Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.853
Filter
1.
Front Immunol ; 15: 1405210, 2024.
Article in English | MEDLINE | ID: mdl-38947315

ABSTRACT

In bone marrow transplantation (BMT), hematopoiesis-reconstituting cells are introduced following myeloablative treatment, which eradicates existing hematopoietic cells and disrupts stroma within the hematopoietic tissue. Both hematopoietic cells and stroma then undergo regeneration. Our study compares the outcomes of a second BMT administered to mice shortly after myeloablative treatment and the first BMT, with those of a second BMT administered to mice experiencing robust hematopoietic regeneration after the initial transplant. We evaluated the efficacy of the second BMT in terms of engraftment efficiency, types of generated blood cells, and longevity of function. Our findings show that regenerating hematopoiesis readily accommodates newly transplanted stem cells, including those endowed with a robust capacity for generating B and T cells. Importantly, our investigation uncovered a window for preferential engraftment of transplanted stem cells coinciding with the resumption of blood cell production. Repeated BMT could intensify hematopoiesis reconstitution and enable therapeutic administration of genetically modified autologous stem cells.


Subject(s)
Bone Marrow Transplantation , Hematopoiesis , Animals , Bone Marrow Transplantation/methods , Mice , Hematopoietic Stem Cells/immunology , Mice, Inbred C57BL , Immune Reconstitution , Regeneration
2.
Stem Cell Res Ther ; 15(1): 202, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971816

ABSTRACT

BACKGROUND: There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS: Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS: The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION: Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.


Subject(s)
Bone Marrow Transplantation , Heart Failure , Mesenchymal Stem Cell Transplantation , Randomized Controlled Trials as Topic , Humans , Heart Failure/therapy , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Transplantation/methods , Stroke Volume , Treatment Outcome , Mesenchymal Stem Cells/cytology , Ventricular Function, Left
3.
Rev Med Suisse ; 20(880): 1271-1275, 2024 Jun 26.
Article in French | MEDLINE | ID: mdl-38938138

ABSTRACT

Aplastic anemia is a rare disease with a large differential diagnosis, including neoplastic origin as well as congenital bone marrow failure syndromes. Investigations must be quick and precise. Treatment depends on the patient's age and consists of immunosuppression treatment or allogeneic bone marrow transplantation. Because of the risk of progression to other hematological diseases, a close specialized follow-up is recommended.


L'anémie aplasique est une maladie rare avec un diagnostic différentiel large, comprenant des maladies d'origine néoplasique ainsi que les syndromes d'insuffisance médullaire congénitale. Les investigations doivent être rapides et précises. Le traitement dépend de l'âge du patient et consiste en une immunosuppression plus ou moins sévère ou une allogreffe de moelle osseuse. En raison du risque d'évolution vers d'autres maladies hématologiques, un suivi spécialisé rapproché est préconisé.


Subject(s)
Anemia, Aplastic , Humans , Anemia, Aplastic/diagnosis , Anemia, Aplastic/therapy , Diagnosis, Differential , Bone Marrow Transplantation/methods , Immunosuppressive Agents/therapeutic use
4.
Sheng Li Xue Bao ; 76(3): 496-506, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939943

ABSTRACT

Hemoglobinopathies are one of the most common single-gene genetic disorders globally, with approximately 1% to 5% of the global population carrying the mutated gene for thalassemia. Thalassemia are classified into transfusion-dependent thalassemia and non-transfusion-dependent thalassemia based on the need for blood transfusion. Traditional treatment modalities include blood transfusion, splenectomy, hydroxyurea therapy, and iron chelation therapy, which are now widely used for clinical treatment and constitute the main methods recommended in the ß-thalassemia treatment guidelines. However, there are multiple barriers and limitations to the application of these approaches, and there is an urgent need to explore new therapeutic approaches. With the in-depth study of the pathophysiological process of ß-thalassemia, a deeper understanding of the pathogenesis of the disease has been gained. It has been demonstrated that the pathogenesis of thalassemia is closely related to ineffective erythropoiesis (IE), imbalance in the ratio of α/ß-globin protein chains and iron overload. New therapeutic approaches are emerging for different pathogenic mechanisms. Among them, new drugs for the treatment of IE mainly include activin receptor II trap ligands, Janus kinase 2 inhibitors, pyruvate kinase activators, and glycine transporter protein 1 inhibitors. Correcting the imbalance in the hemoglobin chain is mainly due to emerging technologies such as bone marrow transplantation and gene editing. Measures in reducing iron overload are associated with inhibiting the activity of transferrin and hepcidin. These new approaches provide new ideas and options for the treatment and management of ß-thalassemia.


Subject(s)
Genetic Therapy , beta-Thalassemia , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Humans , Genetic Therapy/methods , Blood Transfusion , Janus Kinase 2/genetics , Activin Receptors, Type II/genetics , Splenectomy , Gene Editing , Iron Chelating Agents/therapeutic use , Bone Marrow Transplantation/methods , Iron Overload/therapy , Erythropoiesis , Immunoglobulin Fc Fragments , Recombinant Fusion Proteins
5.
Medicina (Kaunas) ; 60(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929594

ABSTRACT

This study aimed to identify the effectiveness and potential complications on the harvest site and knee of bone marrow aspirate concentrate (BMAC) treatment of patients with Kellgren-Lawrence (K-L) grades II-III knee osteoarthritis (OA) over a minimum follow-up period of 6 months. This study retrospectively evaluated data from 231 patients (285 knees) with knee OA treated with BMAC articular injection at a single center from August 2023 to October 2023. The inclusion criteria were a longstanding knee pain unresponsive to conservative treatments for at least 6 weeks with K-L grades II-III OA. The exclusion criteria were age of <40 years or >80 years, previous knee surgery, rheumatological or other systemic disease, malignancy, uncontrolled diabetes mellitus, or infections. Bone marrow was aspirated from the anterior iliac crest and concentrated by the single-spin centrifugation technique. The visual analog scale (VAS) pain score and Knee Society Score were used to evaluate the clinical outcomes and complications associated with harvest and injection sites were evaluated. The mean follow-up period was 7.2 months (range: 6-8 months). The pretreatment VAS pain score decreased from 4.3 to 0.4 points at the final follow-up (p < 0.05). Pretreatment Knee Society knee and function scores were improved from 86.9 to 98.1 (p < 0.05) and from 68.4 to 83.3 points (p < 0.05), respectively. A total of 15 complications (5.3%, 15/285) were observed, including 3 hematomas, 2 numbness, 2 contact dermatitis, and 1 superficial infection in the harvest site and 4 mild and moderate swelling and 3 severe swelling and pain in the injection site. BMAC is a reliable and effective treatment for patients with K-L grades II-III knee OA, but the orthopedic surgeon should consider that bleeding tendency by heparin causes severe joint swelling and pain after intra-articular knee injection.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/complications , Male , Female , Middle Aged , Retrospective Studies , Aged , Treatment Outcome , Adult , Pain Measurement , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/adverse effects , Injections, Intra-Articular , Aged, 80 and over
6.
Cells ; 13(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891119

ABSTRACT

Although discectomy is commonly performed for lumbar intervertebral disc (IVD) herniation, the capacity for tissue repair after surgery is limited, resulting in residual lower back pain, recurrence of IVD herniation, and progression of IVD degeneration. Cell-based therapies, as one-step procedures, are desirable for enhancing IVD repair. This study aimed to investigate the therapeutic efficacy of a combination of newly developed ultra-purified alginate (UPAL) gel and bone marrow aspirate concentrate (BMAC) implantation for IVD repair after discectomy. Prior to an in vivo study, the cell concentration abilities of three commercially available preparation kits for creating the BMAC were compared by measuring the number of bone marrow mesenchymal stem cells harvested from the bone marrow of rabbits. Subsequently, canine-derived BMAC was tested in a canine model using a kit which had the highest concentration rate. At 24 weeks after implantation, we evaluated the changes in the magnetic resonance imaging (MRI) signals as well as histological degeneration grade and immunohistochemical analysis results for type II and type I collagen-positive cells in the treated IVDs. In all quantitative evaluations, such as MRI and histological and immunohistochemical analyses of IVD degeneration, BMAC-UPAL implantation significantly suppressed the progression of IVD degeneration compared to discectomy and UPAL alone. This preclinical proof-of-concept study demonstrated the potential efficacy of BMAC-UPAL gel as a therapeutic strategy for implementation after discectomy, which was superior to UPAL and discectomy alone in terms of tissue repair and regenerative potential.


Subject(s)
Alginates , Disease Models, Animal , Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Dogs , Alginates/chemistry , Alginates/pharmacology , Intervertebral Disc/surgery , Intervertebral Disc/pathology , Intervertebral Disc/drug effects , Rabbits , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/surgery , Intervertebral Disc Degeneration/therapy , Proof of Concept Study , Gels , Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Magnetic Resonance Imaging , Male , Bone Marrow Transplantation/methods
8.
Am J Sports Med ; 52(7): 1826-1833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767159

ABSTRACT

BACKGROUND: Multilayered osteochondral scaffolds are becoming increasingly utilized for the repair of knee joint surface lesions (KJSLs). However, the literature on predictive factors is rather limited. PURPOSE: To (1) evaluate the clinical outcomes and safety of a combined single-step approach using a biomimetic collagen-hydroxyapatite scaffold (CHAS) and filtered bone marrow aspirate (fBMA) for the treatment of KJSLs and (2) identify significant predictors of the treatment outcomes. STUDY DESIGN: Case series; Level of evidence, 4. METHODS: All patients who underwent surgery because of a KJSL (size ≥1.5 cm2; International Cartilage Regeneration & Joint Preservation Society grades 3-4) using the combination above were selected from a hospital registry database (100 patients; minimum 2-year follow-up). Patient characteristics, medical history, knee joint and lesion status, intraoperative details, and cellular parameters of the injected fBMA were collected. The arthroscopic evaluation of chondral and meniscal tissue quality in all knee compartments was performed using the Chondropenia Severity Score. Treatment outcomes were determined clinically using patient-reported outcome measures (Knee Injury and Osteoarthritis Outcome Score, EuroQol-5 Dimensions-3 Levels, EuroQol-Visual Analog Scale, and Tegner Activity Scale) and by assessing the occurrence of serious adverse events and graft failure. Multivariable regression analysis was performed to identify significant predictors of the treatment outcomes. RESULTS: At a mean follow-up of 54.2 ± 19.4 months, 78 (87%) patients completed the questionnaires with significant improvements toward the baseline (P < .00625): KOOS Pain subscale from 62 ± 17 to 79 ± 18, KOOS Total score from 57 ± 16 to 70 ± 20, EuroQol-Visual Analog Scale from 61 ± 21 to 76 ± 16, EuroQol-5 Dimensions-3 Levels from 0.57 ± 0.20 to 0.80 ± 0.21, and Tegner Activity Scale from 2.8 ± 1.5 to 3.9 ± 1.9. The graft failure rate was 4%. A longer duration of preoperative symptoms, previous surgery, larger lesions, older age, and female sex were the main negative predictors for the treatment outcomes. The Chondropenia Severity Score and the number of fibroblast colony-forming units in fBMA positively influenced some of the clinical results and safety. CONCLUSION: A CHAS augmented with fBMA proved to be an adequate and safe approach for the treatment of KJSLs up to midterm follow-up. Based on the subanalysis of predictive factors, the surgical intervention should be performed in a timely and precise manner to prevent lesion enlargement, deterioration of the general knee cartilage status, and recurrent surgical procedures, especially in older and female patients. When a CHAS is used, the quantity of MSCs seems to play a role in augmentation. REGISTRATION: NCT06078072 (ClinicalTrials.gov identifier).


Subject(s)
Cartilage, Articular , Tissue Scaffolds , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Arthroscopy/methods , Bone Marrow Transplantation/methods , Cartilage, Articular/surgery , Collagen/therapeutic use , Durapatite/therapeutic use , Knee Injuries/surgery , Knee Joint/surgery , Patient Reported Outcome Measures , Treatment Outcome
9.
Am J Hematol ; 99(7): 1250-1256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38778766

ABSTRACT

In the context of T-cell replete haploidentical stem cell transplantation (Haplo-SCT) using post-transplantation cyclophosphamide (PT-Cy), it is still unknown whether peripheral blood (PB) or bone marrow (BM) is the best graft source. While PB is associated with a higher incidence of graft-versus-host disease (GVHD), it may induce a stronger graft-versus-leukemia effect compared to BM, notably in acute myeloid leukemia (AML). From the EBMT registry database, we compared T-cell replete PB (n = 595) versus BM (n = 209) grafts in a large cohort of 804 patients over the age of 60 years who underwent Haplo-SCT with PT-Cy for an AML in first or second complete remission. The risk of acute GVHD was significantly higher in the PB group (Grade II-IV: HR = 1.67, 95% CI [1.10-2.54], p = 0.01; Grade III-IV: HR = 2.29, 95% CI [1.16-4.54], p = 0.02). No significant difference was observed in chronic GVHD or non-relapse mortality. In the PB group, the risk of relapse was significantly lower in the PB group (HR = 0.65, 95% CI [0.45-0.94], p = 0.02) and leukemia-free survival was significantly better (HR = 0.76, 95% CI [0.59-0.99], p = 0.04), with a trend toward better overall survival (HR = 0.78, 95% CI [0.60-1.01], p = 0.06). We conclude that in the specific context of Haplo-SCT with PT-Cy, PB grafts represent a valid option to decrease the risk of relapse and improve outcome of older AML patients who usually do not benefit from conditioning intensification.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease , Leukemia, Myeloid, Acute , Peripheral Blood Stem Cell Transplantation , Remission Induction , Transplantation Conditioning , Humans , Middle Aged , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Male , Female , Aged , Transplantation Conditioning/methods , Bone Marrow Transplantation/methods , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Transplantation, Haploidentical/methods , Cyclophosphamide/administration & dosage , Cyclophosphamide/therapeutic use , Europe , Registries , Pathologic Complete Response
10.
BMJ Open ; 14(5): e082243, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719293

ABSTRACT

INTRODUCTION: The femoral head contralateral to the collapsed femoral head requiring total hip arthroplasty (THA) often manifests in the precollapse stage of osteonecrosis of the femoral head (ONFH). It is not yet demonstrated how autologous concentrated bone marrow injection may prevent collapse of the femoral head concurrent with contralateral THA. The primary objective is to evaluate the efficacy of autologous concentrated bone marrow injection for the contralateral, non-collapsed, femoral head in patients with bilateral ONFH, with the ipsilateral collapsed femoral head undergoing THA. METHODS AND ANALYSIS: This is a multicentre, prospective, non-randomised, historical-data controlled study. We will recruit patients with ONFH who are scheduled for THA and possess a non-collapsed contralateral femoral head. Autologous bone marrow will be collected using a point-of-care device. After concentration, the bone marrow will be injected into the non-collapsed femoral head following the completion of THA in the contralateral hip. The primary outcome is the percentage of femoral head collapse evaluated by an independent data monitoring committee using plain X-rays in two directions 2 years after autologous concentrated bone marrow injection. Postinjection safety, adverse events, pain and hip function will also be assessed. The patients will be evaluated preoperatively, and at 6 months, 1 year and 2 years postoperatively. ETHICS AND DISSEMINATION: This protocol has been approved by the Certified Committee for Regenerative Medicine of Tokyo Medical and Dental University and Japan's Ministry of Healthy, Labour and Welfare and will be performed as a class III regenerative medicine protocol, in accordance with Japan's Act on the Safety of Regenerative Medicine. The results of this study will be submitted to a peer-review journal for publication. The results of this study are expected to provide evidence to support the inclusion of autologous concentrated bone marrow injections in the non-collapsed femoral head in Japan's national insurance coverage. TRIAL REGISTRATION NUMBER: jRCTc032200229.


Subject(s)
Arthroplasty, Replacement, Hip , Bone Marrow Transplantation , Femur Head Necrosis , Transplantation, Autologous , Humans , Femur Head Necrosis/surgery , Femur Head Necrosis/therapy , Arthroplasty, Replacement, Hip/methods , Prospective Studies , Bone Marrow Transplantation/methods , Adult , Multicenter Studies as Topic , Female , Male , Middle Aged , Non-Randomized Controlled Trials as Topic , Femur Head
11.
Article in English | MEDLINE | ID: mdl-38782370

ABSTRACT

Current therapies for acute radiation syndrome (ARS) involve bone marrow transplantation (BMT), leading to graft-versus-host disease (GvHD). To address this challenge, we have developed a novel donor-recipient chimeric cell (DRCC) therapy to increase survival and prevent GvHD following total body irradiation (TBI)-induced hematopoietic injury without the need for immunosuppression. In this study, 20 Lewis rats were exposed to 7 Gy TBI to induce ARS, and we assessed the efficacy of various cellular therapies following systemic intraosseous administration. Twenty Lewis rats were randomly divided into four experimental groups (n = 5/group): saline control, allogeneic bone marrow transplantation (alloBMT), DRCC, and alloBMT + DRCC. DRCC were created by polyethylene glycol-mediated fusion of bone marrow cells from 24 ACI (RT1a) and 24 Lewis (RT11) rat donors. Fusion feasibility was confirmed by flow cytometry and confocal microscopy. The impact of different therapies on post-irradiation peripheral blood cell recovery was evaluated through complete blood count, while GvHD signs were monitored clinically and histopathologically. The chimeric state of DRCC was confirmed. Post-alloBMT mortality was 60%, whereas DRCC and alloBMT + DRCC therapies achieved 100% survival. DRCC therapy also led to the highest white blood cell counts and minimal GvHD changes in kidney and skin samples, in contrast to alloBMT treatment. In this study, transplantation of DRCC promoted the recovery of peripheral blood cell populations after TBI without the development of GVHD. This study introduces a novel and promising DRCC-based bridging therapy for treating ARS and extending survival without GvHD.


Subject(s)
Acute Radiation Syndrome , Bone Marrow Transplantation , Disease Models, Animal , Graft vs Host Disease , Rats, Inbred Lew , Whole-Body Irradiation , Animals , Rats , Graft vs Host Disease/therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Bone Marrow Transplantation/methods , Acute Radiation Syndrome/therapy , Transplantation Chimera , Male , Transplantation, Homologous , Humans , Blood Cells
12.
BMC Musculoskelet Disord ; 25(1): 392, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762734

ABSTRACT

BACKGROUND: Surgical repair is recommended for the treatment of high-grade partial and full thickness rotator cuff tears, although evidence shows surgery is not necessarily superior to non-surgical therapy. The purpose of this study was to compare percutaneous orthobiologic treatment to a home exercise therapy program for supraspinatus tears. METHODS: In this randomized-controlled, crossover design, participants with a torn supraspinatus tendon received either 'BMC treatment', consisting of a combination of autologous bone marrow concentrate (BMC) and platelet products, or underwent a home exercise therapy program. After three months, patients randomized to exercise therapy could crossover to receive BMC treatment if not satisfied with shoulder progression. Patient-reported outcomes of Numeric Pain Scale (NPS), Disabilities of the Arm, Shoulder, and Hand, (DASH), and a modified Single Assessment Numeric Evaluation (SANE) were collected at 1, 3, 6, 12, and 24 months. Pre- and post-treatment MRI were assessed using the Snyder Classification system. RESULTS: Fifty-one patients were enrolled and randomized to the BMC treatment group (n = 34) or the exercise therapy group (n = 17). Significantly greater improvement in median ΔDASH, ΔNPS, and SANE scores were reported by the BMC treatment group compared to the exercise therapy group (-11.7 vs -3.8, P = 0.01; -2.0 vs 0.5, P = 0.004; and 50.0 vs 0.0, P < 0.001; respectively) after three months. Patient-reported outcomes continued to progress through the study's two-year follow-up period without a serious adverse event. Of patients with both pre- and post-treatment MRIs, a majority (73%) showed evidence of healing post-BMC treatment. CONCLUSIONS: Patients reported significantly greater changes in function, pain, and overall improvement following BMC treatment compared to exercise therapy for high grade partial and full thickness supraspinatus tears. TRIAL REGISTRATION: This protocol was registered with www. CLINICALTRIALS: gov (NCT01788683; 11/02/2013).


Subject(s)
Bone Marrow Transplantation , Cross-Over Studies , Exercise Therapy , Rotator Cuff Injuries , Humans , Male , Female , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/diagnostic imaging , Middle Aged , Exercise Therapy/methods , Bone Marrow Transplantation/methods , Aged , Follow-Up Studies , Treatment Outcome , Rotator Cuff/diagnostic imaging , Rotator Cuff/surgery , Pain Measurement , Adult , Patient Reported Outcome Measures , Magnetic Resonance Imaging
13.
J Am Acad Orthop Surg ; 32(10): e476-e481, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700858

ABSTRACT

With an aging population, and an anticipated increase in overall fracture incidence, a sound understanding of bone healing and how technology can optimize this process is crucial. Concentrated bone marrow aspirate (cBMA) is a technology that capitalizes on skeletal stem and progenitor cells (SSPCs) to enhance the regenerative capacity of bone. This overview highlights the science behind cBMA, discusses the role of SSPCs in bone homeostasis and fracture repair, and briefly details the clinical evidence supporting the use of cBMA in fracture healing. Despite promising early clinical results, a lack of standardization in harvest and processing techniques, coupled with patient variability, presents challenges in optimizing the use of cBMA. However, cBMA remains an emerging technology that may certainly play a crucial role in the future of fracture healing augmentation.


Subject(s)
Fracture Healing , Humans , Fracture Healing/physiology , Bone Marrow Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Bone Regeneration/physiology , Fractures, Bone/therapy , Bone Marrow Cells/cytology
14.
Cell Transplant ; 33: 9636897241251619, 2024.
Article in English | MEDLINE | ID: mdl-38761062

ABSTRACT

Pressure injuries, or pressure ulcers, are a common problem that may lead to infections and major complications, besides being a social and economic burden due to the costs of treatment and hospitalization. While surgery is sometimes necessary, this also has complications such as recurrence or wound dehiscence. Among the newer methods of pressure injury treatment, advanced therapies are an interesting option. This study examines the healing properties of bone marrow mononuclear cells (BM-MNCs) embedded in a plasma-based scaffold in a mouse model. Pressure ulcers were created on the backs of mice (2 per mouse) using magnets and assigned to a group of ulcers that were left untreated (Control, n = 15), treated with plasma scaffold (Plasma, n = 15), or treated with plasma scaffold containing BM-MNC (Plasma + BM-MNC, n = 15). Each group was examined at three time points (3, 7, and 14 days) after the onset of treatment. At each time point, animals were subjected to biometric assessment, bioluminescence imaging, and tomography. Once treatment had finished, skin biopsies were processed for histological and wound healing reverse transcription polymerase chain reaction (RT-PCR) array studies. While wound closure percentages were higher in the Plasma and Plasma + BM-MNC groups, differences were not significant, and thus descriptive data are provided. In all individuals, the presence of donor cells was revealed by immunohistochemistry on posttreatment onset Days 3, 7, and 14. In the Plasma + BM-MNC group, less inflammation was observed by positron emission tomography-computed tomography (PET/CT) imaging of the mice at 7 days, and a complete morphometabolic response was produced at 14 days, in accordance with histological results. A much more pronounced inflammatory process was observed in controls than in the other two groups, and this persisted until Day 14 after treatment onset. RT-PCR array gene expression patterns were also found to vary significantly, with the greatest difference noted between both treatments at 14 days when 11 genes were differentially expressed.


Subject(s)
Bone Marrow Cells , Disease Models, Animal , Pressure Ulcer , Wound Healing , Animals , Pressure Ulcer/therapy , Pressure Ulcer/pathology , Mice , Bone Marrow Cells/cytology , Male , Tissue Scaffolds/chemistry , Mice, Inbred C57BL , Bone Marrow Transplantation/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/transplantation
15.
Injury ; 55(6): 111590, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701674

ABSTRACT

OBJECTIVE: To compare the bone healing effects of percutaneously delivered bone marrow aspirate concentrate (BMC) versus reamer irrigator aspirator (RIA) suspension in a validated preclinical canine ulnar nonunion model. We hypothesized that BMC would be superior to RIA in inducing bone formation across a nonunion site after percutaneous application. The null hypothesis was that BMC and RIA would be equivalent. METHODS: A bilateral ulnar nonunion model (n= 6; 3 matched pairs) was created. Eight weeks after segmental ulnar ostectomy, RIA from the ipsilateral femur and BMC from the proximal humerus were harvested and percutaneously administered into either the left or right ulnar defect. The same volume (3 ml) of RIA suspension and BMC were applied on each side. Eight weeks after treatment, the dogs were euthanized, and the nonunions were evaluated using radiographic, biomechanical, and histologic assessments. RESULTS: All dogs survived for the intended study duration, formed radiographic nonunions 8 weeks after segmental ulnar ostectomy, and underwent the assigned percutaneous treatment. Radiographic and macroscopic assessments of bone healing at the defect sites revealed superior bridging-callous formation in BMC-treated nonunions. Histologic analyses revealed greater amount of bony bridging and callous formation in the BMC group. Biomechanical testing of the treated nonunions did not reveal any significant differences. CONCLUSION: Bone marrow aspirate concentrate (BMC) had important advantages over Reamer Irrigator Aspirator (RIA) suspension for percutaneous augmentation of bone healing in a validated preclinical canine ulnar nonunion model based on clinically relevant radiographic and histologic measures of bone formation.


Subject(s)
Bone Marrow Transplantation , Disease Models, Animal , Fracture Healing , Fractures, Ununited , Therapeutic Irrigation , Animals , Dogs , Fractures, Ununited/therapy , Bone Marrow Transplantation/methods , Fracture Healing/physiology , Therapeutic Irrigation/instrumentation , Therapeutic Irrigation/methods , Ulna Fractures/surgery , Ulna Fractures/therapy
17.
Ann Hematol ; 103(6): 2051-2058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594416

ABSTRACT

Traditionally, bone marrow (BM) has been preferred as a source of stem cells (SCs) in pediatric hematopoietic SC transplantation (HSCT); however, the use of peripheral blood SCs (PBSC) has recently increased. With advancing graft-versus-host disease (GVHD) prophylaxis, whether the BM is still a better SC source than PB in sibling donor HSCT remains controversial. Here, we compared the results of BM transplantation (BMT) and PBSC transplantation (PBSCT) in pediatric patients with malignant or non-malignant diseases receiving sibling HSCT using a total of 7.5 mg/kg of anti-thymocyte globulin (ATG). We retrospectively reviewed children who received HSCT from a sibling donor between 2005 and 2020 at Seoul National University Children's Hospital. Of the 86 patients, 40 underwent BMT, and 46 underwent PBSCT. Fifty- six patients had malignant diseases, whereas thirty patients had non-malignant diseases. All conditioning regimens comprised ATG. Busulfan-based myeloablative conditioning regimens were administered to patients with malignant diseases and approximately half of those with non-malignant diseases. The remaining half of the patients with non-malignant diseases were administered cyclophosphamide-based reduced- intensity conditioning regimens. According to studies conducted at our center, all BM donors received G-CSF before harvest to achieve early engraftment. In all 86 patients (47 males and 39 females), the median age at the time of HSCT was 11.4 (range, 0.7 - 24.6) years. The median follow-up period was 57.9 (range, 0.9-228.6) months, and the corresponding values for those with BM and PBSC were 77 (range, 2.4-228.6) months and 48.7 (range, 0.9-213.2) months, respectively. Engraftment failure occurred in one patient with BM and no patient with PBSC. The cumulative incidence of acute GVHD with grades II-IV was higher in PBSC (BM 2.5%, PBSC 26.1%, p = 0.002), but there was no significant difference in those with grades III-IV acute GVHD (BM 0%, PBSC 6.5%, p = 0.3703) and extensive chronic GVHD (BM 2.5%, PBSC 11.6%, p = 0.1004). There were no significant differences in treatment-related mortality (TRM) (BM 14.2%, PBSC 6.8%, p = 0.453), 5-year event-free survival (EFS) (BM 71.5%, PBSC 76.2%, p = 0.874), and overall survival (OS) rates (BM 80.8%, PBSC 80.3%, p = 0.867) between BM and PBSC in the univariate analysis. In the multivariate analysis, which included all factors with p < 0.50 in the univariate analysis, there was no significant prognostic factor for EFS or OS. There was no significant difference in the relapse incidence between BM and PBSC among patients with malignant diseases (BM 14.2%, PBSC 6.8%, p = 0.453). Additionally, there were no significant differences in the TRM, 5-year EFS, and OS rates between malignant and non-malignant diseases nor between the busulfan-based myeloablative regimen and reduced-intensity chemotherapy using cyclophosphamide. In this study, we showed no significant differences in EFS, OS, TRM, and GVHD, except for acute GVHD grades II-IV, between BMT and PBSCT from sibling donors, using ATG (a total of 7.5 mg/kg). Therefore, PB collection, which is less invasive for donors and less labor-intensive for doctors, could also be considered an acceptable SC source for sibling donor HSCT in children.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease , Peripheral Blood Stem Cell Transplantation , Siblings , Humans , Child , Male , Female , Child, Preschool , Adolescent , Retrospective Studies , Bone Marrow Transplantation/methods , Infant , Graft vs Host Disease/prevention & control , Transplantation Conditioning/methods , Hematopoietic Stem Cell Transplantation/methods , Tissue Donors , Treatment Outcome , Antilymphocyte Serum/therapeutic use , Antilymphocyte Serum/administration & dosage , Transplantation, Homologous
20.
Transplant Cell Ther ; 30(7): 663-680, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38642840

ABSTRACT

Data on recent bone marrow harvest (BMH) collections from the NMDP has shown that bone marrow (BM) quality has decreased based on total nucleated cell count in the product. To ensure that quality BM products are available to all recipients, the NMDP Marrow Alliance was formed in April 2021 to increase the capability of BM collection centers to safely deliver high-quality products consistently and to identify and disseminate guidelines for performing BMH. This white paper describes the best practices for BMH as defined by the NMDP Marrow Alliance.


Subject(s)
Bone Marrow , Humans , Bone Marrow Transplantation/standards , Bone Marrow Transplantation/methods , Practice Guidelines as Topic , Bone Marrow Cells , Tissue and Organ Harvesting/methods , Tissue and Organ Harvesting/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...