Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
BMC Cancer ; 24(1): 1041, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174903

ABSTRACT

BACKGROUND AND PURPOSE: Ir192 vaginal brachytherapy (IBT) is commonly used for patients with postoperative endometrial cancer (EC). We devised a novel multichannel vaginal applicator that could be equipped with an electronic brachytherapy (EBT) device. We aimed to explore the differences in physical parameters between the EBT and IBT. MATERIALS AND METHODS: This retrospective study included 20 EC patients who received adjuvant IBT from March 1, 2023, to May 1, 2023. Multichannel vaginal cylinders were used, and three-dimensional plans were generated. We designed an electronic multichannel vaginal applicator model and simulated a three-dimensional EBT plan. In order to ensure comparability, D90 of the CTV for the EBT plan was normalized to be equivalent to that of the IBT plan for the same patient. RESULTS: Twenty EBT plans were compared with 20 IBT plans. Results showed, the mean D90 value of clinical target volume (CTV) was 536.1 cGy for both treatment plans. For the mean dose of CTV, the EBT was significantly greater (738.3 vs. 684.3 cGy, p = 0.000). There was no significant difference in CTV coverage between the EBT and IBT plans. For high-dose areas (V200% and V150%), the EBTs were significantly greater. There were no significant differences in the maximum doses to the vaginal mucosa between the EBT and IBT, whether at the apex or in the middle segment. For the bladder and rectum, both the low-dose area and high-dose area were significantly lower in the EBT plans. For the conformity index, there was no significant difference between the EBT and IBT plans. For the dose homogeneity index, the EBT value was lower. CONCLUSION: In conclusion, under the premise of a three-dimensional brachytherapy plan, for patients receiving multichannel vaginal applicator brachytherapy, compared with IBT, EBT could reduce the dose to the surrounding organs at risk while maintaining the dose in the target area.


Subject(s)
Brachytherapy , Endometrial Neoplasms , Iridium Radioisotopes , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Female , Brachytherapy/methods , Brachytherapy/instrumentation , Endometrial Neoplasms/radiotherapy , Endometrial Neoplasms/pathology , Retrospective Studies , Iridium Radioisotopes/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Middle Aged , Aged , Radiometry , Organs at Risk/radiation effects
2.
Magy Onkol ; 68(2): 155-162, 2024 Jul 16.
Article in Hungarian | MEDLINE | ID: mdl-39013089

ABSTRACT

In the Radiotherapy Centre of the National Institute of Oncology, Budapest, a 0.55 T MR scanner (MAGNETOM Free. Max) and a ring-like X-ray machine (ImagingRing) have been in operation since 2022. The MR scanner has a tunnel diameter of 80 cm, the X-ray machine has a ring diameter of 121 cm. The latter can also be used for cone-beam CT (CBCT) imaging. The MR scanner is mainly used for planning gynaecological brachytherapy (BT) treatments. Image distortions in MR imaging were investigated with a special grid phantom. After head and neck and breast implant, image quality of ImagingRing CBCT and planning CT was compared. The position of the radiation source was verified by radiographs taken during treatment. Despite the lower field strength, the image quality of the MR scanner was found to be adequate for treatment planning of gynaecological BT. Image distortions were found to be clinically negligible. On CBCT images obtained with ImagingRing, catheters could always be well identified, and anatomical organs were adequately visualized for head and neck treatments, but not for breast implants. The MR scanner is suitable for treatment planning for gynaecological BT due to its good image quality and low image distortion. The image quality of the ImagingRing is suitable for treatment planning for small body sizes, but not for larger sizes. The device can be used to in vivo check of the radiation source position during treatment.


Subject(s)
Brachytherapy , Cone-Beam Computed Tomography , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Brachytherapy/instrumentation , Female , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods , Genital Neoplasms, Female/radiotherapy , Genital Neoplasms, Female/diagnostic imaging , Phantoms, Imaging , Breast Neoplasms/radiotherapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Hungary , Radiotherapy, Image-Guided/methods , Radiotherapy Dosage , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/diagnostic imaging , Breast Implants
3.
Phys Med Biol ; 69(17)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39084657

ABSTRACT

Objective.A robotic needle implant device for MR-guided high-dose-rate (HDR) prostate brachytherapy was developed. This study aimed to assess the feasibility and spatial accuracy of HDR brachytherapy using the robotic device, for a single intraprostatic target point.Approach.Five patients were treated from November 2019-June 2022 with the robot. The robot fits a 1.5 T MR scanner and the needle can be shifted and angulated. An intraprocedural MR scan was fused with the diagnostic MR and one preplanned needle position was selected for robotic insertion. The needle entry point and angles were set for a needle tip target point within the intraprostatic target volume. The needle was tapped stepwise towards the target point pneumatically. Final needle position was verified with MR, followed by plan optimization and dose delivery. Any remaining planned needles were inserted manually. Needle tip to geometrical target error (NTG-error) was defined as the deviation of the actual tip position relative to the predefined geometric target point, using MR-coordinates. Needle tip to treatment target error (NTT-error) was defined as the deviation of the actual tip position relative to the treatment target point, using fused MR-images pre- and post-needle implantation taking into account prostate deformation. Difference between NTT-error and NTG-error and fiducial marker shifts indicated prostate movement. For determining prostate deformation, the Jaccard index and prostate volumes were assessed.Main results.The robotic device was able to tap the needle to the planned depth for all patients. Mean robotic procedure duration was 142 min. NTG-error was 3.2 (range 1.1-6.7) mm and NTT-error 4.5 (range 2.6-9.6) mm. Marker displacements were smaller than 3 mm. No treatment-related acute toxicity was reported. Feasibility of needle placement within the prostate was considered adequate.Significance.MR-guided robotic needle insertion is feasible with a mean geometric accuracy of 3.2 mm and <3 mm prostate movement.


Subject(s)
Brachytherapy , Magnetic Resonance Imaging , Needles , Prostatic Neoplasms , Radiotherapy Dosage , Radiotherapy, Image-Guided , Robotics , Male , Humans , Brachytherapy/instrumentation , Brachytherapy/methods , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Robotics/instrumentation , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/instrumentation , Proof of Concept Study , Radiation Dosage , Prostate/radiation effects , Prostate/diagnostic imaging , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods
4.
Phys Med Biol ; 69(16)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39009012

ABSTRACT

Objective. To enhance the investigations on MC calculated beam quality correction factors of thimble ionization chambers from high-energy brachytherapy sources and to develop reliable reference conditions in source and detector setups in water.Approach. The response of five different ionization chambers from PTW-Freiburg and Standard Imaging was investigated for irradiation by a high dose rate Ir-192 Flexisource in water. For a setup in a Beamscan water phantom, Monte Carlo simulations were performed to calculate correction factors for the chamber readings. After exact positioning of source and detector the absorbed dose rate at the TG-43 reference point at one centimeter nominal distance from the source was measured using these factors and compared to the specification of the calibration certificate. The Monte Carlo calculations were performed using the restricted cema formalism to gain further insight into the chamber response. Calculations were performed for the sensitive volume of the chambers, determined by the methods currently used in investigations of dosimetry in magnetic fields.Main results. Measured dose rates and values from the calibration certificate agreed within the combined uncertainty (k= 2) for all chambers except for one case in which the full air cavity was simulated. The chambers showed a distinct directional dependence. With the restricted cema formalism calculations it was possible to examine volume averaging and energy dependence of the perturbation factors contributing to the beam quality correction factor also differential in energy.Significance. This work determined beam quality correction factors to measure the absorbed dose rate from a brachytherapy source in terms of absorbed dose to water for a variety of ionization chambers. For the accurate dosimetry of brachytherapy sources with ionization chambers it is advisable to use correction factors based on the sensitive volume of the chambers and to take account for the directional dependence of chamber response.


Subject(s)
Brachytherapy , Monte Carlo Method , Radiometry , Brachytherapy/instrumentation , Radiometry/instrumentation , Calibration , Radiotherapy Dosage , Phantoms, Imaging , Uncertainty , Water , Iridium Radioisotopes/therapeutic use
5.
Med Phys ; 51(7): 4581-4590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837408

ABSTRACT

BACKGROUND: There currently exists no widespread high dose-rate (HDR) brachytherapy afterloader quality assurance (QA) tool for simultaneously assessing the afterloader's positional, temporal, transit velocity and air kerma strength accuracy. PURPOSE: The purpose of this study was to develop a precise and rigorous technique for performing daily QA of HDR brachytherapy afterloaders, incorporating QA of: dwell position accuracy, dwell time accuracy, transit velocity consistency and relative air kerma strength (AKS) of an Ir-192 source. METHOD: A Sharp ProGuide 240 mm catheter (Elekta Brachytherapy, Veenendaal, The Netherlands) was fixed 5 mm above a 256 channel epitaxial diode array 'dose magnifying glass' (DMG256) (Centre for Medical and Radiation Physics, University of Wollongong). Three dwell positions, each of 5.0 s dwell times, were spaced 13.0 mm apart along the array with the Flexitron HDR afterloader (Elekta Brachytherapy, Veenendaal, The Netherlands). The DMG256 was connected to a data acquisition system (DAQ) and a computer via USB2.0 link for live readout and post-processing. The outputted data files were analyzed using a Python script to provide positional and temporal localization of the Ir-192 source by tracking the centroid of the detected response. Measurements were repeated on a weekly basis, for a period of 5 weeks to determine the consistency of the measured parameters over an extended period. RESULTS: Using the DMG256 for relative AKS measurements resulted in measured values within 0.6%-3.0% of the expected activity over a 7-week period. The sub-millisecond temporal accuracy of the device allowed for measurements of the transit velocity with an average of (10.88 ± 1.01) cm/s for 13 mm steps. The dwell position localization for 1, 2, 3, 5, and 10 mm steps had an accuracy between 0.1 and 0.3 mm (3σ), with a fixed temporal accuracy of 10 ms. CONCLUSION: The DMG256 silicon strip detector allows for clinics to perform rigorous daily QA of HDR afterloader dwell position and dwell time accuracy with greater precision than the current standard methodology using closed circuit television and a stopwatch. Additionally, DMG256 unlocks the ability to perform measurements of transit velocity/time and relative AKS, which are not possible using current standard techniques.


Subject(s)
Brachytherapy , Silicon , Brachytherapy/instrumentation , Quality Assurance, Health Care , Radiometry/instrumentation , Radiotherapy Dosage , Quality Control
6.
Phys Med ; 123: 103401, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852367

ABSTRACT

BACKGROUND AND PURPOSE: This study aimed to investigate the reproducibility of a novel approach using 3D printed brachytherapy applicators for the treatment of skin cancer. Specifically, we aimed to assess the accuracy of applicator placement and to minimize the existence of air gap pockets between the applicator and the patient's skin. MATERIALS AND METHODS: A total of 20 patients plans diagnosed with skin cancer were enrolled in this study. All patients underwent high dose rate (HDR) brachytherapy. To ensure precise applicator placement, patient-specific 3D printed applicators were designed based on individual body and tumor topography, utilizing data obtained from computer tomography (CT) scans. All applicators were fabricated using fused deposition modeling technology. RESULTS: The error in applicator placement was measured and found to be less than 1.0 mm on average, with a standard deviation of 0.9 mm. Additionally, the average error in air gap pockets between the applicator and the patient's skin was 0.4 mm (standard deviation was 0.5 mm). The study demonstrated that the personalized approach of 3D printed brachytherapy applicator placement in skin cancer treatment yielded highly accurate results. The average error of less than 1.0 mm in applicator positioning and the minimal air gap pockets demonstrated the reproducibility and precision of this technique. CONCLUSION: Our study establishes the reproducibility and accuracy of 3D-printed brachytherapy applicator placement in the treatment of skin cancer. This personalized treatment approach offers a highly precise method for delivering radiation therapy, minimizing the risk to adjacent healthy tissues, and enhancing overall patient outcomes.


Subject(s)
Brachytherapy , Printing, Three-Dimensional , Radiotherapy Dosage , Skin Neoplasms , Brachytherapy/methods , Brachytherapy/instrumentation , Humans , Skin Neoplasms/radiotherapy , Reproducibility of Results , Radiotherapy Planning, Computer-Assisted/methods , Air , Radiation Dosage , Tomography, X-Ray Computed , Male
7.
Math Biosci Eng ; 21(5): 5947-5971, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872565

ABSTRACT

The technology of robot-assisted prostate seed implantation has developed rapidly. However, during the process, there are some problems to be solved, such as non-intuitive visualization effects and complicated robot control. To improve the intelligence and visualization of the operation process, a voice control technology of prostate seed implantation robot in augmented reality environment was proposed. Initially, the MRI image of the prostate was denoised and segmented. The three-dimensional model of prostate and its surrounding tissues was reconstructed by surface rendering technology. Combined with holographic application program, the augmented reality system of prostate seed implantation was built. An improved singular value decomposition three-dimensional registration algorithm based on iterative closest point was proposed, and the results of three-dimensional registration experiments verified that the algorithm could effectively improve the three-dimensional registration accuracy. A fusion algorithm based on spectral subtraction and BP neural network was proposed. The experimental results showed that the average delay of the fusion algorithm was 1.314 s, and the overall response time of the integrated system was 1.5 s. The fusion algorithm could effectively improve the reliability of the voice control system, and the integrated system could meet the responsiveness requirements of prostate seed implantation.


Subject(s)
Algorithms , Augmented Reality , Magnetic Resonance Imaging , Neural Networks, Computer , Prostate , Prostatic Neoplasms , Robotics , Humans , Male , Robotics/instrumentation , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostate/diagnostic imaging , Imaging, Three-Dimensional , Voice , Robotic Surgical Procedures/instrumentation , Robotic Surgical Procedures/methods , Holography/methods , Holography/instrumentation , Brachytherapy/instrumentation , Reproducibility of Results
8.
Med Phys ; 51(8): 5593-5603, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830129

ABSTRACT

BACKGROUND: Direction Modulated Brachytherapy (DMBT) enables conformal dose distributions. However, clinicians may face challenges in creating viable treatment plans within a fast-paced clinical setting, especially for a novel technology like DMBT, where cumulative clinical experience is limited. Deep learning-based dose prediction methods have emerged as effective tools for enhancing efficiency. PURPOSE: To develop a voxel-wise dose prediction model using an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate (HDR) brachytherapy treatment planning with DMBT six-groove tandems with ovoids or ring applicators. METHODS: A multi-institutional cohort of 122 retrospective clinical HDR brachytherapy plans treated to a prescription dose in the range of 4.8-7.0 Gy/fraction was used. A DMBT tandem model was constructed and incorporated onto a research version of BrachyVision Treatment Planning System (BV-TPS) as a 3D solid model applicator and retrospectively re-planned all cases by seasoned experts. Those plans were randomly divided into 64:16:20 as training, validating, and testing cohorts, respectively. Data augmentation was applied to the training and validation sets to increase the size by a factor of 4. An attention-gated 3D UNET architecture model was developed to predict full 3D dose distributions based on high-risk clinical target volume (CTVHR) and organs at risk (OARs) contour information. The model was trained using the mean absolute error loss function, Adam optimization algorithm, a learning rate of 0.001, 250 epochs, and a batch size of eight. In addition, a baseline UNET model was trained similarly for comparison. The model performance was evaluated on the testing dataset by analyzing the outcomes in terms of mean dose values and derived dose-volume-histogram indices from 3D dose distributions and comparing the generated dose distributions against the ground-truth dose distributions using dose statistics and clinically meaningful dosimetric indices. RESULTS: The proposed attention-gated 3D UNET model showed competitive accuracy in predicting 3D dose distributions that closely resemble the ground-truth dose distributions. The average values of the mean absolute errors were 1.82 ± 29.09 Gy (vs. 6.41 ± 20.16 Gy for a baseline UNET) in CTVHR, 0.89 ± 1.25 Gy (vs. 0.94 ± 3.96 Gy for a baseline UNET) in the bladder, 0.33 ± 0.67 Gy (vs. 0.53 ± 1.66 Gy for a baseline UNET) in the rectum, and 0.55 ± 1.57 Gy (vs. 0.76 ± 2.89 Gy for a baseline UNET) in the sigmoid. The results showed that the mean absolute error (MAE) for the bladder, rectum, and sigmoid were 0.22 ± 1.22 Gy (3.62%) (p = 0.015), 0.21 ± 1.06 Gy (2.20%) (p = 0.172), and -0.03 ± 0.54 Gy (1.13%) (p = 0.774), respectively. The MAE for D90, V100%, and V150% of the CTVHR were 0.46 ± 2.44 Gy (8.14%) (p = 0.018), 0.57 ± 11.25% (5.23%) (p = 0.283), and -0.43 ± 19.36% (4.62%) (p = 0.190), respectively. The proposed model needs less than 5 s to predict a full 3D dose distribution of 64 × 64 × 64 voxels for any new patient plan, thus making it sufficient for near real-time applications and aiding with decision-making in the clinic. CONCLUSIONS: Attention gated 3D-UNET model demonstrated a capability in predicting voxel-wise dose prediction, in comparison to 3D UNET, for DMBT intracavitary brachytherapy planning. The proposed model could be used to obtain dose distributions for near real-time decision-making before DMBT planning and quality assurance. This will guide future automated planning, making the workflow more efficient and clinically viable.


Subject(s)
Brachytherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms , Humans , Brachytherapy/methods , Brachytherapy/instrumentation , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/diagnostic imaging , Female , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Radiation Dosage , Deep Learning
9.
Phys Med Biol ; 69(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870948

ABSTRACT

Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.


Subject(s)
Brachytherapy , Phantoms, Imaging , Radiation Dosage , Radiotherapy Dosage , Brachytherapy/methods , Brachytherapy/instrumentation , Uncertainty , Humans , Time Factors , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/radiotherapy , Proof of Concept Study , Male
10.
J Robot Surg ; 18(1): 219, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771389

ABSTRACT

An experimental validation of a robotic system for radioactive iodine-125 seed implantation (RISI) in tumor treatment was conducted using customized phantom models and animal models simulating liver and lung lesions. The robotic system, consisting of planning, navigation, and implantation modules, was employed to implant dummy radioactive seeds into the models. Fiducial markers were used for target localization. In phantom experiments across 40 cases, the mean errors between planned and actual seed positions were 0.98 ± 1.05 mm, 1.14 ± 0.62 mm, and 0.90 ± 1.05 mm in the x, y, and z directions, respectively. The x, y, and z directions correspond to the left-right, anterior-posterior, and superior-inferior anatomical planes. Silicone phantoms exhibiting significantly smaller x-axis errors compared to liver and lung phantoms (p < 0.05). Template assistance significantly reduced errors in all axes (p < 0.05). No significant dosimetric deviations were observed in parameters such as D90, V100, and V150 between plans and post-implant doses (p > 0.05). In animal experiments across 23 liver and lung cases, the mean implantation errors were 1.28 ± 0.77 mm, 1.66 ± 0.69 mm, and 1.86 ± 0.93 mm in the x, y, and z directions, slightly higher than in phantoms (p < 0.05), with no significant differences between liver and lung models. The dosimetric results closely matched planned values, confirming the accuracy of the robotic system for RISI, offering new possibilities in clinical tumor treatment.


Subject(s)
Iodine Radioisotopes , Lung Neoplasms , Phantoms, Imaging , Robotic Surgical Procedures , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Iodine Radioisotopes/therapeutic use , Animals , Lung Neoplasms/radiotherapy , Brachytherapy/methods , Brachytherapy/instrumentation , Liver Neoplasms/radiotherapy , Humans , Fiducial Markers
11.
Brachytherapy ; 23(4): 470-477, 2024.
Article in English | MEDLINE | ID: mdl-38705803

ABSTRACT

PURPOSE: Partial breast irradiations with electronic brachytherapy or kilovoltage intraoperative radiotherapy devices such as Axxent or INTRABEAM are becoming more common every day. Breast is mainly composed of glandular and adipose tissues, which are not always clearly disentangled in planning breast CTs. In these cases, breast tissues are replaced with an average soft tissue, or even water. However, at kilovoltage energies, this may lead to large differences in the delivered dose, due to the dominance of photoelectric effect. Therefore, the aim of this work was to study the effect on the dose prescribed in breast with the INTRABEAM device using different soft tissue assignment strategies that would replace the adipose and glandular tissues that constitute the breast in cases where these tissues cannot be adequately distinguished in a CT scan. METHODS AND MATERIALS: Dose was computed with a Monte Carlo code in five patients with a 3 cm diameter INTRABEAM spherical applicator. Tissues within the breast were assigned following six different strategies: one based on the TG-43 recommendations, representing the whole breast as water of unity density, another one also water-based but with CT derived density, and the other four also based on CT-derived densities, using a single tissue resulting from different mixes of glandular and adipose tissues. These were compared against the reference dose computed in an accurately segmented CT, following TG-186 recommendations. Relative differences and dose ratios between the reference and the other tissue assignment strategies were obtained in three regions of interest inside the breast. RESULTS AND CONCLUSIONS: Dose planning in water-based tissues was found inaccurate for breast treatment with INTRABEAM, as it would incur in up to 30% under-prescription of dose. If accurate soft tissue assignments in the breast cannot be safely done, a single-tissue composition of 80% adipose and 20% glandular tissue, or even a 100% adipose tissue, would be recommended to avoid dose under-prescription.


Subject(s)
Brachytherapy , Breast Neoplasms , Monte Carlo Method , Radiotherapy Dosage , Humans , Female , Breast Neoplasms/radiotherapy , Brachytherapy/instrumentation , Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Adipose Tissue/radiation effects , Breast/radiation effects , Breast/diagnostic imaging
12.
Brachytherapy ; 23(4): 433-442, 2024.
Article in English | MEDLINE | ID: mdl-38724315

ABSTRACT

PURPOSES: In this study we aim to quantitatively evaluate the stability of implanted seeds in permanent breast seed implant (PBSI) brachytherapy and assess any impact on treatment quality. METHODS AND MATERIALS: Sixty-seven consecutive patients who received PBSI treatment at BC Cancer Kelowna from 2013 to 2021 with post-implant CT images available were included in this study. For each patient, two sets of post-implant CT scans were retrospectively analyzed: Day0, obtained immediately after implant, and Day30, obtained approximately one month following implant. Seed distributions were quantified using the 90% isodose contour, outlier seed maximum spread, and number of seeds located in the seroma as well as seroma quadrants. These were then compared between Day0 and Day30. Post-implant dosimetry of target volumes as well as critical structures were compared. RESULTS: The 90% isodose volume was found to decrease over time. All seeds remained in the breast region however the maximum spread of seeds increased in all directions from Day0 to Day30. All recorded target volume dosimetric parameters were, on average, lower on Day30 compared to Day0 but mean dosimetry levels still met clinical goals. Dose in critical structures was overall similar. CONCLUSIONS: In this study, we quantitatively described the changes in seed distributions as well as dosimetry from Day0 to Day30 post PBSI procedure. We addressed concerns related to seed stability in breast tissue and provided clinical evidence on dosimetric efficacy of the PBSI technique.


Subject(s)
Brachytherapy , Breast Neoplasms , Radiotherapy Dosage , Humans , Brachytherapy/methods , Brachytherapy/instrumentation , Female , Breast Neoplasms/radiotherapy , Retrospective Studies , Middle Aged , Aged , Breast Implants , Tomography, X-Ray Computed , Adult
13.
Med Phys ; 51(6): 4447-4457, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709978

ABSTRACT

BACKGROUND: The use of Computed Tomography (CT) imaging data to create 3D printable patient-specific devices for radiation oncology purposes is already well established in the literature and has shown to have superior conformity than conventional methods. Using non-ionizing radiation imaging techniques such as photogrammetry or laser scanners in-lieu of a CT scanner presents many desirable benefits including reduced imaging dose and fabrication of the device can be completed prior to simulation. With recent advancements in smartphone-based technology, photographic and LiDAR-based technologies are more readily available than ever before and to a high level of quality. As a result, these non-ionizing radiation imaging methods are now able to generate patient-specific devices that can be acceptable for clinical use. PURPOSE: In this work, we aim to determine if smartphones can be used by radiation oncologists or other radiation oncology staff to generate bolus or brachytherapy surface moulds instead of conventional CT with equivalent or comparable accuracy. METHODS: This work involved two separate studies: a phantom and participant study. For the phantom study, a RANDO anthropomorphic phantom (limited to the nose region) was used to generate 3D models based on three different imaging techniques: conventional CT, photogrammetry & LiDAR which were both acquired on a smartphone. Virtual boli were designed in Blender and 3D printed from PLA plastic material. The conformity of each printed boli was assessed by measuring the air gap volume and approximate thickness between the phantom & bolus acquired together on a CT. For the participant study, photographs, and a LiDAR scan of four volunteers were captured using an iPhone 13 Pro™ to assess their feasibility for generating human models. Each virtual 3D model was visually assessed to identify any issues in their reconstruction. The LiDAR models were registered to the photogrammetry models where a distance to agreement analysis was performed to assess their level of similarity. Additionally, a 3D virtual bolus was designed and printed using ABS material from all models to assess their conformity onto the participants skin surface using a verbal feedback method. RESULTS: The photogrammetry derived bolus showed comparable conformity to the CT derived bolus while the LiDAR derived bolus showed poorer conformity as shown by their respective air gap volume and thickness measurements. The reconstruction quality of both the photogrammetry and LiDAR models of the volunteers was inadequate in regions of facial hair and occlusion, which may lead to clinically unacceptable patient-specific device that are created from these areas. All participants found the photogrammetry 3D printed bolus to conform to their nose region with minimal room to move while three of the four participants found the LiDAR was acceptable and could be positioned comfortably over their entire nose. CONCLUSIONS: Smartphone-based photogrammetry and LiDAR software show great potential for future use in generating 3D reference models for radiation oncology purposes. Further investigations into whether they can be used to fabricate clinically acceptable patient-specific devices on a larger and more diverse cohort of participants and anatomical locations is required for a thorough validation of their clinical usefulness.


Subject(s)
Radiation Oncology , Smartphone , Radiation Oncology/instrumentation , Humans , Phantoms, Imaging , Printing, Three-Dimensional , Brachytherapy/instrumentation , Tomography, X-Ray Computed/instrumentation
14.
Med Phys ; 51(7): 4591-4606, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814165

ABSTRACT

BACKGROUND: 3D neural network dose predictions are useful for automating brachytherapy (BT) treatment planning for cervical cancer. Cervical BT can be delivered with numerous applicators, which necessitates developing models that generalize to multiple applicator types. The variability and scarcity of data for any given applicator type poses challenges for deep learning. PURPOSE: The goal of this work was to compare three methods of neural network training-a single model trained on all applicator data, fine-tuning the combined model to each applicator, and individual (IDV) applicator models-to determine the optimal method for dose prediction. METHODS: Models were produced for four applicator types-tandem-and-ovoid (T&O), T&O with 1-7 needles (T&ON), tandem-and-ring (T&R) and T&R with 1-4 needles (T&RN). First, the combined model was trained on 859 treatment plans from 266 cervical cancer patients treated from 2010 onwards. The train/validation/test split was 70%/16%/14%, with approximately 49%/10%/19%/22% T&O/T&ON/T&R/T&RN in each dataset. Inputs included four channels for anatomical masks (high-risk clinical target volume [HRCTV], bladder, rectum, and sigmoid), a mask indicating dwell position locations, and applicator channels for each applicator component. Applicator channels were created by mapping the 3D dose for a single dwell position to each dwell position and summing over each applicator component with uniform dwell time weighting. A 3D Cascade U-Net, which consists of two U-Nets in sequence, and mean squared error loss function were used. The combined model was then fine-tuned to produce four applicator-specific models by freezing the first U-Net and encoding layers of the second and resuming training on applicator-specific data. Finally, four IDV models were trained using only data from each applicator type. Performance of these three model types was compared using the following metrics for the test set: mean error (ME, representing model bias) and mean absolute error (MAE) over all dose voxels and ME of clinical metrics (HRCTV D90% and D2cc of bladder, rectum, and sigmoid), averaged over all patients. A positive ME indicates the clinical dose was higher than predicted. 3D global gamma analysis with the prescription dose as reference value was performed. Dice similarity coefficients (DSC) were computed for each isodose volume. RESULTS: Fine-tuned and combined models showed better performance than IDV applicator training. Fine-tuning resulted in modest improvements in about half the metrics, compared to the combined model, while the remainder were mostly unchanged. Fine-tuned MAE = 3.98%/2.69%/5.36%/3.80% for T&O/T&R/T&ON/T&RN, and ME over all voxels = -0.08%/-0.89%/-0.59%/1.42%. ME D2cc were bladder = -0.77%/1.00%/-0.66%/-1.53%, rectum = 1.11%/-0.22%/-0.29%/-3.37%, sigmoid = -0.47%/-0.06%/-2.37%/-1.40%, and ME D90 = 2.6%/-4.4%/4.8%/0.0%. Gamma pass rates (3%/3 mm) were 86%/91%/83%/89%. Mean DSCs were 0.92%/0.92%/0.88%/0.91% for isodoses ≤ 150% of prescription. CONCLUSIONS: 3D BT dose was accurately predicted for all applicator types, as indicated by the low MAE and MEs, high gamma scores and high DSCs. Training on all treatment data overcomes challenges with data scarcity in each applicator type, resulting in superior performance than can be achieved by training on IDV applicators alone. This could presumably be explained by the fact that the larger, more diverse dataset allows the neural network to learn underlying trends and characteristics in dose that are common to all treatment applicators. Accurate, applicator-specific dose predictions could enable automated, knowledge-based planning for any cervical brachytherapy treatment.


Subject(s)
Brachytherapy , Neural Networks, Computer , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms , Brachytherapy/instrumentation , Brachytherapy/methods , Humans , Uterine Cervical Neoplasms/radiotherapy , Female , Radiotherapy Planning, Computer-Assisted/methods , Radiation Dosage
15.
Med Phys ; 51(8): 5361-5373, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38713919

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) is the gold standard for delineating cancerous lesions in soft tissue. Catheter-based interventions require the accurate placement of multiple long, flexible catheters at the target site. The manual segmentation of catheters in MR images is a challenging and time-consuming task. There is a need for automated catheter segmentation to improve the efficiency of MR-guided procedures. PURPOSE: To develop and assess a machine learning algorithm for the detection of multiple catheters in magnetic resonance images used during catheter-based interventions. METHODS: In this work, a 3D U-Net was trained to retrospectively segment catheters in scans acquired during clinical MR-guided high dose rate (HDR) prostate brachytherapy cases. To assess confidence in segmentation, multiple AI models were trained. On clinical test cases, average segmentation results were used to plan the brachytherapy delivery. Dosimetric parameters were compared to the original clinical plan. Data was obtained from 35 patients who underwent HDR prostate brachytherapy for focal disease with a total of 214 image volumes. 185 image volumes from 30 patients were used for training using a five-fold cross validation split to divide the data for training and validation. To generate confidence measures of segmentation accuracy, five trained models were generated. The remaining five patients (29 volumes) were used to test the performance of the trained model by comparison to manual segmentations of three independent observers and assessment of dosimetric impact on the final clinical brachytherapy plans. RESULTS: The network successfully identified 95% of catheters in the test set at a rate of 0.89 s per volume. The multi-model method identified the small number of cases where AI segmentation of individual catheters was poor, flagging the need for user input. AI-based segmentation performed as well as segmentations by independent observers. Plan dosimetry using AI-segmented catheters was comparable to the original plan. CONCLUSION: The vast majority of catheters were accurately identified by AI segmentation, with minimal impact on plan outcomes. The use of multiple AI models provided confidence in the segmentation accuracy and identified catheter segmentations that required further manual assessment. Real-time AI catheter segmentation can be used during MR-guided insertions to assess deflections and for rapid planning of prostate brachytherapy.


Subject(s)
Brachytherapy , Catheters , Image Processing, Computer-Assisted , Machine Learning , Magnetic Resonance Imaging , Prostatic Neoplasms , Humans , Brachytherapy/instrumentation , Brachytherapy/methods , Male , Image Processing, Computer-Assisted/methods , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Time Factors , Retrospective Studies , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/instrumentation
16.
J Appl Clin Med Phys ; 25(8): e14395, 2024 Aug.
Article in Catalan | MEDLINE | ID: mdl-38742823

ABSTRACT

PURPOSE: For the custom-built construction of eye plaques, the iodine (I-125) seeds of different source strengths are recycled in our eye plaque program. To return I-125 seeds to the correct lot, we developed a novel 3D-printed conical plaque QA holder for relative assay for eye plaques. MATERIALS AND METHODS: A universal 3D-printed conical plaque holder was designed to accommodate six plaque sizes and fit reproducibly in a well-type dose calibrator. A reproducibility test was used to compare the plaque placement consistency in the holder versus without the holder. Plaque assays were performed for assembled plaques both before implant and after explant. The explant reading was compared with the implant reading adjusted for decay, and the relative error was calculated. The plaque response fraction (PRF) is defined as the fraction of well chamber implant reading over the total seed strength for a plaque. The PRF was aggregated for each individual plaque to confirm the seed lot before implant. RESULTS: The reproducibility test showed the chamber reading's relative standard deviation of 0.40% with the QA holder compared to 0.68% without it. The batch relative assay was performed for 251 plaques. The absolute value of measurement deviation between explant and decay-corrected implant readings is 0.89% ± 0.86% (mean ± standard deviation). The PRFs for individual plaques range from 36.49% to 49.87%, with a maximum standard deviation of 2%. CONCLUSIONS: This novel 3D-printed QA holder provides reproducible setup for assaying assembled eye plaques in a well chamber. Batch relative assay can validate the seed batch used and plaque integrity during the implant without assaying individual seeds, saving valuable physicist time and radiation exposure from seed handling.


Subject(s)
Brachytherapy , Printing, Three-Dimensional , Quality Assurance, Health Care , Radiotherapy Dosage , Printing, Three-Dimensional/instrumentation , Humans , Quality Assurance, Health Care/standards , Brachytherapy/instrumentation , Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Iodine Radioisotopes , Calibration , Eye Neoplasms
17.
J Appl Clin Med Phys ; 25(8): e14392, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38742858

ABSTRACT

PURPOSE: The purpose of this study was to validate the use of a model-based dose calculation algorithm (MBDCA), Acuros BV, for high dose rate brachytherapy treatment planning for a community-based hospital with a Bravos afterloader. Based on published AAPM recommendations, this work details a practical approach for community-based clinics to complete initial validation of Acuros BV, in order to add a MBDCA to a TG-43 based brachytherapy treatment planning program. METHODS: Source dimensions and materials used in Acuros BV and TG-43 source models were compared to the physical source. TG-186 testing was completed with standardized test cases externally calculated with Monte Carlo compared to locally calculated with Acuros BV. Point doses calculated using TG-43 were compared to those calculated with Acuros BV in water at various dose grid settings. Secondary dose check software was used to evaluate dose distributions resembling clinical patient plans, both in water and on CT datasets representative of patient anatomy. RESULTS: The major source of discrepancy of source models was the length of modeled steel cable. TG-186 testing showed that the largest differences between Monte Carlo and Acuros BV dose distributions were located along the source axis for cases calculated in water, as well as located in regions of high dose gradients and within the applicator for the case calculated with a generic shielded applicator. An audit of point doses calculated with both TG-43 and Acuros BV in water found that dose grid settings significantly affected agreement. Secondary dose check software indicated that Acuros BV functioned satisfactorily, and a 5% threshold was adopted for secondary dose checks on gynecologic plans. CONCLUSION: This validation process indicated that Acuros BV met expected standards and affirmed its suitability for integration into this clinical practice's brachytherapy treatment planning.


Subject(s)
Algorithms , Brachytherapy , Monte Carlo Method , Phantoms, Imaging , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Brachytherapy/methods , Brachytherapy/instrumentation , Brachytherapy/standards , Humans , Radiotherapy Planning, Computer-Assisted/methods , Quality Assurance, Health Care/standards , Software , Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods
18.
Med Eng Phys ; 128: 104177, 2024 06.
Article in English | MEDLINE | ID: mdl-38789214

ABSTRACT

Prostate cancer patients with an enlarged prostate and/or excessive pubic arch interference (PAI) are generally considered non-eligible for high-dose-rate (HDR) brachytherapy (BT). Steerable needles have been developed to make these patients eligible again. This study aims to validate the dosimetric impact and performance of steerable needles within the conventional clinical setting. HDR BT treatment plans were generated, needle implantations were performed in a prostate phantom, with prostate volume > 55 cm3 and excessive PAI of 10 mm, and pre- and post-implant dosimetry were compared considering the dosimetric constraints: prostate V100 > 95 % (13.50 Gy), urethra D0.1cm3 < 115 % (15.53 Gy) and rectum D1cm3 < 75 % (10.13 Gy). The inclusion of steerable needles resulted in a notable enhancement of the dose distribution and prostate V100 compared to treatment plans exclusively employing rigid needles to address PAI. Furthermore, the steerable needle plan demonstrated better agreement between pre- and post-implant dosimetry (prostate V100: 96.24 % vs. 93.74 %) compared to the rigid needle plans (79.13 % vs. 72.86 % and 87.70 % vs. 81.76 %), with no major changes in the clinical workflow and no changes in the clinical set-up. The steerable needle approach allows for more flexibility in needle positioning, ensuring a highly conformal dose distribution, and hence, HDR BT is a feasible treatment option again for prostate cancer patients with an enlarged prostate and/or excessive PAI.


Subject(s)
Brachytherapy , Needles , Prostatic Neoplasms , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Male , Brachytherapy/instrumentation , Humans , Prostatic Neoplasms/radiotherapy , Phantoms, Imaging , Prostate/radiation effects
19.
J Appl Clin Med Phys ; 25(7): e14364, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626753

ABSTRACT

PURPOSE: To enable a real-time applicator guidance for brachytherapy, we used for the first time infra-red tracking cameras (OptiTrack, USA) integrated into a mobile cone-beam computed tomography (CBCT) scanner (medPhoton, Austria). We provide the first description of this prototype and its performance evaluation. METHODS: We performed assessments of camera calibration and camera-CBCT registration using a geometric calibration phantom. For this purpose, we first evaluated the effects of intrinsic parameters such as camera temperature or gantry rotations on the tracked marker positions. Afterward, calibrations with various settings (sample number, field of view coverage, calibration directions, calibration distances, and lighting conditions) were performed to identify the requirements for achieving maximum tracking accuracy based on an in-house phantom. The corresponding effects on camera-CBCT registration were determined as well by comparing tracked marker positions to the positions determined via CBCT. Long-term stability was assessed by comparing tracking and a ground-truth on a weekly basis for 6 weeks. RESULTS: Robust tracking with positional drifts of 0.02 ± 0.01 mm was feasible using the system after a warm-up period of 90 min. However, gantry rotations affected the tracking and led to inaccuracies of up to 0.70 mm. We identified that 4000 samples and full coverage were required to ensure a robust determination of marker positions and camera-CBCT registration with geometric deviations of 0.18 ± 0.03 mm and 0.42 ± 0.07 mm, respectively. Long-term stability showed deviations of more than two standard deviations from the initial calibration after 3 weeks. CONCLUSION: We implemented for the first time a standalone combined camera-CBCT system for tracking in brachytherapy. The system showed high potential for establishing corresponding workflows.


Subject(s)
Brachytherapy , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Cone-Beam Computed Tomography/methods , Cone-Beam Computed Tomography/instrumentation , Brachytherapy/instrumentation , Brachytherapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/instrumentation , Calibration , Image Processing, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging
20.
J Appl Clin Med Phys ; 25(5): e14336, 2024 May.
Article in English | MEDLINE | ID: mdl-38664983

ABSTRACT

PURPOSE: Ring and tandem (R&T) applicator digitization is currently performed at our institution by manually defining the extent of the applicators. Digitization can also be achieved using solid applicators: predefined, 3D models with geometric constraints. This study compares R&T digitization using manual and solid applicator methods through Failure Modes and Effects Analyses (FMEAs) and comparative time studies. We aim to assess the suitability of solid applicator method implementation for R&T cases METHODS: Six qualified medical physicists (QMPs) and two medical physics residents scored potential modes of failure of manual digitization in an FMEA as recommended by TG-100. Occurrence, severity, and detectability (OSD) values were averaged across respondents and then multiplied to form combined Risk Priority Numbers (RPNs) for analysis. Participants were trained to perform treatment planning using a developed solid applicator protocol and asked to score a second FMEA on the distinct process steps from the manual method. For both methods, participant digitization was timed. FMEA and time data were analyzed across methods and participant samples RESULTS: QMPs rated the RPNs of the current, manual method of digitization statistically lower than residents did. When comparing the unique FMEA steps between the two digitization methods, QMP respondents found no significant difference in RPN means. Residents, however, rated the solid applicator method as higher risk. Further, after the solid applicator method was performed twice by participants, the time to digitize plans was not significantly different from manual digitization CONCLUSIONS: This study indicates the non-inferiority of the solid applicator method to manual digitization in terms of risk, according to QMPs, and time, across all participants. Differences were found in FMEA evaluation and solid applicator technique adoption based on years of brachytherapy experience. Further practice with the solid applicator protocol is recommended because familiarity is expected to lower FMEA occurrence ratings and further reduce digitization times.


Subject(s)
Brachytherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Brachytherapy/methods , Brachytherapy/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Healthcare Failure Mode and Effect Analysis , Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL