKGROUND: Vertebral compression fractures decrease daily life activities and increase economic and social burdens. Aging decreases bone mineral density (BMD), which increases the incidence of osteoporotic vertebral compression fractures (OVCFs). However, factors other than BMD can affect OVCFs. Sarcopenia has been a noticeable factor in the aging health problem. Sarcopenia, which involves a decrease in the quality of the back muscles, influences OVCFs. Therefore, this study aimed to evaluate the influence of the quality of the multifidus muscle on OVCFs. METHODS: We retrospectively studied patients aged 60 years and older who underwent concomitant lumbar MRI and BMD in the university hospital database, with no history of structurally affecting the lumbar spine. We first divided the recruited people into a control group and a fracture group according to the presence or absence of OVCFs, and further divided the fracture group into an osteoporosis BMD group and an osteopenia BMD group based on the BMD T-score of -2.5. Using images of lumbar spine MRI, the cross-sectional area and percentage of muscle fiber (PMF) of the multifidus muscle were obtained. RESULTS: We included 120 patients who had visited the university hospital, with 45 participants in the control group and 75 in the fracture group (osteopenia BMD: 41, osteoporosis BMD: 34). Age, BMD, and the psoas index significantly differed between the control and fracture groups. The mean cross-sectional area (CSA) of multifidus muscles measured at L4-5 and L5-S1, respectively, did not differ among the control, P-BMD, and O-BMD groups. On the other hand, the PMF measured at L4-5 and L5-S1 showed a significant difference among the three groups, and the value of the fracture group was lower than that of the control group. Logistic regression analysis showed that the PMF value, not the CSA, of the multifidus muscle at L4-5 and L5-S1 affected the risk of OVCFs, with and without adjusting for other significant factors. CONCLUSIONS: High percentage of fatty infiltration of the multifidus muscle increases the spinal fracture risk. Therefore, preserving the quality of the spinal muscle and bone density is essential for preventing OVCFs.


Subject(s)
Bone Diseases, Metabolic , Fractures, Compression , Osteoporosis , Osteoporotic Fractures , Sarcopenia , Spinal Fractures , Humans , Middle Aged , Aged , Fractures, Compression/diagnostic imaging , Fractures, Compression/epidemiology , Fractures, Compression/complications , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Spinal Fractures/complications , Retrospective Studies , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Paraspinal Muscles/diagnostic imaging , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Osteoporosis/complications , Osteoporosis/diagnostic imaging , Osteoporosis/epidemiology , Lumbar Vertebrae/pathology , Bone Density , Bone Diseases, Metabolic/pathology
10.
Front Endocrinol (Lausanne) ; 14: 1158099, 2023.
Article in English | MEDLINE | ID: mdl-37065740

ABSTRACT

Introduction: Histomorphometry of rodent metaphyseal trabecular bone, by histology or microCT, is generally restricted to the mature secondary spongiosa, excluding the primary spongiosa nearest the growth plate by imposing an 'offset'. This analyses the bulk static properties of a defined segment of secondary spongiosa, usually regardless of proximity to the growth plate. Here we assess the value of trabecular morphometry that is spatially resolved according to the distance 'downstream' of-and thus time since formation at-the growth plate. Pursuant to this, we also investigate the validity of including mixed primary-secondary spongiosal trabecular bone, extending the analysed volume 'upstream' by reducing the offset. Both the addition of spatiotemporal resolution and the extension of the analysed volume have potential to enhance the sensitivity of detection of trabecular changes and to resolve changes occurring at different times and locations. Method: Two experimental mouse studies of trabecular bone are used as examples of different factors influencing metaphyseal trabecular bone: (1) ovariectomy (OVX) and pharmacological prevention of osteopenia and (2) limb disuse induced by sciatic neurectomy (SN). In a third study into offset rescaling, we also examine the relationship between age, tibia length, and primary spongiosal thickness. Results: Bone changes induced by either OVX or SN that were early or weak and marginal were more pronounced in the mixed primary-secondary upstream spongiosal region than in the downstream secondary spongiosa. A spatially resolved evaluation of the entire trabecular region found that significant differences between experimental and control bones remained undiminished either right up to or to within 100 µm from the growth plate. Intriguingly, our data revealed a remarkably linear downstream profile for fractal dimension in trabecular bone, arguing for an underlying homogeneity of the (re)modelling process throughout the entire metaphysis and against strict anatomical categorization into primary and secondary spongiosal regions. Finally, we find that a correlation between tibia length and primary spongiosal depth is well conserved except in very early and late life. Conclusions: These data indicate that the spatially resolved analysis of metaphyseal trabecular bone at different distances from the growth plate and/or times since formation adds a valuable dimension to histomorphometric analysis. They also question any rationale for rejecting primary spongiosal bone, in principle, from metaphyseal trabecular morphometry.


Subject(s)
Bone Diseases, Metabolic , Growth Plate , Rats , Female , Mice , Animals , Rats, Sprague-Dawley , Tibia/diagnostic imaging , Tibia/pathology , Bone and Bones , Bone Diseases, Metabolic/pathology , Disease Models, Animal
11.
Cells ; 12(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-37048054

ABSTRACT

Paget's Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget's Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , G-Protein-Coupled Receptor Kinase 3 , Osteitis Deformans , Animals , Humans , Mice , Bone Diseases, Metabolic/pathology , Bone Resorption/metabolism , Leukocytes, Mononuclear/metabolism , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Osteoclasts/metabolism , Osteogenesis , G-Protein-Coupled Receptor Kinase 3/genetics
12.
Int J Mol Med ; 51(5)2023 May.
Article in English | MEDLINE | ID: mdl-37052260

ABSTRACT

Postmenopausal osteoporosis is a systemic metabolic disease that chronically endangers public health and is typically characterized by low bone mineral density and marked bone fragility. The excessive bone resorption activity of osteoclasts is a major factor in the pathogenesis of osteoporosis; therefore, strategies aimed at inhibiting osteoclast activity may prevent bone decline and attenuate the process of osteoporosis. Casticin (Cas), a natural compound, has anti­inflammatory and antitumor properties. However, the role of Cas in bone metabolism remains largely unclear. The present study found that the receptor activator of nuclear factor­κΒ (NF­κB) ligand­induced osteoclast activation and differentiation were inhibited by Cas. Tartrate­resistant acid phosphatase staining revealed that Cas inhibited osteoclast differentiation, and bone resorption pit assays demonstrated that Cas affected the function of osteoclasts. Cas significantly reduced the expression of osteoclast­specific genes and related proteins, such as nuclear factor of activated T cells, cytoplasmic 1 and c­Fos at the mRNA and protein level in a concentration­dependent manner. Cas inhibited osteoclast formation by blocking the AKT/ERK and NF­κB signaling pathways, according to the intracellular signaling analysis. The microcomputed tomography and tissue staining of tibiae from ovariectomized mice revealed that Cas prevented the bone loss induced by estrogen deficiency and reduced osteoclast activity in vivo. Collectively, these findings indicated that Cas may be used to prevent osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Osteoporosis , Female , Animals , Mice , Humans , Osteogenesis , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , X-Ray Microtomography/adverse effects , Signal Transduction , Osteoclasts/metabolism , Bone Resorption/drug therapy , Bone Resorption/etiology , Bone Resorption/prevention & control , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Ovariectomy/adverse effects , RANK Ligand/metabolism
13.
Eur Spine J ; 32(5): 1553-1560, 2023 05.
Article in English | MEDLINE | ID: mdl-36935451

ABSTRACT

PURPOSE: To evaluate the use of the modified and simplified vertebral bone quality (VBQ) method based on T1-weighted MRI images of S1 vertebrae in assessing bone mineral density (BMD) for patients with lumbar degenerative diseases. METHODS: We reviewed the preoperative data of patients with lumbar degenerative diseases undergoing lumbar spine surgery between January 2019 and June 2022 with available non-contrast T1-weighted magnetic resonance imaging (MRI), computed tomography (CT) images and dual-energy X-ray absorptiometry (DEXA). S1 vertebral bone quality scores (S1 VBQ) and S1 CT Hounsfield units were measured with picture archiving and communication system (PACS). One-way ANOVA was applied to present the discrepancy between the S1 VBQ of patients with normal bone density (T-score ≥ - 1.0), osteopenia (- 2.5 < T-score < - 1.0) and osteoporosis (T-score ≤ - 2.5). The receiver operating characteristic curve (ROC) was drawn to analyze the diagnostic performance of S1 VBQ in distinguishing low BMD. Statistical significance was set at p < 0.05. RESULTS: A total of 207 patients were included. The S1 VBQ were significantly different between groups (p < 0.001). Interclass correlation coefficient for inter-rater reliability was 0.86 (95% CI 0.78-0.94) and 0.94(95% CI 0.89-0.98) for intra-rater reliability. According to the linear regression analysis, the S1 VBQ has moderate-to-strong correlations with DEXA T-score (r = - 0.48, p < 0.001). The area under the ROC curve indicated a predictive accuracy of 82%. A sensitivity of 77.25% with a specificity of 70% could be achieved for distinguishing low BMD by setting the S1 VBQ cutoff as 2.93. CONCLUSIONS: The S1 VBQ was a promising tool in distinguishing poor bone quality in patients with lumbar degenerative diseases, especially in cases where the previously reported VBQ method based on L1-L4 was not available. S1 VBQ score could be useful as opportunistic assessment for screening and complementary evaluation to DEXA T-score before surgery.


Subject(s)
Bone Density , Bone Diseases, Metabolic , Humans , Reproducibility of Results , Absorptiometry, Photon/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Lumbar Vertebrae/pathology , Bone Diseases, Metabolic/pathology , Magnetic Resonance Imaging , Retrospective Studies
14.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835176

ABSTRACT

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Subject(s)
Bone Diseases, Metabolic , Muscular Atrophy , Osteoporosis , Sciatic Nerve , Animals , Rats , Body Weight , Bone Diseases, Metabolic/pathology , Constriction , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Osteoporosis/pathology , Rats, Sprague-Dawley , Sciatic Nerve/injuries , X-Ray Microtomography
16.
J Cell Physiol ; 238(2): 407-419, 2023 02.
Article in English | MEDLINE | ID: mdl-36565474

ABSTRACT

Intramuscular administration of p62/SQSTM1 (sequestosome1)-encoding plasmid demonstrated an anticancer effect in rodent models and dogs as well as a high safety profile and the first evidence of clinical benefits in humans. Also, an anti-inflammatory effect of the plasmid was reported in several rodent disease models. Yet, the mechanisms of action for the p62 plasmid remain unknown. Here, we tested a hypothesis that the p62-plasmid can act through the modulation of bone marrow multipotent mesenchymal cells (MSCs). We demonstrated that a p62 plasmid can affect MSCs indirectly by stimulating p62-transfected cells to secrete an active ingredient(s) sensed by untransfected MSCs. When we transfected MSCs with the p62-plasmid, collected their supernatant, and added it to an untransfected MSCs culture, it switched the differentiation state and prompt osteogenic responses of the untransfected MSCs. According to an accepted viewpoint, ovariectomy leads to bone pathology via dysregulation of MSCs, and restoring the MSC homeostasis would restore ovariectomy-induced bone damage. To validate our in vitro observations in a clinically relevant in vivo model, we administered the p62 plasmid to ovariectomized rats. It partially reversed bone loss and notably reduced adipogenesis with concurrent reestablishing of the MSC subpopulation pool within the bone marrow. Overall, our study suggests that remote modulation of progenitor MSCs via administering a p62-encoding plasmid may constitute a mechanism for its previously reported effects and presents a feasible disease-preventing and/or therapeutic strategy.


Subject(s)
Bone Diseases, Metabolic , Mesenchymal Stem Cells , Animals , Female , Rats , Bone Diseases, Metabolic/pathology , Bone Marrow , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Multipotent Stem Cells , Osteogenesis/physiology , Sequestosome-1 Protein , Mice
17.
Knee Surg Sports Traumatol Arthrosc ; 31(1): 169-176, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35674771

ABSTRACT

PURPOSE: To investigate the relationship between glenoid width and other morphologic parameters using three-dimensional (3D) computed tomography (CT) images of native shoulders, and to create a new measurement tool to assess glenoid defects in a Canadian population with established anterior shoulder instability. METHODS: Forty-three glenoid CT scans were analyzed for patients who underwent contralateral shoulder glenoid reconstruction for anterior shoulder instability between 2012 and 2020. Demographic data were obtained including age, gender and BMI. The subjects were excluded if they had a prior history of ipsilateral shoulder instability, shoulder fractures, or bone tumors. The following glenoid parameters were measured: width (W), height (H), anteroposterior (AP) depth, superior-inferior (SI) depth and version. The shape of the glenoid was also classified into pear, inverted comma or oval. RESULTS: There were 35 male and 8 females with a mean age of 34.5 ± 12.9 years. The glenoid width was strongly correlated with the height (R2 = 0.9) and a regression model equation was obtained: W (mm) = 2.5 + 0.7*H (mm). There was also strong correlation with gender (P < 0.001), glenoid shape (P = 0.030), AP and SI depths (P = 0.006 and P < 0.001, respectively). Male gender was associated with higher measurement values for all parameters. The most common glenoid shapes were the pear (46.5%) and oval morphotypes (39.6%) for the whole study group. CONCLUSION: The native glenoid width can be estimated based on glenoid height using ipsilateral 3D CT. This may help with preoperative planning and surgical decision-making for patients with anterior shoulder instability and glenoid bone loss. LEVEL OF EVIDENCE: III.


Subject(s)
Bone Diseases, Metabolic , Joint Instability , Shoulder Joint , Female , Humans , Male , Young Adult , Adult , Middle Aged , Shoulder Joint/diagnostic imaging , Shoulder Joint/surgery , Shoulder Joint/pathology , Joint Instability/diagnostic imaging , Joint Instability/surgery , Joint Instability/pathology , Imaging, Three-Dimensional/methods , Canada , Tomography, X-Ray Computed/methods , Bone Diseases, Metabolic/pathology
18.
PLoS One ; 17(11): e0275439, 2022.
Article in English | MEDLINE | ID: mdl-36331919

ABSTRACT

PURPOSE: Immobilization osteopenia is a major healthcare problem in clinical and social medicine. However, the mechanisms underlying this bone pathology caused by immobilization under load-bearing conditions are not yet fully understood. This study aimed to evaluate sequential changes to the three-dimensional microstructure of bone in load-bearing immobilization osteopenia using a fixed-limb rat model. MATERIALS AND METHOD: Eight-week-old specific-pathogen-free male Wistar rats were divided into an immobilized group and a control group (n = 60 each). Hind limbs in the immobilized group were fixed using orthopedic casts with fixation periods of 1, 2, 4, 8, and 12 weeks. Feeding and weight-bearing were freely permitted. Length of the right femur was measured after each fixation period and bone microstructure was analyzed by micro-computed tomography. The architectural parameters of cortical and cancellous bone were analyzed statistically. RESULTS: Femoral length was significantly shorter in the immobilized group than in the control group after 2 weeks. Total area and marrow area were significantly lower in the immobilized group than in the control group from 1 to 12 weeks. Cortical bone area, cortical thickness, and polar moment of inertia decreased significantly after 2 weeks. Some cancellous bone parameters showed osteoporotic changes at 2 weeks after immobilization and the gap with the control group widened as the fixation period extended (P < 0.05). CONCLUSION: The present results indicate that load-bearing immobilization triggers early deterioration of microstructure in both cortical and cancellous bone after 2 weeks.


Subject(s)
Bone Density , Bone Diseases, Metabolic , Male , Rats , Animals , Weight-Bearing , X-Ray Microtomography/adverse effects , Rats, Wistar , Immobilization/adverse effects , Bone Diseases, Metabolic/pathology
19.
Front Endocrinol (Lausanne) ; 13: 939959, 2022.
Article in English | MEDLINE | ID: mdl-36425467

ABSTRACT

Background: Ceritinib is used for the treatment of patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), who are at the risk of developing bone metastasis. During bone metastasis, tumor cells release factors that induce osteoclast formation, resulting in osteolysis. However, the effect of ceritinib on osteoclast formation remains unclear. Methods: Osteoclastogenesis was induced to assess the effect of ceritinib on osteoclast formation and osteoclast-specific gene expression. Western blotting was used to examine the molecular mechanisms underlying the effect of ceritinib on osteoclast differentiation. An in vivo ovariectomized mouse model was established to validate the effect of ceritinib in suppressing osteoclast formation and preventing bone loss. Results: The differentiation of osteoclasts and the expression of osteoclast-specific genes were inhibited upon ceritinib stimulation. Ceritinib suppressed Akt and p65 phosphorylation during the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The administration of ceritinib to ovariectomized mice ameliorated trabecular bone loss by inhibiting osteoclast formation. Conclusions: Ceritinib is beneficial in preventing bone loss by suppressing osteoclastic Akt and nuclear factor κB (NF-κB) signaling.


Subject(s)
Bone Diseases, Metabolic , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Osteoclasts/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lung Neoplasms/pathology , Bone Diseases, Metabolic/pathology
20.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36173680

ABSTRACT

Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.


Subject(s)
Bone Diseases, Metabolic , Osteoarthritis , Animals , Rats , Bone Diseases, Metabolic/pathology , Bone Remodeling/physiology , Chemokine CCL5 , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Osteoclasts/pathology , Proto-Oncogene Proteins c-akt , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/pathology , Mice , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL