Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Biomed Mater Eng ; 35(5): 415-423, 2024.
Article in English | MEDLINE | ID: mdl-39121111

ABSTRACT

BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young's modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.


Subject(s)
Computer-Aided Design , Finite Element Analysis , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Humans , Tissue Engineering/methods , Durapatite/chemistry , Elastic Modulus , Bioprinting/methods , Polyesters/chemistry , Porosity , Computer Simulation , Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Polyglycolic Acid/chemistry , Printing, Three-Dimensional , Materials Testing , Bone and Bones
2.
Minerva Dent Oral Sci ; 73(5): 279-286, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38888733

ABSTRACT

BACKGROUND: Osseointegrated implant placement in the ideal prosthetic position necessitates a sufficient residual alveolar ridge. Tooth extraction and the subsequent healing process often lead to bony deformities, characterized by a reduction in alveolar ridge height and width, resulting in unfavorable ridge architecture for dental implant placement. Several materials, including allografts, alloplastics, xenografts, and autogenous bone, are commonly used to address these concerns. In this context, leucocyte- and platelet-rich fibrin (L-PRF) emerges as a promising solution. METHODS: This case report aims to compare the clinical and histological efficacy of bovine hydroxyapatite bone graft covered with polypropylene membrane (BHAG-PM) and leucocyte- and platelet-rich fibrin (L-PRF) in preserving dental alveoli following tooth extraction. Extraction, graft placement in the alveoli, and the anterior border between extracted elements were performed for both treatment groups. RESULTS: Up to 24 months of follow-up revealed satisfactory and comparable clinical and histological outcomes. These results suggest that both BHAG-PM and L-PRF effectively promote alveolar preservation, paving the way for ideal implant placement. CONCLUSIONS: In general, bone-substitute materials are effective in reducing alveolar changes after tooth extraction. Xenograft materials should be considered as among the best of the available grafting materials for alveolar preservation after tooth extraction. Both techniques effectively preserve the alveolar bone and facilitate the placement of osseointegrated implants in ideal positions, paving the way for successful oral rehabilitation.


Subject(s)
Durapatite , Leukocytes , Platelet-Rich Fibrin , Polypropylenes , Tooth Extraction , Platelet-Rich Fibrin/metabolism , Animals , Polypropylenes/therapeutic use , Polypropylenes/chemistry , Cattle , Durapatite/therapeutic use , Durapatite/pharmacology , Humans , Leukocytes/pathology , Bone Transplantation/methods , Membranes, Artificial , Bone Substitutes/therapeutic use , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Male , Female , Alveolar Process/surgery , Alveolar Process/pathology , Middle Aged
3.
J Biomed Mater Res B Appl Biomater ; 112(1): e35340, 2024 01.
Article in English | MEDLINE | ID: mdl-37929804

ABSTRACT

Effective bone substitute biomaterials remain an important challenge in patients with large bone defects. Glass ceramics produced by different synthesis routes may result in changes in the material physicochemical properties and consequently affect the success or failure of the bone healing response. To investigate the differences in the orchestration of the inflammatory and healing process in bone grafting and repair using different glass-ceramic routes production. Thirty male Wistar rats underwent surgical unilateral parietal defects filled with silicate glass-ceramic produced by distinct routes: BS - particulate glass-ceramic produced via the fusion/solidification route, and BG - particulate glass-ceramic produced via the sol-gel route. After 7, 14, and 21 days from biomaterial grafting, parietal bones were removed to be analyzed under H&E and Massons' Trichome staining, and immunohistochemistry for CD206, iNOS, and TGF-ß. Our findings demonstrated that the density of lymphocytes and plasma cells was significantly higher in the BS group at 45, and 7 days compared to the BG group, respectively. Furthermore, a significant increase of foreign body giant cells (FBGCs) in the BG group at day 7, compared to BS was found, demonstrating early efficient recruitment of FBGCs against sol-gel-derived glass-ceramic particulate (BS group). According to macrophage profiles, CD206+ macrophages enhanced at the final periods of both groups, being significantly higher at 45 days of BS compared to the BG group. On the other hand, the density of transformation growth factor beta (TGF-ß) positive cells on 21 days were the highest in BG, and the lowest in the BS group, demonstrating a differential synergy among groups. Noteworthy, TGF-ß+ cells were significantly higher at 21 days of BG compared to the BS group. Glass-ceramic biomaterials can act differently in the biological process of bone remodeling due to their route production, being the sol-gel route more efficient to activate M2 macrophages and specific FBGCs compared to the traditional route. Altogether, these features lead to a better understanding of the effectiveness of inflammatory response for biomaterial degradation and provide new insights for further preclinical and clinical studies involved in bone healing.


Subject(s)
Biocompatible Materials , Bone Substitutes , Humans , Rats , Animals , Male , Materials Testing , Rats, Wistar , Biocompatible Materials/chemistry , Bone Regeneration , Bone Substitutes/chemistry , Ceramics/pharmacology , Ceramics/chemistry , Macrophages , Transforming Growth Factor beta , Glass/chemistry
4.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362167

ABSTRACT

Bone defects have prompted the development of biomaterial-based bone substitutes for restoring the affected tissue completely. Although many biomaterials have been designed and evaluated, the combination of properties required in a biomaterial for bone tissue engineering still poses a challenge. In this study, a chitosan-silica-based biocomposite was synthetized, and its physicochemical characteristics and biocompatibility were characterized, with the aim of exploring the advantages and drawbacks of its use in bone tissue engineering. Dynamic light scattering measurements showed that the mean hydrodynamic size of solid silica particles (Sol-Si) was 482 ± 3 nm. Scanning electron microscopy of the biocomposite showed that Sol-Si were homogenously distributed within the chitosan (CS) matrix. The biocomposite swelled rapidly and was observed to have no cytotoxic effect on the [3T3] cell line within 24 h. Biocompatibility was also analyzed in vivo 14 days post-implant using a murine experimental model (Wistar rats). The biocomposite was implanted in the medullary compartment of both tibiae (n = 12). Histologically, no acute inflammatory infiltrate or multinucleated giant cells associated to the biocomposite were observed, indicating good biocompatibility. At the tissue-biocomposite interface, there was new formation of woven bone tissue in close contact with the biocomposite surface (osseointegration). The new bone formation may be attributed to the action of silica. Free silica particles originating from the biocomposite were observed at the tissue-biocomposite interface. According to our results, the biocomposite may act as a template for cellular interactions and extracellular matrix formation, providing a structural support for new bone tissue formation. The CS/Sol-Si biocomposite may act as a Si reservoir, promoting new bone formation. A scaffold with these properties is essential for cell differentiation and filling a bone defect.


Subject(s)
Bone Substitutes , Chitosan , Rats , Mice , Animals , Bone Substitutes/chemistry , Tissue Engineering , Chitosan/chemistry , Silicon Dioxide/chemistry , Rats, Wistar , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry
5.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144483

ABSTRACT

Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.


Subject(s)
Bone Substitutes , Amides , Animals , Bone Regeneration , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cattle , Collagen/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Heterografts , Humans , Male , Rats , Rats, Wistar
6.
ScientificWorldJournal ; 2021: 4295433, 2021.
Article in English | MEDLINE | ID: mdl-34899084

ABSTRACT

OBJECTIVES: Bioglass composites and polymers are materials of great interest for the medical and dental areas due to their properties, combining the bioactivity of ceramic materials and the mechanical properties of polymers. The purpose of the present study was to develop and to characterize the physicochemical and morphological properties an experimental bioglass-based ternary composite composed associated with sodium carboxymethylcellulose (Na-CMC) and polyvinyl alcohol (PVA). The compatibility of functional groups with bioglass was previously evaluated. The composite was then synthesized and evaluated in terms of morphology, elemental composition, compressive strength, porosity, and bioactivity. MATERIALS AND METHODS: The bioglass was previously synthesized using a sol-gel route and characterized using FTIR analysis to identify the functional groups. The bone graft composite was then synthesized associating the bioglass with PVA, surfactant Triton X, and Na-CMC. The composite was then morphologically characterized using SEM/EDS. The porosity of the composite was analyzed using µCT, which also provided the composite compression strength. The composite was then evaluated in terms of its bioactivity using SEM/EDS analyses after immersion in SBF for 12, 24, 48, and 72 h. RESULTS: FTIR analysis confirmed, among other components, the presence of Si-O-Ca and Si-O-Si bonds, compatible with bioglass. SEM analysis exhibited a composite with a porous structure without spikes. The elemental mapping confirmed the presence of Si, Ca, and P in the composite. µCT analysis demonstrated a porous structure with 42.67% of open pores and an average compression strength of 124.7 MPa. It has also demonstrated ionic changes in the composite surface after immersion in SBF, with increasing detection of Ca and P as a function of time, highlighting its chemical bioactivity. CONCLUSIONS: It can be concluded that the proposed bioglass-based composite presents a three-dimensional, well-structured, chemically bioactive porous structure, mechanically resistant for being reinforced with polymeric phases, with promising results as a synthetic bone graft, which makes it suitable for guided bone regeneration.


Subject(s)
Bone Regeneration , Bone Substitutes/chemistry , Ceramics/chemistry , Guided Tissue Regeneration , Carboxymethylcellulose Sodium/chemistry , Microscopy, Electron, Scanning , Polyvinyl Alcohol/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Microtomography
7.
J Mater Sci Mater Med ; 32(9): 109, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34453621

ABSTRACT

The aim of this study was to evaluate biocompatibility of hydroxyapatite (HAP) from fish waste using in vitro and in vivo assays. Fish samples (whitemouth croaker - Micropogonias furnieri) from the biowaste was used as HAP source. Pre-osteoblastic MC3T3-E1 cells were used in vitro study. In addition, bone defects were artificially created in rat calvaria and filled with HAP in vivo. The results demonstrated that HAP reduced cytotoxicity in pre-osteoblast cells after 3 and 6 days following HAP exposure. DNA concentration was lower in the HAP group after 6 days. Quantitative RT-PCR did not show any significant differences (p > 0.05) between groups. In vivo study revealed that bone defects filled with HAP pointed out moderate chronic inflammatory cells with slight proliferation of blood vessels after 7 and 15 days. Chronic inflammatory infiltrate was absent after 30 days of HAP exposure. There was also a decrease in the amount of biomaterial, being followed by newly formed bone tissue. All experimental groups also demonstrated strong RUNX-2 immoexpression in the granulation tissue as well as in cells in close contact with biomaterial. The number of osteoblasts inside the defect area was lower in the HAP group when compared to control group after 7 days post-implantation. Similarly, the osteoblast surface as well as the percentage of bone surface was higher in control group when compared with HAP group after 7 days post-implantation. Taken together, HAP from fish waste is a promising possibility that should be explored more carefully by tissue-engineering or biotechnology.


Subject(s)
Durapatite/isolation & purification , Durapatite/pharmacology , Fish Products , Animals , Bone Regeneration/drug effects , Bone Substitutes/chemistry , Bone Substitutes/isolation & purification , Bone Substitutes/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Fish Products/analysis , Materials Testing , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/physiology , Osteogenesis/drug effects , Perciformes , Rats , Skull/drug effects , Skull/physiology , Solid Waste/analysis
8.
Biomed Mater ; 16(4)2021 06 18.
Article in English | MEDLINE | ID: mdl-34077913

ABSTRACT

Bone reconstruction in the oral and maxillofacial region presents particular challenges related to the development of biomaterials with osteoinductive properties and suitable physical characteristics for their surgical use in irregular bony defects. In this work, the preparation and bioactivity of chitosan-gelatin (ChG) hydrogel beads loaded with either bioactive glass nanoparticles (nBG) or mesoporous bioactive glass nanospheres (nMBG) were studied.In vitrotesting of the bionanocomposite beads was carried out in simulated body fluid, and through viability and osteogenic differentiation assays using dental pulp stem cells (DPSCs).In vivobone regenerative properties of the biomaterials were assessed using a rat femoral defect model and compared with a traditional maxillary allograft (Puros®). ChG hydrogel beads containing homogeneously distributed BG nanoparticles promoted rapid bone-like apatite mineralization and induced the osteogenic differentiation of DPSCsin vitro. The bionanocomposite beads loaded with either nBG or nMBG also produced a greater bone tissue formationin vivoas compared to Puros® after 8 weeks of implantation. The osteoinductivity capacity of the bionanocomposite hydrogel beads coupled with their physical properties make them promissory for the reconstruction of irregular and less accessible maxillary bone defects.


Subject(s)
Bone Substitutes , Glass/chemistry , Nanogels/chemistry , Osteogenesis/drug effects , Animals , Bone Regeneration/drug effects , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Chitosan/chemistry , Chitosan/pharmacology , Dental Pulp/cytology , Gelatin/chemistry , Gelatin/pharmacology , Humans , Maxilla/transplantation , Nanoparticles/chemistry , Rats
9.
Molecules ; 26(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805847

ABSTRACT

Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).


Subject(s)
Biopolymers/chemistry , Bone Regeneration/physiology , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Birefringence , Bone Matrix/chemistry , Bone Matrix/physiology , Bone Remodeling/physiology , Bone Substitutes/chemistry , Calcification, Physiologic/physiology , Cattle , Collagen/chemistry , Collagen/metabolism , Elastin/chemistry , Elastin/metabolism , Imaging, Three-Dimensional , Male , Materials Testing , Rats , Rats, Wistar , Skull/diagnostic imaging , Skull/injuries , Skull/physiology , Swine , Tissue Engineering/methods , X-Ray Microtomography
10.
J Mater Sci Mater Med ; 31(8): 72, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32719958

ABSTRACT

Polycaprolactone (PCL) is a biocompatible, biodegradable synthetic polymer which in combination with nanohydroxyapatite (nHAp) can give rise to a low cost, nontoxic bioactive product with excellent mechanical properties and slow degradation. Here we produced, characterized and evaluated in vivo the bone formation of PCL/nHAp scaffolds produced by the rotary jet spinning technique. The scaffolds produced were firstly soaked into simulated body fluid for 21 days to also obtain nHAp onto PCL/nHAp scaffolds. Afterwards, the scaffolds were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy and Raman spectroscopy. For in vivo experiments, 20 male Wistar rats were used and randomly divided in 4 experimental groups (n = 5). A critical defect of 3 mm in diameter was made in the tibia of the animals, which were filled with G1 control (clot); G2-PCL scaffold; G3-PCL/nHAp (5%) scaffold; G4-PCL/nHAp (20%) scaffold. All animals were euthanized 60 days after surgery, and the bone repair in the right tibiae were evaluated by radiographic analysis, histological analysis and histomorphometric analysis. While in the left tibias, the areas of bone repair were submitted to the flexural strength test. Radiographic and histomorphometric analyses no showed statistical difference in new bone formation between the groups, but in the three-point flexural tests, the PCL/nHAp (20%) scaffold positively influenced the flexural mode of the neoformed bone. These findings indicate that PCL/nHAp (20%) scaffold improve biomechanical properties of neoformed bone and could be used for bone medicine regenerative.


Subject(s)
Body Fluids/chemistry , Durapatite/chemistry , Flexural Strength , Osteogenesis , Polyesters/chemistry , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena/drug effects , Body Fluids/physiology , Bone Regeneration/drug effects , Bone Substitutes/chemical synthesis , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Durapatite/pharmacology , Flexural Strength/drug effects , Flexural Strength/physiology , Fractures, Bone/physiopathology , Fractures, Bone/therapy , Guided Tissue Regeneration/instrumentation , Guided Tissue Regeneration/methods , Male , Materials Testing , Nanostructures/chemistry , Osteogenesis/drug effects , Polyesters/pharmacology , Polymers/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Rats , Rats, Wistar , Stress, Mechanical , Tibia/pathology , Tissue Engineering/instrumentation , Tissue Engineering/methods
11.
J Mater Sci Mater Med ; 31(8): 71, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32712717

ABSTRACT

Natural or synthetic biomaterials are increasingly being used to support bone tissue repair or substitution. The combination of natural calcium phosphates with biocompatible alloys is an important route towards the development of new biomaterials with bioperformance and mechanical responses to mimic those of human bones. This article evaluated the structural, physical, mechanical and biological properties of a new mechanical improved nanocomposite elaborated by association of fish biphasic calcium phosphate (BCP) and niobium pentoxide (Nb2O5). The nanocomposite (Nb-BCP) and the pure BCP, used as a positive control, were obtained by powder metallurgy. The density, porosity and microhardness were measured. The structural analysis was determined by X-ray diffraction (XRD) and the biological properties were studied in histological sections of critical size calvaria defects in rats, 7, 15, 30, 45 and 60 days after implantation of disks of both materials. Morphological description was made after scanning electron microscopy (SEM) and optical microscopy analysis. After sintering, the Nb-BCP nanocomposite presented four crystalline phases: 34.36% calcium niobate (CaNb2O6), 21.68% phosphorus niobium oxide (PNb9O25), 42.55% ß-tricalcium phosphate (Ca3(PO4)2) and 1.31% of niobium pentoxide (Nb2O5) and exhibited increases of 17% in density, 66% in Vickers microhardness and 180% in compressive strength compared to pure BCP. In vivo study, showed biocompatibility, bioactivity and osteoconductivity similar to pure BCP. SEM showed the formation of globular accretions over the implanted nanocomposites, representing one of the stages of bone mineralization. In conclusion, the BCP and Nb2O5 formed a nanocomposite exhibiting characteristics that are desirable for a biomaterial, such as bioperformance, higher ß-TCP percentage and improved physical and mechanical properties compared to pure BCP. These characteristics demonstrate the promise of this material for supporting bone regeneration.


Subject(s)
Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Niobium/chemistry , Osseointegration , Oxides/chemistry , Skull Fractures/therapy , Animals , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Bone Substitutes/therapeutic use , Bone-Anchored Prosthesis , Bone-Implant Interface/pathology , Calcium Phosphates/chemical synthesis , Calcium Phosphates/therapeutic use , Disease Models, Animal , Hydroxyapatites/chemical synthesis , Hydroxyapatites/chemistry , Hydroxyapatites/therapeutic use , Male , Materials Testing , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Niobium/therapeutic use , Osseointegration/drug effects , Oxides/chemical synthesis , Oxides/therapeutic use , Rats , Rats, Wistar , Skull Fractures/pathology , X-Ray Diffraction
12.
Mater Sci Eng C Mater Biol Appl ; 112: 110965, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409093

ABSTRACT

The apoptosis-associated Speck-like protein containing a caspase-1 recruitment domain (ASC), present in inflammasomes, regulates inflammation events and is involved in osteogenic phenotype. Nevertheless, its function in bone repair induced by bone substitute biomaterials is unclear. This study aimed to unveil the role of ASC on osteoprogenitor and tissue response to stoichiometric-hydroxyapatite (HA), nanostructured carbonated-hydroxyapatite (CHA), and CHA containing 5% Strontium (SrCHA), characterized previously by XRD, uXRF-SR, and FTIR spectroscopy implants. Thereafter, conditioned media by the biomaterials were used later to treat pre-osteoblasts and an osteogenic stimulus was shown in response to the materials, with higher expression of Runx2, Osterix, ALP, and Collagen 1a1 genes, with significant involvement of inflammatory-related genes. Thus, to better address the involvement of inflammasome, primary cells obtained from both genotypes [Wild-Type (WT) and ASC Knockout (ASC-KO) mice] were subjected to conditioned media up to 7 days, and our data reinforces both HA and CHA induces lower levels of alkaline phosphatase (ALP) than SrCHA, considering both genotypes (p < 0.01), and ASC seems contribute with osteogenic stimulus promoted by SrCHA. Complimentarily, the biomaterials were implanted into both subcutaneous and bone defects in tibia. Histological analysis on 28 days after implantation of biomaterials into mice's subcutaneous tissue revealed moderate inflammatory response to them. Both histomorphometry and µCT analysis of tibias indicated that the biomaterials did not reverse the delay in bone repair of ASC KO, reinforcing the involvement of ASC on bone regeneration and bone de novo deposition. Also, the bone density in CHA was >2-fold higher in WT than ASC-KO samples. HA was virtually not resorbed throughout the experimental periods, in opposition to CHA in the WT group. CHA reduced to half-area after 28 days, and the bone deposition was higher in CHA for WT mice than HA. Taken together, our results show that biomaterials did not interfere with the healing pattern of the ASC KO, but CHA promoted higher bone deposition in the WT group, probably due to its greater biodegradability. These results reinforce the importance of ASC during bone de novo deposition and healing.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes/chemistry , Caspase 1/chemistry , Animals , Apoptosis/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Bone Diseases/diagnostic imaging , Bone Diseases/pathology , Bone Diseases/therapy , Bone Substitutes/pharmacology , Bone Substitutes/therapeutic use , Carbonates/chemistry , Caspase 1/deficiency , Caspase 1/genetics , Cells, Cultured , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Durapatite/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Nanostructures/chemistry , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/drug effects , Prostheses and Implants , Strontium/chemistry , Tibia/diagnostic imaging , Tibia/pathology
13.
An Acad Bras Cienc ; 92(1): e20180369, 2020.
Article in English | MEDLINE | ID: mdl-32236296

ABSTRACT

Ayurveda oil contains numerous source of biological constituents which plays an important role in reducing the pain relief caused during bone fracture. The aim of the study is to fabricate the polyurethane (PU) scaffold for bone tissue engineering added with ayurveda amla oil using electrospinning technique. Scanning Electron Microscopy (SEM) analysis showed that the fabricated nanocomposites showed reduced fiber diameter (758 ± 185.46 nm) than the pristine PU (890 ± 116.91 nm). Fourier Infrared Analysis (FTIR) revealed the existence of amla oil in the PU matrix by hydrogen bond formation. The contact angle results revealed the decreased wettability (116° ± 1.528) of the prepared nanocomposites compared to the pure PU (100° ± 0.5774). The incorporation of amla oil into the PU matrix improved the surface roughness. Further, the coagulation assay indicated that the addition of amla oil into PU delayed the blood clotting times and exhibited less toxic to red blood cells. Hence, the fabricated nanocomposites showed enhanced physicochemical and better blood compatibility parameters which may serve as a potential candidate for bone tissue engineering.


Subject(s)
Biocompatible Materials/analysis , Bone Substitutes/analysis , Materials Testing/methods , Tissue Engineering/methods , Bone Substitutes/chemistry , Chemical Phenomena , Humans , Microscopy, Electron, Scanning , Nanocomposites , Spectroscopy, Fourier Transform Infrared , Wettability
14.
Mater Sci Eng C Mater Biol Appl ; 107: 110229, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761241

ABSTRACT

Knowledge about the action of immune system in the recognition of biomaterials has been extremely helpful when it comes about understanding host response and biomaterials' fate in human body. This study aimed to investigate inflammatory response and macrophage polarization during bone healing process of rat's calvaria critical defects using different bone materials in order to evaluate their influence on bone repair and on the quality of the newly formed bone tissue. Eighty male albinus Wistar rats underwent surgical procedure for the confectioning of a 5-mm diameter bone defect in their right parietal bone, and divided in four groups (n = 20 each), according the biomaterial: AG - Control, particulate intramembranous autogenous bone graft, HA/TCP - particulate biphasic calcium phosphate with HA/TCP (60/40), DBB - particulate deproteinized bovine bone, VC - particulate bioactive vitroceramic. After 3, 7, 21, and 45 days, the specimens were removed and prepared for microcomputed tomography (microCT), light and polarized microscopy, immunohistochemical analysis, and histomorphometry. No significant differences were detected considering percentage of leukocytes among the groups and periods, as well as in relation to immunolabeling for inflammatory (M1) and reparative (M2) macrophages. However, immunolabeling for bone marker indicated a delayed osteoblast differentiation in VC group, resulting in a decrease in mineralized bone matrix parameters in this group, revealed by microCT. In addition, AG and HA/TCP presented a satisfactory bone collagenous content. Despite the distinct origins and physicochemical properties of the tested biomaterials, they presented similar immune-inflammatory responses in the present experimental model, influencing bone-related proteins and bone quality, which must be considered according to their use.


Subject(s)
Biocompatible Materials/pharmacology , Macrophage Activation/drug effects , Macrophages/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Bone Substitutes/chemistry , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone and Bones/pathology , Hydroxyapatites/chemistry , Hydroxyapatites/pharmacology , Hydroxyapatites/therapeutic use , Macrophages/cytology , Male , Materials Testing , Maxillofacial Injuries/pathology , Maxillofacial Injuries/surgery , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Wistar , Transforming Growth Factor beta/metabolism , X-Ray Microtomography
15.
J Biomed Mater Res B Appl Biomater ; 108(1): 282-297, 2020 01.
Article in English | MEDLINE | ID: mdl-31009176

ABSTRACT

In this work, bone formation/remodeling/maturation was correlated with the presence of multinucleated giant cells (MGCs)/osteoclasts (tartrate-resistant acid phosphatase [TRAP]-positive cells) on the surface of beta-tricalcium phosphate (ß-TCP), sintered deproteinized bovine bone (sDBB), and carbonated deproteinized bovine bone (cDBB) using a maxillary sinus augmentation (MSA) in a New Zealand rabbit model. Microtomographic, histomorphometric, and immunolabeling for TRAP-cells analyses were made at 15, 30, and 60 days after surgery. In all treatments, a faster bone formation/remodeling/maturation and TRAP-positive cells activity occurred in the osteotomy region of the MSA than in the middle and submucosa regions. In the ß-TCP, the granules were rapidly reabsorbed by TRAP-positive cells and replaced by bone tissue. ß-TCP enabled quick bone regeneration/remodeling and full bone and marrow restoration until 60 days, but with a significant reduction in MSA volume. In cDBB and sDBB, the quantity of TRAP-positive cells was smaller than in ß-TCP, and these cells were associated with granule surface preparation for osteoblast-mediated bone formation. After 30 days, more than 80% of granule surfaces were surrounded and integrated by bone tissue without signs of degradation, preserving the MSA volume. Overall, the materials tested in a standardized preclinical model led to different bone formation/remodeling/maturation within the same repair process influenced by different microenvironments and MGCs/osteoclasts. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:282-297, 2020.


Subject(s)
Bone Matrix/chemistry , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Calcium Phosphates/pharmacology , Giant Cells/metabolism , Osteoclasts/metabolism , Animals , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Cell Line , Giant Cells/pathology , Male , Mice , Rabbits
16.
J Biomed Mater Res B Appl Biomater ; 108(3): 1107-1116, 2020 04.
Article in English | MEDLINE | ID: mdl-31393675

ABSTRACT

Scaffolds are models designed to aid the interaction between cells and extracellular bone matrix, providing structural support for newly formed bone tissue. In this work, wollastonite with ß-TCP porous ceramic scaffolds was developed by the polymer sponge replication. Their microstructure, cell viability and bioactivity were tested. in vivo was performed to evaluate the use of a calcium silicate-based implant in the repair of rabbit tibias. Holes were made in the both proximal and distal tibial metaphysis of each animal and filled with calcium silicate-based implant, and in the left tibia, no implant were used, serving as control group. Animals underwent euthanasia after 30 and 60 days of study. The animals were submitted to clinical-radiographic evaluations and their histology was analyzed by optical and scanning electron microscope. The studied calcium silicate implant provided biocompatibility and promoted bone formation, stimulating the process of bone repair in rabbits, features observed by gradual radiopacity shown in the radiographic evaluations.


Subject(s)
Calcium Compounds/chemistry , Calcium Phosphates/chemistry , Silicates/chemistry , Tibia/pathology , Animals , Biocompatible Materials/chemistry , Bone Regeneration , Bone Substitutes/chemistry , Ceramics , Female , Male , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Polymers/chemistry , Powders , Rabbits , Tissue Engineering , Tissue Scaffolds/chemistry , X-Ray Diffraction
17.
J Mater Sci Mater Med ; 30(9): 105, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31494718

ABSTRACT

Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.


Subject(s)
Bone Substitutes/therapeutic use , Ceramics/therapeutic use , Fractures, Bone/therapy , Light , Polyglycolic Acid/therapeutic use , Skull/injuries , Wound Healing/drug effects , Animals , Bone Substitutes/chemistry , Bone Substitutes/radiation effects , Bone Transplantation/methods , Cementation/methods , Ceramics/chemistry , Combined Modality Therapy , Male , Materials Testing , Osteogenesis/drug effects , Osteogenesis/radiation effects , Phototherapy/methods , Polyglycolic Acid/chemistry , Rats , Rats, Wistar , Skull/drug effects , Skull/radiation effects , Tissue Engineering
18.
PLoS One ; 14(8): e0221286, 2019.
Article in English | MEDLINE | ID: mdl-31425530

ABSTRACT

Bone tissue engineering seeks to adequately restore functions related to physical and biological properties, aiming at a repair process similar to natural bone. The use of compatible biopolymers, such as bacterial cellulose (BC), as well as having interesting mechanical characteristics, presents a slow in vivo degradation rate, and the ability to be chemically modified. To promote better bioactivity towards BC, we synthesized an innovative BC membrane associated to hydroxyapatite (HA) and anti-bone morphogenetic protein antibody (anti-BMP-2) (BC-HA-anti-BMP-2). We present the physical-chemical, biological and toxicological characterization of BC-HA-anti-BMP-2. Presence of BC and HA components in the membranes was confirmed by SEM-EDS and FTIR assays. No toxic potential was found in MC3T3-E1 cells by cytotoxicity assays (XTT Assay and Clonogenic Survival), genotoxicity (Comet Assay) and mutagenicity (Cytokinesis-blocked micronucleus Test). The in vitro release kinetics of anti-BMP-2 antibodies detected gradually reducing antibody levels, reducing approximately 70% in 7 days and 90% in 14 days. BC-HA-anti-BMP-2 increased SPP1, BGLAP, VEGF, ALPL, RUNX2 and TNFRSF11B expression, genes involved in bone repair and also increased mineralization nodules and phosphatase alcalin (ALP) activity levels. In conclusion, we developed BC-HA-anti-BMP-2 as an innovative and promising biomaterial with interesting physical-chemical and biological properties which may be a good alternative to treatment with commercial BMP-2 protein.


Subject(s)
Antibodies, Immobilized/pharmacology , Antibodies, Monoclonal/pharmacology , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Animals , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Bone Morphogenetic Protein 2/immunology , Bone Substitutes/chemistry , Cell Differentiation/drug effects , Cell Line , Cellulose/chemistry , Cellulose/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Gluconacetobacter xylinus/chemistry , Materials Testing , Mice , Osteoblasts , Osteogenesis/drug effects , Signal Transduction/drug effects , Tissue Engineering/methods
19.
J Mater Sci Mater Med ; 30(6): 64, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31127392

ABSTRACT

The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.


Subject(s)
Biocompatible Materials/chemistry , Glass/chemistry , Porifera/metabolism , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Bone Substitutes/chemistry , Cell Line , Cell Proliferation , Cell Survival , Hydrogen-Ion Concentration , Materials Testing , Mice , Microscopy, Electron, Scanning , Osteoblasts/metabolism , Spectroscopy, Fourier Transform Infrared , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL