Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 455
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 398, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940906

ABSTRACT

Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.


Subject(s)
Biofilms , Botrytis , Fragaria , Fungal Proteins , Hyphae , Membrane Proteins , Plant Diseases , Botrytis/pathogenicity , Botrytis/genetics , Botrytis/growth & development , Botrytis/drug effects , Biofilms/growth & development , Biofilms/drug effects , Virulence , Hyphae/growth & development , Hyphae/drug effects , Plant Diseases/microbiology , Fragaria/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Vitis/microbiology , Spores, Fungal/growth & development , Spores, Fungal/drug effects , Spores, Fungal/genetics , Gene Deletion
2.
Microb Cell Fact ; 23(1): 185, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926702

ABSTRACT

BACKGROUND: Currently, industrial fermentation of Botrytis cinerea is a significant source of abscisic acid (ABA). The crucial role of ABA in plants and its wide range of applications in agricultural production have resulted in the constant discovery of new derivatives and analogues. While modifying the ABA synthesis pathway of existing strains to produce ABA derivatives is a viable option, it is hindered by the limited synthesis capacity of these strains, which hinders further development and application. RESULTS: In this study, we knocked out the bcaba4 gene of B. cinerea TB-31 to obtain the 1',4'-trans-ABA-diol producing strain ZX2. We then studied the fermentation broth of the batch-fed fermentation of the ZX2 strain using metabolomic analysis. The results showed significant accumulation of 3-hydroxy-3-methylglutaric acid, mevalonic acid, and mevalonolactone during the fermentation process, indicating potential rate-limiting steps in the 1',4'-trans-ABA-diol synthesis pathway. This may be hindering the flow of the synthetic pathway. Additionally, analysis of the transcript levels of terpene synthesis pathway genes in this strain revealed a correlation between the bchmgr, bcerg12, and bcaba1-3 genes and 1',4'-trans-ABA-diol synthesis. To further increase the yield of 1',4'-trans-ABA-diol, we constructed a pCBg418 plasmid suitable for the Agrobacterium tumefaciens-mediated transformation (ATMT) system and transformed it to obtain a single-gene overexpression strain. We found that overexpression of bchmgr, bcerg12, bcaba1, bcaba2, and bcaba3 genes increased the yield of 1',4'-trans-ABA-diol. The highest yielding ZX2 A3 strain was eventually screened, which produced a 1',4'-trans-ABA-diol concentration of 7.96 mg/g DCW (54.4 mg/L) in 144 h of shake flask fermentation. This represents a 2.1-fold increase compared to the ZX2 strain. CONCLUSIONS: We utilized metabolic engineering techniques to alter the ABA-synthesizing strain B. cinerea, resulting in the creation of the mutant strain ZX2, which has the ability to produce 1',4'-trans-ABA-diol. By overexpressing the crucial genes involved in the 1',4'-trans-ABA-diol synthesis pathway in ZX2, we observed a substantial increase in the production of 1',4'-trans-ABA-diol.


Subject(s)
Abscisic Acid , Botrytis , Fermentation , Metabolic Engineering , Botrytis/metabolism , Botrytis/genetics , Abscisic Acid/metabolism , Metabolic Engineering/methods , Fungal Proteins/genetics , Fungal Proteins/metabolism
3.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892087

ABSTRACT

Utilizing bioinformatics tools, this study expands our understanding of secondary metabolism in Botrytis cinerea, identifying novel genes within polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), sesquiterpene cyclase (STC), diterpene cyclase (DTC), and dimethylallyltryptophan synthase (DMATS) families. These findings enrich the genetic framework associated with B. cinerea's pathogenicity and ecological adaptation, offering insights into uncharted metabolic pathways. Significantly, the discovery of previously unannotated genes provides new molecular targets for developing targeted antifungal strategies, promising to enhance crop protection and advance our understanding of fungal biochemistry. This research not only broadens the scope of known secondary metabolites but also opens avenues for future exploration into B. cinerea's biosynthetic capabilities, potentially leading to novel antifungal compounds. Our work underscores the importance of integrating bioinformatics and genomics for fungal research, paving the way for sustainable agricultural practices by pinpointing precise molecular interventions against B. cinerea. This study sets a foundation for further investigations into the fungus's secondary metabolism, with implications for biotechnology and crop disease management.


Subject(s)
Botrytis , Peptide Synthases , Polyketide Synthases , Secondary Metabolism , Botrytis/genetics , Botrytis/pathogenicity , Secondary Metabolism/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Computational Biology/methods , Multigene Family , Genes, Fungal
4.
Food Microbiol ; 122: 104564, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839226

ABSTRACT

Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.


Subject(s)
Botrytis , Fruit , Plant Diseases , Botrytis/genetics , Plant Diseases/microbiology , Fruit/microbiology , Crops, Agricultural/microbiology
5.
PLoS One ; 19(6): e0304790, 2024.
Article in English | MEDLINE | ID: mdl-38875250

ABSTRACT

In plants, small RNAs (sRNAs), mainly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have been described as key regulators of plant development, growth, and abiotic and biotic responses. Despite reports indicating the involvement of certain sRNAs in regulating the interaction between Botrytis cinerea (a major necrotrophic fungal phytopathogen) and host plants, there remains a lack of analysis regarding the potential regulatory roles of plant sRNAs during early stages of the interaction despite early immune responses observed then during infection. We present the first transcriptome-wide analysis of small RNA expression on the early interaction between the necrotrophic fungus Botrytis cinerea and the model plant Arabidopsis thaliana. We found that evolutionary conserved A. thaliana miRNAs were the sRNAs that accumulated the most in the presence of B. cinerea. The upregulation of miR167, miR159 and miR319 was of particular interest because these, together with their target transcripts, are involved in the fine regulation of the plant hormone signaling pathways. We also describe that miR173, which triggers the production of secondary siRNAs from TAS1 and TAS2 loci, as well as secondary siRNAs derived from these loci, is upregulated in response to B. cinerea. Thus, at an early stage of the interaction there are transcriptional changes of sRNA-guided silencing pathway genes and of a subset of sRNAs that targeted genes from the PPR gene superfamily, and these may be important mechanisms regulating the interaction between A. thaliana and B. cinerea. This work provides the basis for a better understanding of the regulation mediated by sRNAs during early B. cinerea-plant interaction and may help in the development of more effective strategies for its control.


Subject(s)
Arabidopsis , Botrytis , Gene Expression Regulation, Plant , Host-Pathogen Interactions , MicroRNAs , RNA, Plant , Botrytis/genetics , Botrytis/pathogenicity , Arabidopsis/genetics , Arabidopsis/microbiology , MicroRNAs/genetics , MicroRNAs/metabolism , Host-Pathogen Interactions/genetics , RNA, Plant/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Profiling
6.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791163

ABSTRACT

The genome sequencing of Botrytis cinerea supplies a general overview of the map of genes involved in secondary metabolite synthesis. B. cinerea genomic data reveals that this phytopathogenic fungus has seven sesquiterpene cyclase (Bcstc) genes that encode proteins involved in the farnesyl diphosphate cyclization. Three sesquiterpene cyclases (BcStc1, BcStc5 and BcStc7) are characterized, related to the biosynthesis of botrydial, abscisic acid and (+)-4-epi-eremophilenol, respectively. However, the role of the other four sesquiterpene cyclases (BcStc2, BcStc3, BcStc4 and BcStc6) remains unknown. BcStc3 is a well-conserved protein with homologues in many fungal species, and here, we undertake its functional characterization in the lifecycle of the fungus. A null mutant ΔBcstc3 and an overexpressed-Bcstc3 transformant (OvBcstc3) are generated, and both strains show the deregulation of those other sesquiterpene cyclase-encoding genes (Bcstc1, Bcstc5 and Bcstc7). These results suggest a co-regulation of the expression of the sesquiterpene cyclase gene family in B. cinerea. The phenotypic characterization of both transformants reveals that BcStc3 is involved in oxidative stress tolerance, the production of reactive oxygen species and virulence. The metabolomic analysis allows the isolation of characteristic polyketides and eremophilenols from the secondary metabolism of B. cinerea, although no sesquiterpenes different from those already described are identified.


Subject(s)
Botrytis , Sesquiterpenes , Botrytis/genetics , Botrytis/metabolism , Sesquiterpenes/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Carbon-Carbon Lyases
7.
Fungal Genet Biol ; 172: 103895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679292

ABSTRACT

Botrytis cinerea is a necrotrophic pathogen that infects across a broad range of plant hosts, including high-impact crop species. Its generalist necrotrophic behavior stems from its ability to detoxify structurally diverse phytoalexins. The current study aims to provide evidence of the ability of B. cinerea to tolerate the sesquiterpenoid phytoalexin rishitin, which is produced by potato and tomato. While the growth of potato pathogens Phytophthora infestans (late blight) and Alternaria solani (early blight) was severely inhibited by rishitin, B. cinerea was tolerant to rishitin. After incubation of rishitin with the mycelia of B. cinerea, it was metabolized to at least six oxidized forms. Structural analysis of these purified rishitin metabolites revealed a variety of oxidative metabolism including hydroxylation at C7 or C12, ketone formation at C5, and dihydroxylation at the 10,11-olefin. Six rishitin metabolites showed reduced toxicity to P. infestans and A. solani, indicating that B. cinerea has at least 5 distinct enzymatic reactions to detoxify rishitin. Four host-specialized phytopathogenic Botrytis species, namely B. elliptica, B. allii, B. squamosa, and B. tulipae also had at least a partial ability to metabolize rishitin as B. cinerea, but their metabolic capacity was significantly weaker than that of B. cinerea. These results suggest that the ability of B. cinerea to rapidly metabolize rishitin through multiple detoxification mechanisms could be critical for its pathogenicity in potato and tomato.


Subject(s)
Botrytis , Phytoalexins , Phytophthora infestans , Plant Diseases , Sesquiterpenes , Botrytis/metabolism , Botrytis/genetics , Botrytis/drug effects , Sesquiterpenes/metabolism , Plant Diseases/microbiology , Phytophthora infestans/metabolism , Phytophthora infestans/genetics , Phytophthora infestans/growth & development , Phytophthora infestans/drug effects , Solanum lycopersicum/microbiology , Inactivation, Metabolic , Alternaria/metabolism , Alternaria/genetics , Metabolic Networks and Pathways , Solanum tuberosum/microbiology
8.
Pestic Biochem Physiol ; 201: 105884, 2024 May.
Article in English | MEDLINE | ID: mdl-38685250

ABSTRACT

Botrytis cinerea is one of the most destructive pathogens worldwide. It can damage over 200 crops, resulting in significant yield and quality losses. Cyclobutrifluram, a new generation of succinate dehydrogenase inhibitors, exhibits excellent inhibitory activity against B. cinerea. However, the baseline sensitivity and resistance of B. cinerea to cyclobutrifluram remains poorly understood. This study was designed to monitor the sensitivity frequency distribution, assess the resistance risk, and clarify the resistance mechanism of B. cinerea to cyclobutrifluram. The baseline sensitivity of B. cinerea isolates to cyclobutrifluram was 0.89 µg/mL. Cyclobutrifluram-resistant B. cinerea populations are present in the field. Six resistant B. cinerea isolates investigated in this study possessed enhanced compound fitness index compared to the sensitive isolates according to mycelial growth, mycelial dry weight, conidiation, conidial germination rate, and pathogenicity. Cyclobutrifluram exhibited no cross-resistance with tebuconazole, fludioxonil, cyprodinil, or iprodione. Sequence alignment revealed that BcSDHB from cyclobutrifluram-resistant B. cinerea isolates had three single substitutions (P225F, N230I, or H272R). Molecular docking verified that these mutations in BcSDHB conferred cyclobutrifluram resistance in B. cinerea. In conclusion, the resistance risk of B. cinerea to cyclobutrifluram is high, and the point mutations in BcSDHB (P225F, N230I, or H272R) confer cyclobutrifluram resistance in B. cinerea. This study provided important insights into cyclobutrifluram resistance in B. cinerea and offered valuable information for monitoring and managing cyclobutrifluram resistance in the future.


Subject(s)
Botrytis , Drug Resistance, Fungal , Fungicides, Industrial , Norbornanes , Point Mutation , Pyrazoles , Botrytis/drug effects , Botrytis/genetics , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , China , Succinate Dehydrogenase/genetics , Fungal Proteins/genetics , Plant Diseases/microbiology
9.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598410

ABSTRACT

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Botrytis , Dioxoles , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Histidine Kinase , Hydantoins , Pyrroles , Botrytis/genetics , Botrytis/drug effects , Botrytis/enzymology , Dioxoles/pharmacology , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydantoins/pharmacology , Pyrroles/pharmacology , Pyrroles/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Plant Diseases/microbiology , Molecular Docking Simulation , Mutation , Mutagenesis, Site-Directed
10.
J Agric Food Chem ; 72(17): 9680-9690, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634420

ABSTRACT

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.


Subject(s)
Botrytis , Carboxylesterase , Cytochrome P-450 Enzyme System , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Strobilurins , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Strobilurins/pharmacology , Strobilurins/metabolism , Strobilurins/chemistry , Pyrimidines/pharmacology , Pyrimidines/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Botrytis/genetics , Botrytis/drug effects , Carboxylesterase/metabolism , Carboxylesterase/genetics , Drug Resistance, Fungal/genetics , Plant Diseases/microbiology , Methacrylates/pharmacology , Methacrylates/metabolism
11.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449374

ABSTRACT

Botrytis cinerea poses a recurring threat to viticulture, causing significant yield losses each year. The study explored the biocontrol capabilities of commercially used winemaking yeasts as a strategy to manage B. cinerea in grape berries. The winemaking yeast strains-Saccharomyces cerevisiae ES181, Saccharomyces pastorianus KBG6, S. cerevisiae BCS103, Lachancea thermotolerans Omega, and Torulaspora delbrueckii TD291-reduced B. cinerea growth and conidiation in vitro. Furthermore, they demonstrated a decreased disease severity and number of conidia in grape berries. Among these strains, S. cerevisiae BCS103 was the most effective, inducing the expression of the defense-related gene PR4 in berries. Its diffusible compounds and volatile organic compounds also reduced the expression of BcLTF2, a positive regulator of B. cinerea conidiogenesis. The examined winemaking yeast strains, especially S. cerevisiae BCS103, demonstrated effective inhibition of B. cinerea in vitro and in grape berries, influencing key defense genes and reducing BcLTF2 expression, offering potential solutions for disease management in viticulture. The study underscores the promise of commercially available winemaking yeast strains as eco-friendly tools against B. cinerea in viticulture. Leveraging their safety and existing use in winemaking offers a potential avenue for sustainable disease management.


Subject(s)
Vitis , Wine , Saccharomyces cerevisiae/metabolism , Botrytis/genetics , Wine/analysis
12.
Microb Biotechnol ; 17(2): e14402, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38393322

ABSTRACT

Apoptosis-like programmed cell death is associated with fungal development, ageing, pathogenicity and stress responses. Here, to explore the potential of Botrytis cinerea type II inhibitor of apoptosis (IAP) BcBIR1 in elevating the biocontrol efficacy of Coniothyrium minitans, the BcBIR1 gene was heterologously expressed in C. minitans. Results indicated that the strains expressing BcBIR1 had higher rates of conidiation, mycelial growth and biomass growth than the wild-type strain. Moreover, BcBIR1 was found to inhibit apoptosis, indicating its role as an IAP in C. minitans. Under various abiotic stresses, the growth rates of BcBIR1-expressing strains were significantly higher than that of the wild-type strain. Moreover, the conidial survival rate of the BcBIR1-expressing strains treated with ultraviolet irradiation was enhanced. In antifungal activity assay, the culture filtrates of BcBIR1-expressing strains displayed a stronger inhibitory effect on B. cinerea and Sclerotinia sclerotiorum than the wild-type strain. The study also found that BcBIR1 expression increased the mycoparasitism against the sclerotia, but not the hyphae of S. sclerotiorum. Taken together, these results suggest that BcBIR1 enhances vegetative growth, conidiation, anti-apoptosis activity, abiotic stress resistance, antifungal activity and mycoparasitism in C. minitans. As an IAP, BcBIR1 may improve the control capacity of C. minitans against S. sclerotiorum.


Subject(s)
Antifungal Agents , Ascomycota , Botrytis , Botrytis/genetics , Apoptosis
13.
Plant Dis ; 108(6): 1481-1485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38301218

ABSTRACT

The main phytosanitary problem for table grape production in Chile is gray mold caused by the fungus Botrytis cinerea. To manage this issue, the primary method utilized is chemical control. Fludioxonil, a phenylpyrrole, is highly effective in controlling B. cinerea and other plant pathogens. Consistently, there have been no field reports of reduced efficacy of fludioxonil; however, subpopulations with reduced sensitivity to fludioxonil are on the rise globally, as per increasing reports. Our study involved a large-scale evaluation of B. cinerea's sensitivity to fludioxonil in the Central Valley of Chile's primary table grape production area during the growing seasons from 2015 to 2018. Out of 2,207 isolates, only 1.04% of the isolates (n = 23) exceeded the sensitivity threshold value of 1 µg/ml. Remarkably, 95.7% are concentrated in a geographic region (Valparaíso Region). Isolates with reduced sensitivity to fludioxonil showed growth comparable with sensitive isolates and even more robust growth under nutritional deficit, temperature, or osmotic stress, suggesting greater environmental adaptation. When table grape detached berries were stored at 0°C, isolates less sensitive to fludioxonil caused larger lesions than sensitive isolates (2.82 mm compared with 1.48 mm). However, the lesions generated by both types of isolates were equivalent at room temperature. This study found no cross-resistance between fludioxonil and fenhexamid, an essential fungicide integrated with fludioxonil in Chilean B. cinerea control programs. All the Chilean isolates with reduced sensitivity to fludioxonil were controlled by the fludioxonil/cyprodinil mixture, a commonly employed form of fludioxonil. The cyprodinil sensitivity in the isolates with reduced sensitivity to fludioxonil explains their low field frequency despite their null fitness penalties. However, the emergence of fludioxonil-resistant isolates inside the Chilean B. cinerea population demands a comprehensive analysis of their genetic bases, accompanied by monitoring tools that allow the permanence of field fludioxonil efficacy.


Subject(s)
Botrytis , Dioxoles , Fungicides, Industrial , Plant Diseases , Pyrroles , Vitis , Botrytis/drug effects , Botrytis/genetics , Chile , Fungicides, Industrial/pharmacology , Pyrroles/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Dioxoles/pharmacology , Vitis/microbiology , Drug Resistance, Fungal/genetics
14.
BMC Genom Data ; 25(1): 7, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225553

ABSTRACT

BACKGROUND: Chickpea (Cicer arietinum L.) production is affected by many biotic factors, among them Fusarium wilt caused by Fusarium oxysporum f. sp. ciceri and Botrytis gray mold caused by Botrytis cinerea led to severe losses. As fungicide application is not advisable, biological management is the best alternative for plant protection. The rhizosphere-dwelling antagonistic bacteria are one of the important successful alternative strategy to manage these diseases of chickpea. Rhizosphere dwelling bacteria serve as biocontrol agents by different mechanisms like producing antibiotics, different enzymes, siderophores against pathogens and thereby reducing the growth of pathogens. RESULTS: The present study aimed to isolate rhizospheric bacteria from the soils of different chickpea fields to evaluate biocontrol efficacy of the isolated bacteria to manage Fusarium wilt and Botrytis gray mold in chickpea. A total of 67 bacteria were isolated from chickpea rhizosphere from Bundelkhand region of India. Study revealed the isolated bacteria could reduce the Fusarium oxysporum f. sp. ciceris and Botrytis cinerea infection in chickpea between 17.29 and 75.29%. After screening of all the bacteria for their biocontrol efficacy, 13 most promising bacterial isolates were considered for further study out of which, three bacterial isolates (15d, 9c and 14a) have shown the maximum in vitro antagonistic effects against Fusarium oxysporum f. sp. ciceri and Botrytis cinerea comparable to in vivo effects. However, Isolate (15d) showed highest 87.5% and 82.69% reduction in disease against Fusarium wilt and Botrytis gray mold respectively, under pot condition. Three most potential isolates were characterized at molecular level using 16S rRNA gene and found to be Priestia megaterium (9c and 14a) and Serratia marcescens (15d). CONCLUSION: This study identified two native biocontrol agents Priestia megaterium and Serratia marcescens from the rhizospheric soils of Bundelkhand region of India for control of Fusarium wilt, Botrytis gray mold. In future, efforts should be made to further validate the biocontrol agents in conjugation with nanomaterials for enhancing the synergistic effects in managing the fungal diseases in chickpea. This study will definitely enhance our understanding of these bioagents, and to increase their performance by developing effective formulations, application methods, and integrated strategies.


Subject(s)
Cicer , Fusarium , Fusarium/genetics , Cicer/genetics , Cicer/microbiology , Botrytis/genetics , Rhizosphere , RNA, Ribosomal, 16S , Bacteria/genetics , Soil
15.
FEMS Yeast Res ; 242024 01 09.
Article in English | MEDLINE | ID: mdl-38140959

ABSTRACT

Pulcherrimin is an iron (III) chelate of pulcherriminic acid that plays a role in antagonistic microbial interactions, iron metabolism, and stress responses. Some bacteria and yeasts produce pulcherriminic acid, but so far, pulcherrimin could not be produced in Saccharomyces cerevisiae. Here, multiple integrations of the Metschnikowia pulcherrima PUL1 and PUL2 genes in the S. cerevisiae genome resulted in red colonies, which indicated pulcherrimin formation. The coloration correlated positively and significantly with the number of PUL1 and PUL2 genes. The presence of pulcherriminic acid was confirmed by mass spectrometry. In vitro competition assays with the plant pathogenic fungus Botrytis caroliana revealed inhibitory activity on conidiation by an engineered, strong pulcherrimin-producing S. cerevisiae strain. We demonstrate that the PUL1 and PUL2 genes from M. pulcherrima, in multiple copies, are sufficient to transfer pulcherrimin production to S. cerevisiae and represent the starting point for engineering and optimizing this biosynthetic pathway in the future.


Subject(s)
Metschnikowia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Botrytis/genetics , Botrytis/metabolism , Metschnikowia/genetics , Metschnikowia/metabolism , Iron/metabolism
16.
Phytopathology ; 114(5): 1068-1074, 2024 May.
Article in English | MEDLINE | ID: mdl-38105240

ABSTRACT

Succinate dehydrogenase inhibitor (SDHI) fungicides are the most commonly and effectively used class of fungicides for controlling gray mold. Among them, only boscalid has been registered in China for controlling grape gray mold, whereas isofetamid and pydiflumetofen are two new SDHI fungicides that have demonstrated high efficacy against various fungal diseases. However, the sensitivity of Botrytis cinerea isolates from vineyards in China to these three fungicides is currently unknown. In this study, the sensitivity of 55 B. cinerea isolates from vineyards to boscalid, isofetamid, and pydiflumetofen was determined, with the effective concentrations for inhibiting 50% of spore germination (EC50) values ranging from 1.10 to 393, 0.0300 to 42.0, and 0.0990 to 25.5 µg ml-1, respectively. The resistance frequencies for boscalid, isofetamid, and pydiflumetofen were 60.0, 7.2, and 12.8%, respectively. Three mutations (H272R, H272Y, and P225F) were detected in the SdhB subunit, with H272R being the most prevalent (75.7%), followed by H272Y (16.2%) and P225F (8.1%). All three mutations are associated with resistance to boscalid, and of them, H272R mutants exhibited high resistance. Only P225F and H272Y mutants exhibited resistance to isofetamid and pydiflumetofen, respectively. A weakly positive cross-resistance relationship was observed between boscalid and pydiflumetofen (r = 0.38, P < 0.05). Additionally, the H272R mutants showed no significant fitness costs, whereas the remaining mutants exhibited reduced mycelial growth (P225F) and sporulation (H272Y and P225F). These results suggest that isofetamid and pydiflumetofen are effective fungicides against B. cinerea in vineyards, but appropriate rotation strategies must be implemented to reduce the selection of existing SDHI-resistant isolates.


Subject(s)
Biphenyl Compounds , Botrytis , Drug Resistance, Fungal , Fungicides, Industrial , Niacinamide , Plant Diseases , Vitis , Botrytis/drug effects , Botrytis/genetics , Fungicides, Industrial/pharmacology , China , Vitis/microbiology , Plant Diseases/microbiology , Biphenyl Compounds/pharmacology , Drug Resistance, Fungal/genetics , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/antagonists & inhibitors , Spores, Fungal/drug effects , Benzamides/pharmacology , Pyridines/pharmacology , Farms , Mutation , Norbornanes , Pyrazoles
17.
Methods Mol Biol ; 2732: 83-101, 2024.
Article in English | MEDLINE | ID: mdl-38060119

ABSTRACT

Next-generation sequencing (NGS) of total RNA has allowed the detection of novel viruses infecting different hosts, such as fungi, increasing our knowledge on virus horizontal transfer events among different hosts, virus diversity, and virus evolution. Here, we describe the detailed protocols for the isolation of the plant pathogenic fungus Botrytis cinerea, from grapevine plants showing symptoms of the mold gray disease, the culture and maintenance of the isolated B. cinerea strains, the extraction of total RNA from B. cinerea strains for NGS, the bioinformatics pipeline designed and followed to detect mycoviruses in the sequenced samples, and the validation of the in silico detected mycoviruses by different approaches.


Subject(s)
Fungi , Plants , Fungi/genetics , Plants/genetics , Base Sequence , RNA , Botrytis/genetics , Plant Diseases/microbiology
18.
PLoS Pathog ; 19(12): e1011839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048363

ABSTRACT

The fungal Gß-like protein has been reported to be involved in a variety of biological processes, such as mycelial growth, differentiation, conidiation, stress responses and infection. However, molecular mechanisms of the Gß-like protein in regulating fungal development and pathogenicity are largely unknown. Here, we show that the Gß-like protein gene Bcgbl1 in the gray mold fungus Botrytis cinerea plays a pivotal role in development and pathogenicity by regulating the mitogen-activated protein (MAP) kinases signaling pathways. The Bcgbl1 deletion mutants were defective in mycelial growth, sclerotial formation, conidiation, macroconidial morphogenesis, plant adhesion, and formation of infection cushions and appressorium-like structures, resulting in a complete loss of pathogenicity. Bcgbl1 interacted with BcSte50, the adapter protein of the cascade of MAP kinase (MAPK). Bcgbl1 mutants had reduced phosphorylation levels of two MAPKs, namely Bmp1 and Bmp3, thereby reducing infection. However, deletion of Bcgbl1 did not affect the intracellular cAMP level, and exogenous cAMP could not restore the defects. Moreover, Bcgbl1 mutants exhibited defects in cell wall integrity and oxidative stress tolerance. Transcriptional profiling revealed that Bcgbl1 plays a global role in regulation of gene expression upon hydrophobic surface induction. We further uncovered that three target genes encoding the hydrophobic surface binding proteins (HsbAs) contributed to the adhesion and virulence of B. cinerea. Overall, these findings suggest that Bcgbl1 had multiple functions and provided new insights for deciphering the Bcgbl1-mediated network for regulating development and pathogenicity of B. cinerea.


Subject(s)
Fungal Proteins , MAP Kinase Signaling System , Virulence/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Botrytis/genetics , Gene Expression Regulation, Fungal , Plant Diseases/microbiology , Spores, Fungal
19.
PLoS Pathog ; 19(12): e1011885, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117848

ABSTRACT

Small RNAs act as fungal pathogen effectors that silence host target genes to promote infection, a virulence mechanism termed cross-kingdom RNA interference (RNAi). The essential pathogen factors of cross-kingdom small RNA production are largely unknown. We here characterized the RNA-dependent RNA polymerase (RDR)1 in the fungal plant pathogen Botrytis cinerea that is required for pathogenicity and cross-kingdom RNAi. B. cinerea bcrdr1 knockout (ko) mutants exhibited reduced pathogenicity and loss of cross-kingdom small RNAs. We developed a "switch-on" GFP reporter to study cross-kingdom RNAi in real-time within the living plant tissue which highlighted that bcrdr1 ko mutants were compromised in cross-kingdom RNAi. Moreover, blocking seven pathogen cross-kingdom small RNAs by expressing a short-tandem target mimic RNA in transgenic Arabidopsis thaliana led to reduced infection levels of the fungal pathogen B. cinerea and the oomycete pathogen Hyaloperonospora arabidopsidis. These results demonstrate that cross-kingdom RNAi is significant to promote host infection and making pathogen small RNAs an effective target for crop protection.


Subject(s)
Arabidopsis , RNA-Dependent RNA Polymerase , RNA Interference , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Virulence/genetics , Plants/genetics , Botrytis/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , RNA, Fungal/genetics , RNA, Plant
20.
Virol J ; 20(1): 306, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114992

ABSTRACT

BACKGROUND: Family Genomoviridae was recently established, and only a few mycoviruses have been described and characterized, and almost all of them (Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, Fusarium graminearum gemyptripvirus 1 and Botrytis cinerea gemydayirivirus 1) induced hypovirulence in their host. Botrytis cinerea ssDNA virus 1 (BcssDV1), a tetrasegmented single-stranded DNA virus infecting the fungus Botrytis cinerea, has been molecularly characterized in this work. METHODS: BcssDV1 was detected in Spanish and Italian B. cinerea field isolates obtained from grapevine. BcssDV1 variants genomes were molecularly characterized via NGS and Sanger sequencing. Nucleotide and amino acid sequences were used for diversity and phylogenetic analysis. Prediction of protein tertiary structures and putative associated functions were performed by AlphaFold2 and DALI. RESULTS: BcssDV1 is a tetrasegmented single-stranded DNA virus. The mycovirus was composed by four genomic segments of approximately 1.7 Kb each, which are DNA-A, DNA-B, and DNA-C and DNA-D, that coded, respectively, for the rolling-circle replication initiation protein (Rep), capsid protein (CP) and two hypothetical proteins. BcssDV1 was present in several Italian and Spanish regions with high incidence and low variability among the different viral variants. DNA-A and DNA-D were found to be the more conserved genomic segments among variants, while DNA-B and DNA-C segments were shown to be the most variable ones. Tertiary structures of the proteins encoded by each segment suggested specific functions associated with each of them. CONCLUSIONS: This study presented the first complete sequencing and characterization of a tetrasegmented ssDNA mycovirus, its incidence in Spain and Italy, its presence in other countries and its high conservation among regions.


Subject(s)
Fungal Viruses , RNA Viruses , DNA, Single-Stranded/genetics , Phylogeny , Amino Acid Sequence , Botrytis/genetics , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...