Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Comput Biol Med ; 179: 108900, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029430

ABSTRACT

In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.


Subject(s)
Brachial Artery , Models, Cardiovascular , Vasodilation , Humans , Brachial Artery/physiology , Brachial Artery/diagnostic imaging , Vasodilation/physiology , Male , Adult , Female , Blood Flow Velocity/physiology
2.
Physiol Rep ; 12(12): e16119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898580

ABSTRACT

Arterial occlusion pressure (AOP) is influenced by the characteristics of the cuff used to measure AOP. Doppler ultrasound was used to measure AOP of the brachial and superficial femoral arteries using straight and curved blood flow restriction cuffs in 21 males and 21 females. Vessel diameter and blood flow were evaluated as independent predictors of AOP. Overall, there were no significant differences in AOP when using the straight and curved cuffs in the brachial (129 mmHg vs. 128 mmHg) or superficial femoral artery (202 mmHg vs. 200 mmHg), respectively. Overall, AOP was greater (p < 0.05) in males than in females in the arm (135 mmHg, 123 mmHg) and leg (211 mmHg, 191 mmHg). Brachial (0.376 mm, 0.323 mm) and superficial femoral (0.547 mm, 0.486 mm) arteries were larger (p = 0.016) in males than in females, respectively. Systolic blood pressure (SBP) and arm circumference were predictive of brachial artery AOP, whereas SBP, diastolic blood pressure, thigh circumference, and vessel diameter were predictive of superficial femoral artery AOP. Straight and curved cuffs are efficacious in the measurement of AOP in the arm and leg. Differences in vessel size may contribute to sex differences in AOP but this requires further investigation.


Subject(s)
Brachial Artery , Femoral Artery , Male , Humans , Female , Femoral Artery/diagnostic imaging , Femoral Artery/physiology , Brachial Artery/physiology , Brachial Artery/diagnostic imaging , Blood Pressure Determination/methods , Blood Pressure Determination/instrumentation , Adult , Middle Aged , Blood Pressure/physiology , Regional Blood Flow/physiology , Ultrasonography, Doppler/methods , Blood Flow Velocity/physiology , Aged
4.
Am J Physiol Heart Circ Physiol ; 327(2): H331-H339, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847760

ABSTRACT

Chronic exercise training is associated with an "athlete's artery" phenotype in young adults and an attenuated age-related decline in endothelium-dependent arterial function. Adolescence is associated with an influx of sex-specific hormones that may exert divergent effects on endothelial function, but whether training adaptations interact with biological maturation to produce a "youth athlete's artery" has not been explored. We investigated the influence of exercise-training status on endothelium-dependent arterial function during childhood and adolescence. Brachial artery flow-mediated dilation (FMD) was assessed in n = 102 exercise-trained (males, n = 25; females, n = 29) and untrained (males, n = 23; females, n = 25) youths, characterized as pre (males, n = 25; females, n = 26)- or post (males, n = 23; females, n = 28)-predicted age at peak height velocity (PHV). Baseline brachial artery diameter was larger in post- compared with pre-PHV youths (P ≤ 0.001), males compared with females (P ≤ 0.001), and trained compared with untrained youths (3.26 ± 0.51 vs. 3.11 ± 0.42 mm; P = 0.041). Brachial FMD was similar in pre- and post-PHV youths (P = 0.298), and males and females (P = 0.946). However, exercise-trained youths demonstrated higher FMD when compared with untrained counterparts (5.3 ± 3.3 vs. 3.0 ± 2.6%; P ≤ 0.001). Furthermore, brachial artery diameter (r2 = 0.142; P = 0.007 vs. r2 = 0.004; P = 0.652) and FMD (r2 = 0.138; P = 0.008 vs. r2 = 0.003; P = 0.706) were positively associated with cardiorespiratory fitness in post-, but not pre-PHV youths, respectively. Collectively, our data indicate that exercise training is associated with brachial artery remodeling and enhanced endothelial function during youth. However, arterial remodeling and endothelium-dependent function are only associated with elevated cardiorespiratory fitness during later stages of adolescence.NEW & NOTEWORTHY We report preliminary evidence of the "youth athlete's artery," characterized by training-related arterial remodeling and elevated endothelium-dependent arterial function in children and adolescents. However, training-related adaptations in brachial artery diameter and flow-mediated dilation (FMD) were associated with cardiorespiratory fitness in adolescents, but not in children. Our findings indicate that endothelium-dependent arterial function is modifiable with chronic exercise training during childhood, but the association between FMD and elevated cardiorespiratory fitness is only apparent during later stages of adolescence.


Subject(s)
Brachial Artery , Exercise , Vasodilation , Humans , Male , Female , Adolescent , Brachial Artery/physiology , Brachial Artery/diagnostic imaging , Child , Exercise/physiology , Endothelium, Vascular/physiology , Regional Blood Flow , Adaptation, Physiological , Athletes , Age Factors
5.
Gerontology ; 70(7): 764-775, 2024.
Article in English | MEDLINE | ID: mdl-38714184

ABSTRACT

INTRODUCTION: Aging leads to vascular endothelial dysfunction and muscle impairment. While resistance exercise improves muscular function, its acute effects on vascular function vary in the literature, with some studies reporting detrimental effects. These findings indicate the need for exercises that optimize muscle function without compromising vascular function. Reformer Pilates (RP) is a low-impact exercise involving an adjustable sliding platform. However, the acute effects of RP on vascular function among older adults remain unknown. Therefore, this study aimed to investigate the acute effects of RP on vascular function in older adults. METHODS: Overall, 17 participants (age: 65 ± 2.76 years, body mass index: 23.42 ± 3.68 kg/m2) were examined and assigned to control and RP conditions under a randomized crossover design. The RP condition involved a 3.5-5 omnibus perceived exertion scale with 19 exercise postures for 60 min. Brachial artery flow-mediated dilation (FMD), brachial-ankle pulse wave velocity (baPWV), and blood pressure were measured at baseline and 0, 10, 30, and 60 min after exercise. RESULTS: RP significantly improved FMD at all time points compared with that at baseline (p < 0.05). baPWV increased at 0 min post-RP but returned to baseline levels at other time points. Additionally, RP showed improved FMD at 0, 10, and 30 min compared with that in the control condition (p < 0.05). However, no significant differences were observed in blood pressure or mean arterial pressure in either condition. CONCLUSION: RP enhanced FMD and regulated blood pressure for approximately 60 min post-exercise, suggesting its suitability for older adults to enhance vascular function and control blood pressure during exercise. Nonetheless, longitudinal resistance training intervention studies are needed to validate these findings.


Subject(s)
Blood Pressure , Cross-Over Studies , Exercise Movement Techniques , Pulse Wave Analysis , Resistance Training , Humans , Aged , Male , Resistance Training/methods , Female , Blood Pressure/physiology , Exercise Movement Techniques/methods , Brachial Artery/physiology , Vasodilation/physiology , Middle Aged , Ankle Brachial Index , Aging/physiology , Endothelium, Vascular/physiology , Endothelium, Vascular/physiopathology
6.
Exp Gerontol ; 192: 112457, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728795

ABSTRACT

BACKGROUND: Endothelial function declines with age and plays a critical role in cardiovascular health. Therefore, investigating endothelial function in successful aging models, such as centenarians, is of interest. Flow-mediated dilation (FMD) of the brachial artery is the gold standard for measuring endothelial function in vivo in humans. Therefore, we investigated, for the first time, the FMD of the brachial artery in a group of healthy centenarians. METHODS: Selected as part of the ABCD project (nutrition, cardiovascular wellness, and diabetes) centenarians (aged ≥100 years) living in the municipalities of Madonie (Palermo, Italy) were compared with a younger (aged <65 years) sex-matched control group from the ABCD general cohort. FMD of the brachial artery was measured in all participants using a real-time computed video analysis system for B-mode ultrasound images. Body composition (bioimpedance), carotid intima-media thickness (IMT), and ankle-brachial index (ABI) were also measured. RESULTS: Eleven participants (males 36.4 %; age: 101 ± 1 years) out of 28 healthy centenarians successfully cooperated with the FMD test procedures, which require remaining with the upper limb immobile for approximately 10 min. This subgroup was compared with a control group of 76 healthy and younger individuals (males 36.8 %; aged: 41 ± 14 years; P < 0.001). Centenarians exhibited better endothelial function than the control group (FMD: 12.1 ± 4.3 vs 8.6 ± 5.3 %; P < 0.05). The carotid IMT was higher in the centenarian group than in the control group (0.89 ± 0.09 vs 0.56 ± 0.18 mm; P < 0.001), whereas the ABI was comparable between the two groups. CONCLUSIONS: This small group of centenarians demonstrated an unusually favorable endothelial function, which may contribute to their unique aging profile. Further research is needed to determine whether FMD is a valid prognostic marker for successful aging.


Subject(s)
Ankle Brachial Index , Brachial Artery , Carotid Intima-Media Thickness , Endothelium, Vascular , Vasodilation , Humans , Male , Female , Brachial Artery/physiology , Endothelium, Vascular/physiology , Italy , Aged, 80 and over , Vasodilation/physiology , Body Composition/physiology , Aged , Case-Control Studies , Middle Aged , Aging/physiology , Healthy Aging/physiology
7.
J Appl Physiol (1985) ; 136(6): 1488-1495, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38722754

ABSTRACT

Advancing age increases cardiovascular disease risk, in part, because of impaired glycocalyx thickness and endothelial dysfunction. Glycocalyx-targeted therapies, such as Endocalyx Pro, could improve both glycocalyx thickness and endothelial function in older adults; however, this has yet to be tested. We hypothesized that Endocalyx Pro supplementation would increase glycocalyx thickness and endothelial function in older adults. Twenty-three older adults aged 66 ± 7 yr (52% female) were enrolled in a randomized, double-blind, placebo-controlled, parallel-arms study to investigate the effect of 12-wk Endocalyx Pro supplementation (3,712 mg/day) on glycocalyx thickness and endothelial function. Glycocalyx thickness was assessed using the GlycoCheck, and endothelial function was determined via brachial artery flow-mediated dilation (FMD). Between-group comparisons revealed Endocalyx Pro did not increase glycocalyx thickness in microvessels 4-25 µm (P = 0.33), 4-7 µm (P = 0.07), or 10-25 µm (P = 0.47) in diameter when compared with placebo. In addition, Endocalyx Pro did not significantly improve FMD [mean ratio (95%) confidence interval [CI]) for between-group comparisons, 1.16 (0.77-1.74); P = 0.48]. However, Endocalyx Pro improved FMD normalized to shear rate (SR) area under the curve [mean ratio (95% CI) for between-group comparisons, 2.41 (1.14,4.13); P = 0.001]. Moreover, Endocalyx Pro increased capillary glycocalyx thickness more than placebo in individuals not taking antihypertensive medication [mean difference (95% CI) for between-group comparison, -0.08 (-0.15, -0.01); P = 0.02]. Our pilot study suggests that Endocalyx Pro supplementation is feasible in older adults but has no measurable effect on overall glycocalyx thickness and FMD. However, Endocalyx Pro may have select effects on capillary glycocalyx thickness and FMD normalized to shear rate among older adults, but further investigation is warranted.NEW & NOTEWORTHY Endothelial glycocalyx thickness and vascular endothelial function decline with advancing age. Endocalyx Pro is a glycocalyx-targeted therapy that may improve endothelial glycocalyx thickness and vascular endothelial function in older adults. This study demonstrated that 12-wk Endocalyx Pro supplementation did not improve overall endothelial glycocalyx thickness or flow-mediated dilation in older adults; however, Endocalyx Pro did increase capillary glycocalyx thickness in individuals not taking antihypertensive medication and improve flow-mediated dilation normalized to the shear stimulus.


Subject(s)
Brachial Artery , Endothelium, Vascular , Glycocalyx , Humans , Glycocalyx/drug effects , Glycocalyx/metabolism , Female , Male , Aged , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Endothelium, Vascular/physiopathology , Double-Blind Method , Brachial Artery/drug effects , Brachial Artery/physiology , Brachial Artery/diagnostic imaging , Vasodilation/drug effects , Vasodilation/physiology , Middle Aged , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology
8.
Gac Med Mex ; 160(1): 23-31, 2024.
Article in English | MEDLINE | ID: mdl-38753572

ABSTRACT

BACKGROUND: Endothelial dysfunction (ED) suspicion will allow to prevent accelerated atherosclerosis and premature death. OBJECTIVE: To establish the usefulness of thermography for endothelial function screening in adults with cardiovascular risk factors. MATERIAL AND METHODS: Cross-sectional, analytical diagnostic test. A brachial arterial diameter (BAD) increase < 11% at one-minute post-ischemia meant probable ED and was confirmed if BAD was ≥ 11% post-sublingual nitroglycerin. Thermographic photographs of the palmar region were obtained at one minute. Descriptive statistics, ROC curve, Mann-Whitney's U-test, chi-square test, or Fisher's exact test were used. RESULTS: Thirty-eight subjects with a median age of 50 years, and with 624 thermographic measurements were included. Nine had ED (flow-mediated vasodilation [FMV]: 2.5%). The best cutoff point for normal endothelial function in subjects with cardiovascular risk factors was ≥ 36 °C at one minute of ischemia, with 85% sensitivity, 70% specificity, positive and negative predictive values of 78 and 77%, area under the curve of 0.796, LR+ 2.82, LR- 0.22. CONCLUSION: An infrared thermography-measured temperature in the palmar region greater than or equal to 36 °C after one minute of ischemia is practical, non-invasive, and inexpensive for normal endothelial function screening in adults with cardiovascular risk factors.


ANTECEDENTES: La sospecha de disfunción endotelial (DE) permitirá prevenir la aterosclerosis acelerada y la muerte prematura. OBJETIVO: Establecer la utilidad de la termografía en el cribado de la función endotelial en adultos con factores de riesgo cardiovascular. MATERIAL Y MÉTODOS: Estudio transversal analítico de prueba diagnóstica. El incremento del diámetro de la arteria braquial < 11 % a un minuto posisquemia significó probable DE, confirmada si el diámetro fue ≥ 11 % posnitroglicerina sublingual. Se obtuvieron fotografías termográficas al minuto de la región palmar. Se aplicó estadística descriptiva, curva ROC, pruebas U de Mann-Whitney, chi cuadrada o exacta de Fisher. RESULTADOS: Se incluyeron 38 sujetos, mediana de edad de 50 años, con 624 mediciones termográficas; nueve presentaron DE (vasodilatación mediada por flujo de 2.5 %). El mejor punto de corte para la función endotelial normal en sujetos con factores de riesgo cardiovascular fue ≥ 36 °C al minuto de isquemia, con sensibilidad de 85%, especificidad de 70%, valores predictivos positivo y negativo de 78 y 77%, área bajo la curva de 0.796, razón de verisimilitud positiva de 2.82 y razón de verisimilitud negativa de 0.22. CONCLUSIÓN: La medición de la temperatura en la región palmar mediante termografía infrarroja ≥ 36 °C tras un minuto de isquemia es práctica, no invasiva y económica para el cribado de la función endotelial normal en adultos con factores de riesgo cardiovascular.


Subject(s)
Endothelium, Vascular , Thermography , Humans , Thermography/methods , Middle Aged , Male , Female , Cross-Sectional Studies , Endothelium, Vascular/physiopathology , Adult , Aged , Heart Disease Risk Factors , Sensitivity and Specificity , Infrared Rays , Brachial Artery/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Vasodilation/physiology , Predictive Value of Tests
9.
J Hypertens ; 42(8): 1399-1408, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38690915

ABSTRACT

OBJECTIVE: Although some studies have observed an association between birthweight and cardiovascular disease in adulthood, fewer have investigated whether birthweight is linked to cardiovascular health in early childhood. This study assesses the association between birthweight and cardiovascular outcomes in children 6 years of age. STUDY DESIGN: Birthweight, blood pressure (BP), and markers of arterial stiffness in children, including brachial artery distensibility and carotid-femoral pulse wave velocity (cfPWV), were obtained from 324 participants in The Infant Development and the Environment Study, a prospective multisite pregnancy cohort. Birthweight was converted into sex-specific birthweight-for-gestational-age (bw/ga) z -scores based on the INTERGROWTH-21st standard. Following 2017 American Academy of Pediatrics guidelines, SBP and DBP were transformed into sex, age, and height-specific z -scores. Associations between birthweight and cardiovascular outcomes were assessed using nested multivariable linear regression models among the overall and sex-stratified samples. RESULTS: Among the overall sample, bw/ga z -score was positively associated with cfPWV [b = 0.11 m/s, 95% confidence interval (CI): 0.01 m/s, 0.21 m/s] in crude and adjusted models. No associations between birthweight and cardiovascular outcomes were detected among the sex-stratified analyses. CONCLUSION: Overall, birthweight was not related to cardiovascular outcomes in children 6 years old. However, infants born with a higher birthweight may be at risk for higher cfPWV in childhood. Early intervention in pregnant people at risk of delivering high birthweight infants may be warranted if results are replicated.


Subject(s)
Birth Weight , Blood Pressure , Vascular Stiffness , Humans , Vascular Stiffness/physiology , Female , Child , Male , Blood Pressure/physiology , Longitudinal Studies , Prospective Studies , Pulse Wave Analysis , Cardiovascular Diseases/physiopathology , Brachial Artery/physiology , Brachial Artery/physiopathology , Infant, Newborn , Pregnancy , Cohort Studies , Carotid-Femoral Pulse Wave Velocity
10.
J Physiol ; 602(9): 1923-1937, 2024 May.
Article in English | MEDLINE | ID: mdl-38568933

ABSTRACT

A key mechanism promoting vascular endothelial dysfunction is mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function in preclinical models by lowering mtROS. However, the effects of mtROS on endothelial function in exercising and non-exercising adults is limited. In a double-blind, randomized, placebo-controlled crossover study design 23 (10 M/13 F, age 62.1 ± 11.5 years) middle-aged and older (MA/O, ≥45 years) adults were divided into two groups: exercisers (EX, n = 11) and non-exercisers (NEX, n = 12). All participants had endothelial function (brachial artery flow-mediated dilatation, FMDBA) measured before and ∼1 h after mitoquinone mesylate (MitoQ) (single dose, 80 mg) and placebo supplementation. A two-way repeated measures ANOVA was used to determine the effects of MitoQ and placebo on FMDBA. Pearson correlations assessed the association between the change in FMDBA with MitoQ and baseline FMDBA and cardiorespiratory fitness (CRF). Compared with placebo, MitoQ increased FMDBA in NEX by + 2.1% (MitoQ pre: 4.9 ± 0.4 vs. post: 7.0 ± 0.4 %, P = 0.004, interaction) but not in EX (P = 0.695, interaction). MitoQ also increased endothelial function in adults with a FMDBA <6% (P < 0.0001, interaction) but not >6% (P = 0.855, interaction). Baseline FMDBA and CRF were correlated (r = 0.44, P = 0.037), whereas the change in FMDBA with MitoQ was inversely correlated with CRF (r = -0.66, P < 0.001) and baseline FMDBA (r = -0.73, P < 0.0001). The relationship between the change in FMDBA and baseline FMDBA remained correlated after adjusting for CRF (r = -0.55, P = 0.007). These data demonstrate that MitoQ acutely improves FMDBA in NEX and EX adults who have a baseline FMDBA <6%. KEY POINTS: A key age-related change contributing to increased cardiovascular disease (CVD) risk is vascular endothelial dysfunction due to increased mitochondrial-derived reactive oxygen species (mtROS). Aerobic exercise preserves endothelial function via suppression of mtROS in preclinical models but the evidence in humans is limited. In the present study, a single dose of the mitochondria-targeted antioxidant, mitoquinone mesylate (MitoQ), increases endothelial function in non-exercisers with lower cardiorespiratory fitness (CRF) but not in exercisers with higher CRF. The acute effects of MitoQ on endothelial function in middle-aged and older adults (MA/O) are influenced by baseline endothelial function independent of CRF. These data provide initial evidence that the acute MitoQ-enhancing effects on endothelial function in MA/O adults are influenced, in part, via CRF and baseline endothelial function.


Subject(s)
Brachial Artery , Cardiorespiratory Fitness , Cross-Over Studies , Endothelium, Vascular , Organophosphorus Compounds , Ubiquinone , Ubiquinone/analogs & derivatives , Humans , Male , Ubiquinone/pharmacology , Middle Aged , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Female , Aged , Organophosphorus Compounds/pharmacology , Double-Blind Method , Brachial Artery/drug effects , Brachial Artery/physiology , Vasodilation/drug effects , Exercise/physiology
11.
Physiol Meas ; 45(5)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38565129

ABSTRACT

Objectives. In this study, we test the hypothesis that if, as demonstrated in a previous study, brachial arteries exhibit hysteresis as the occluding cuff is deflated and fail to open until cuff pressure (CP) is well below true intra-arterial blood pressure (IAPB), estimating systolic (SBP) and diastolic blood pressure (DBP) from the presence of Korotkoff sounds (KS) as CP increases may eliminate these errors and give more accurate estimates of SBP and DBP relative to IABP readings.Approach. In 62 subjects of varying ages (45.1 ± 19.8, range 20.6-75.8 years), including 44 men (45.3 ± 19.4, range 20.6-75.8 years) and 18 women (44.4 ± 21.4, range 20.9-75.3 years), we sequentially recorded SBP and DBP both during cuff inflation and cuff deflation using KS.Results. There was a significant (p< 0.0001) increase in SBP from 122.8 ± 13.2 to 127.6 ± 13.0 mmHg and a significant (p= 0.0001) increase in DBP from 70.0 ± 9.0 to 77.5 ± 9.7 mmHg. Of the 62 subjects, 51 showed a positive increase in SBP (0-14 mmHg) and 11 subjects showed a reduction (-0.3 to -7 mmHg). The average differences for SBP and DBP estimates derived as the cuff inflates and those derived as the cuff deflates were 4.8 ± 4.6 mmHg and 2.5 ± 4.6 mmHg, not dissimilar to the differences reported between IABP and non-invasive blood pressure measurements. Although we could not develop multiparameter linear or non-linear models to explain this phenomenon we have clearly demonstrated through ANOVA tests that both body mass index (BMI) and pulse wave velocity are implicated, supporting the hypothesis that the phenomenon is associated with age, higher BMI and stiffer arteries.Significance. The implications of this study are that brachial sphygmomanometry carried out during cuff inflation could be more accurate than measurements carried out as the cuff deflates. Further research is required to validate these results with IAPB measurements.


Subject(s)
Blood Pressure Determination , Blood Pressure , Humans , Male , Middle Aged , Female , Adult , Blood Pressure Determination/methods , Blood Pressure Determination/instrumentation , Aged , Blood Pressure/physiology , Young Adult , Brachial Artery/physiology
12.
Am J Physiol Heart Circ Physiol ; 326(5): H1138-H1145, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38426867

ABSTRACT

Daylight saving time (DST) is a Western biannual time transition, setting the clock back 1 h in the fall and forward 1 h in the spring. There is an epidemiological link between DST and acute myocardial infarction risk in the first week following the spring shift; however, the mechanisms underlying the effect of DST on cardiovascular function remain unclear. The purpose of this study was to explore the short-term cardiovascular changes induced by fall and spring shifts in DST in a convenience sample of healthy adults. We hypothesized that spring, but not fall, DST shifts would acutely increase central pulse wave velocity, the gold standard measurement of central arterial stiffness. Twenty-one individuals (fall: n = 10; spring: n = 11) participated in four visits, occurring 1 wk before and at +1, +3, and +5 days after spring and fall time transitions. Central, brachial, and radial pulse wave velocity as well as carotid augmentation index were assessed with applanation tonometry. Sleep quality and memory function were assessed via questionnaire and the Mnemonic Similarities Task, respectively. Neither fall or spring transition resulted in changes to cardiovascular variables (carotid-femoral pulse wave velocity, carotid-brachial pulse wave velocity, carotid-radial pulse wave velocity, heart rate, mean arterial pressure, or augmentation index), sleep quality, or cognitive function (all P > 0.05). Our findings do not provide evidence that DST shifts influence cardiovascular outcomes in healthy adults. This study emphasizes the need for further research to determine the mechanisms of increased cardiovascular disease risk with DST that help explain epidemiological trends.NEW & NOTEWORTHY The debate of whether to abolish daylight savings time (DST) is, in part, motivated by the population-level increase in all-cause mortality and incidence of cardiovascular events following DST; however, there is an absence of data to support a physiological basis for risk. We found no changes in pulse wave velocity or augmentation index during the subacute window of DST. Large multisite trials are necessary to address the small, but meaningful, effects brought on by a societal event.


Subject(s)
Myocardial Infarction , Vascular Stiffness , Adult , Humans , Pulse Wave Analysis , Arterial Pressure/physiology , Carotid Arteries/physiology , Brachial Artery/physiology , Vascular Stiffness/physiology , Blood Pressure/physiology
13.
Am J Hypertens ; 37(8): 549-553, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38517132

ABSTRACT

BACKGROUND: A novel method for estimating central systolic aortic pressure (cSAP) has emerged, relying solely on the peripheral mean (MBP) and diastolic (DBP) blood pressures. We aimed to assess the accuracy of this Direct Central Blood Pressure estimation using cuff alone (DCBPcuff = MBP2/DBP) in comparison to the use of a generalized transfer function to derive cSAP from radial tonometry (cSAPtono). METHODS: This retrospective analysis involved the International Database of Central Arterial Properties for Risk Stratification (IDCARS) data (Aparicio et al., Am J Hypertens 2022). The dataset encompassed 10,930 subjects from 13 longitudinal cohort studies worldwide (54.8% women; median age 46.0 years; office hypertension: 40.1%; treated: 61.0%), documenting cSAPtono via SphygmoCor calibrated against brachial systolic BP (SBP) and DBP. Our analysis focused on aggregate group data from 12/13 studies (89% patients) where a full BP dataset was available. A 35% form factor was used to estimate MBP = (DBP + (0.35 × (SBP-DBP)), from which DCBPcuff was derived. The predefined acceptable error for cSAPtono estimation was set at ≤ 5 mm Hg. RESULTS: The cSAPtono values ranged from 103.8-127.0 mm Hg (n = 12). The error between DCBPcuff and cSAPtono was 0.2 ±â€…1.4 mm Hg, with no influence of the mean. Errors ranged from -1.8 to 2.9 mm Hg across studies. No significant difference in errors was observed between BP measurements obtained via oscillometry (n = 9) vs. auscultation (n = 3) (P = 0.50). CONCLUSIONS: Using published aggregate group data and a 35% form factor, DCBPcuff demonstrated remarkable accuracy in estimating cSAPtono, regardless of the BP measurement technique. However, given that individual BP values were unavailable, further documentation is required to establish DCBPcuff's precision.


Subject(s)
Arterial Pressure , Blood Pressure Determination , Brachial Artery , Manometry , Humans , Female , Middle Aged , Manometry/methods , Retrospective Studies , Male , Blood Pressure Determination/methods , Adult , Brachial Artery/physiology , Reproducibility of Results , Radial Artery/physiology , Predictive Value of Tests , Hypertension/physiopathology , Hypertension/diagnosis , Systole , Aged , Databases, Factual
14.
Eur J Appl Physiol ; 124(8): 2417-2425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38536440

ABSTRACT

PURPOSE: Acute resistance exercise decreases endothelial function in sedentary individuals but not in strength-trained (ST) individuals. However, the underlying mechanism(s) of vascular protection in ST individuals remains unclear. Herein, we compared catecholamines, endothelin-1 (ET-1), and nitric oxide (NOx) releases after acute resistance exercise between sedentary and ST individuals. METHODS: The untrained (UT) group comprised 12 male individuals with no regular training, while the ST group comprised 12 male individuals. Participants performed a session of resistance exercise, which consisted of 3 sets of 10 repetitions at 75% of one repetition maximum. Heart rate (HR) and blood pressure were measured during resistance exercise. Brachial artery flow-mediated dilation (FMD), blood pressure, HR, and blood collection were undertaken before and 10, 30, and 60 min after the resistance exercise. RESULTS: No significant difference was found in baseline brachial artery FMD between the groups (P > 0.05). Brachial artery FMD was significantly reduced in the UT group (P < 0.05) but it was prevented in the ST group after the resistance exercise. Significant differences were found at 10, 30, and 60 min after the resistance exercise in brachial artery ΔFMD from baseline between groups (P < 0.05). Blood pressure, HR, plasma epinephrine, norepinephrine, dopamine, serum endothelin-1, and plasma NOx responses did not differ between groups throughout the experimental period. CONCLUSION: In conclusion, preserved endothelial function in response to acute resistance exercise in ST male individuals is independent of catecholamines, ET-1, and NOx responses.


Subject(s)
Brachial Artery , Catecholamines , Endothelin-1 , Nitric Oxide , Resistance Training , Vasodilation , Humans , Male , Endothelin-1/blood , Catecholamines/blood , Nitric Oxide/blood , Brachial Artery/physiology , Vasodilation/physiology , Resistance Training/methods , Adult , Young Adult , Endothelium, Vascular/physiology , Heart Rate/physiology , Blood Pressure/physiology
15.
Appl Physiol Nutr Metab ; 49(7): 880-889, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38394648

ABSTRACT

The purpose of this study was to examine the effects of plant- versus animal-based food intake before exercise on arterial function and subsequent aerobic exercise capacity. Eleven healthy adult males (mean age, 22.6 ± 1.8 years) participated in this study. A plant- or animal-based randomized meal type crossover comparison was conducted on separate days with a uniform protein, fat, and carbohydrate balance. Both carotid-femoral pulse wave velocity (cfPWV), femoral-ankle pulse wave velocity (faPWV), and brachial artery flow-mediated dilatation (FMD) were measured as indexes of aortic and peripheral arterial stiffness and vascular endothelial function, respectively, before and at 120 min after the meal. After these measurements, maximal oxygen uptake was assessed using a graded power test on an electronically braked cycle ergometer. The results revealed that cfPWV was significantly lower, whereas FMD was significantly higher, at 120 min after compared with before the plant-based meal (p = 0.01 and 0.02, respectively). By contrast, cfPWV and FMD did not change at 120 min after compared with before the animal-based meal. In addition, faPWV did not change at 120 min after compared with before the meal for either meal type. Maximal oxygen uptake was higher in the plant- than in the animal-based meal type (p = 0.02). These results suggest that pre-exercise plant-based food intake may improve central arterial stiffness and vascular endothelial function, which may have favorable implications for aerobic exercise capacity.


Subject(s)
Cross-Over Studies , Exercise , Oxygen Consumption , Vascular Stiffness , Humans , Male , Young Adult , Exercise/physiology , Vascular Stiffness/physiology , Oxygen Consumption/physiology , Brachial Artery/physiology , Adult , Vasodilation/physiology , Endothelium, Vascular/physiology , Diet, Vegetarian , Pulse Wave Analysis , Animals , Exercise Tolerance/physiology , Arteries/physiology
16.
Clin Physiol Funct Imaging ; 44(4): 285-296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38402408

ABSTRACT

This study was conducted to investigate the systemic hemodynamic and vascular changes in women during and after two commonly used clinical blood flow restriction (BFR) pressures at rest. There are minimal data regarding the independent effects of BFR on hemodynamic and systemic vascular changes due to pressor response, particularly among women. Therefore, this study investigated BFR-induced alterations in pressor response and systemic flow redistribution at rest during two commonly used pressures (50% and 80% limb occlusion pressure [LOP]). Fifteen women (22.1 ± 4.2 years) completed two randomised sessions involving 8-min of bilateral, lower limb restriction at 50% or 80% LOP followed by 8-min of recovery post-deflation. Changes in vascular (arterial diameter [DIA], time-averaged mean velocity [TAMV], volume flow [VF], and area) and hemodynamic (heart rate [HR] and blood pressure) measures over time (pre-, during, post-occlusion) and by session (50% vs. 80% LOP) were tested using repeated measures analysis of variance. Repeated measures correlations (rrm) quantified common intraindividual associations between BFR-induced hemodynamic and vascular responses. HR increased from baseline during 50% LOP and remained elevated during recovery (p < 0.05). HR increased from baseline during 80% LOP, while tibial VF and TAMV decreased (p < 0.03 for all). HR and TAMV values returned to baseline during recovery, while brachial artery VF decreased (p < 0.05). Changes in HR, brachial VF, and brachial TAMV were similar between 50% and 80% LOP (rrm = 0.32-0.70, p < 0.05 for all). At 80% LOP, changes in HR were positively correlated with brachial VF (rrm = 0.38) and TAMV (rrm = 0.43) and negatively correlated with tibial VF (rrm = -0.36) and TAMV (rrm = -0.30) (p < 0.05 for all). Results suggest that BFR at 80% LOP elicits an acute systemic pressor reflex without concomitant increases in brachial arterial flow, while 50% LOP elicits a subdued response.


Subject(s)
Blood Pressure , Brachial Artery , Heart Rate , Lower Extremity , Regional Blood Flow , Humans , Female , Brachial Artery/physiology , Lower Extremity/blood supply , Adult , Young Adult , Blood Flow Velocity , Time Factors , Blood Pressure/physiology , Tourniquets , Hemodynamics
17.
J Appl Physiol (1985) ; 136(4): 877-888, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38385181

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is characterized by impaired vascular endothelial function that may be improved by hydroxy-methylglutaryl-CoA (HMG-CoA) reductase enzyme inhibition. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on peripheral vascular function and biomarkers of inflammation and oxidative stress in 16 patients with HFpEF [Statin: n = 8, 74 ± 6 yr, ejection fraction (EF) 52-73%; Placebo: n = 8, 67 ± 9 yr, EF 56-72%]. Flow-mediated dilation (FMD) and sustained-stimulus FMD (SS-FMD) during handgrip (HG) exercise, reactive hyperemia (RH), and blood flow during HG exercise were evaluated to assess conduit vessel function, microvascular function, and exercising muscle blood flow, respectively. FMD improved following statin administration (pre, 3.33 ± 2.13%; post, 5.23 ± 1.35%; P < 0.01), but was unchanged in the placebo group. Likewise, SS-FMD, quantified using the slope of changes in brachial artery diameter in response to increases in shear rate, improved following statin administration (pre: 5.31e-5 ± 3.85e-5 mm/s-1; post: 8.54e-5 ± 4.98e-5 mm/s-1; P = 0.03), with no change in the placebo group. Reactive hyperemia and exercise hyperemia responses were unchanged in both statin and placebo groups. Statin administration decreased markers of lipid peroxidation (malondialdehyde, MDA) (pre, 0.652 ± 0.095; post, 0.501 ± 0.094; P = 0.04), whereas other inflammatory and oxidative stress biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular function or exercising limb blood flow, in patients with HFpEF, which may be due in part to reductions in oxidative stress.NEW & NOTEWORTHY This is the first study to investigate the impact of statin administration on vascular function and exercise hyperemia in patients with heart failure with preserved ejection fraction (HFpEF). In support of our hypothesis, both conventional flow-mediated dilation (FMD) testing and brachial artery vasodilation in response to sustained elevations in shear rate during handgrip exercise increased significantly in patients with HFpEF following statin administration, beneficial effects that were accompanied by a decrease in biomarkers of oxidative damage. However, contrary to our hypothesis, reactive hyperemia and exercise hyperemia were unchanged in patients with HFpEF following statin therapy. These data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular reactivity or exercising muscle blood flow in patients with HFpEF, which may be due in part to reductions in oxidative stress.


Subject(s)
Heart Failure , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperemia , Humans , Biomarkers , Blood Flow Velocity/physiology , Brachial Artery/physiology , Endothelium, Vascular/physiology , Hand Strength/physiology , Heart Failure/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hyperemia/drug therapy , Regional Blood Flow/physiology , Stroke Volume/physiology , Vasodilation/physiology , Aged , Aged, 80 and over , Middle Aged
18.
Physiol Rep ; 12(3): e15943, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38311364

ABSTRACT

Inspiratory resistance training (IRT) yields significant reductions in resting blood pressure and improves vascular endothelial function. Our objective was to quantify the acute effects of IRT on brachial artery flow-mediated dilation (FMD) and shear rates (SRs) in healthy men and women. Twenty young adults (22.9 ± 3.4 years; 10 male, 10 female) completed a single bout of IRT or Rest condition in a randomized crossover design. Brachial artery FMD was performed before, 10 min after, and 40 min after the assigned condition. Brachial artery blood flow velocities were collected during IRT, separated by breathing cycle phase, and converted into SRs. FMD improved 10 min post-IRT (+1.86 ± 0.61%; p = 0.025) but returned to baseline by 40 min post-IRT (p = 0.002). Anterograde SR decreased by 10% and retrograde SR increased 102% during resisted inspiration, relative to baseline SR (p < 0.001). Anterograde SR increased by 7% in men and women (p < 0.001) and retrograde SR decreased by 12% in women but not men (p = 0.022) during unresisted expiration, relative to baseline SR. A single bout of IRT elicits a transient enhancement in FMD in both men and women. Acute IRT-related enhancements in SRs may contribute to sustained improvements in FMD that have been reported previously.


Subject(s)
Resistance Training , Vasodilation , Adult , Female , Humans , Male , Young Adult , Blood Flow Velocity/physiology , Brachial Artery/physiology , Cross-Over Studies , Dilatation , Endothelium, Vascular/physiology , Regional Blood Flow/physiology , Stress, Mechanical , Vasodilation/physiology
19.
J Hypertens ; 42(5): 873-882, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38230626

ABSTRACT

Cardiovascular disease is the number 1 cause of death globally, with elevated blood pressure (BP) being the single largest risk factor. Hence, BP is an important physiological parameter used as an indicator of cardiovascular health. Noninvasive cuff-based automated monitoring is now the dominant method for BP measurement and irrespective of whether the oscillometric or the auscultatory method is used, all are calibrated according to the Universal Standard (ISO 81060-2:2019), which requires two trained operators to listen to Korotkoff K1 sounds for SBP and K4/K5 sounds for DBP. Hence, Korotkoff sounds are fundamental to the calibration of all NIBP devices. In this study of 40 lightly sedated patients, aged 64.1 ±â€Š9.6 years, we compare SBP and DBP recorded directly by intra-arterial fluid filled catheters to values recorded from the onset (SBP-K) and cessation (DBP-K) of Korotkoff sounds. We demonstrate that whilst DBP-K measurements are in good agreement, with a mean difference of -0.3 ±â€Š5.2 mmHg, SBP-K underestimates true intra-arterial SBP (IA-SBP) by an average of 14 ±â€Š9.6 mmHg. The underestimation arises from delays in the re-opening of the brachial artery following deflation of the brachial cuff to below SBP. The reasons for this delay are not known but appear related to the difference between SBP and the pressure under the cuff as blood first begins to flow, as the cuff deflates. Linear models are presented that can correct the underestimation in SBP resulting in estimates with a mean difference of 0.2 ±â€Š7.1 mmHg with respect to intra-arterial SBP.


Subject(s)
Blood Pressure Determination , Hypertension , Humans , Blood Pressure/physiology , Blood Pressure Determination/methods , Hypertension/diagnosis , Brachial Artery/physiology , Auscultation
20.
J Hypertens ; 42(6): 968-976, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38230615

ABSTRACT

Conventional sphygmomanometry with cuff deflation is used to calibrate all noninvasive BP (NIBP) instruments and the International Standard makes no mention of calibrating methods specifically for NIBP instruments, which estimate systolic and diastolic pressure during cuff inflation rather than cuff deflation. There is however increasing interest in inflation-based NIBP (iNIBP) instruments on the basis of shorter measurement time, reduction in maximal inflation pressure and improvement in patient comfort and outcomes. However, we have previously demonstrated that SBP estimates based on the occurrence of the first K1 Korotkoff sounds during cuff deflation can underestimate intra-arterial SBP (IA-SBP) by an average of 14 ±â€Š10 mmHg. In this study, we compare the dynamics of intra-arterial blood pressure (IABP) measurements with sequential measurement of Korotkoff sounds during both cuff inflation and cuff deflation in the same individual. In 40 individuals aged 64.1 ±â€Š9.6 years (range 36-86 years), the overall dynamic responses below the cuff were similar, but the underestimation error was significantly larger during inflation than deflation, increasing from 14 ±â€Š10 to 19 ±â€Š12 mmHg ( P  < 0.0001). No statistical models were found which could compensate for this error as were found for cuff deflation. The statistically significant BP differences between inflation and deflation protocols reported in this study suggest different behaviour of the arterial and venous vasculature between arterial opening and closing which warrant further investigation, particularly for iNIBP devices reporting estimates during cuff inflation. In addition, measuring Korotkoff sounds during cuff inflation represents significant technical difficulties because of increasing pump motor noise.


Subject(s)
Blood Pressure Determination , Humans , Middle Aged , Aged , Blood Pressure Determination/methods , Blood Pressure Determination/instrumentation , Adult , Female , Male , Aged, 80 and over , Sphygmomanometers , Blood Pressure/physiology , Arterial Pressure/physiology , Brachial Artery/physiology
SELECTION OF CITATIONS
SEARCH DETAIL