Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
2.
BMC Res Notes ; 17(1): 204, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049055

ABSTRACT

OBJECTIVE: In 2004, after consuming angel-wing mushrooms, Pleurocybella porrigens, 59 incidents of food poisoning were reported in Japan. Consequently, 17 individuals died of acute encephalopathy. In 2023, we proved that a lectin, pleurocybelline, and pleurocybellaziridine from this mushroom caused damage to the brains of mice. Although we reported genomic and transcriptomic data of P. porrigens in 2013, the assembly quality of the transcriptomic data was inadequate for accurate functional annotation. Thus, we obtained detailed transcriptomic data on the fruiting bodies and mycelia of this mushroom using Illumina NovaSeq 6000. RESULTS: De novo assembly data indicated that the N50 lengths for the fruiting bodies and mycelia were improved compared with those previously reported. The differential expression analysis between the fruiting bodies and the mycelia revealed that 1,937 and 1,555 genes were significantly up-regulated in the fruiting bodies and the mycelia, respectively. The biological functions of P. porrigens transcripts, including PA biosynthetic pathways, were investigated using BLAST search, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The obtained results revealed L-valine, a predicted precursor of PA, is biosynthesized in the fruiting bodies and mycelia. Furthermore, real-time RT-PCR was performed to evaluate the accuracy of the results of differential expression analysis.


Subject(s)
Fruiting Bodies, Fungal , Mycelium , Fruiting Bodies, Fungal/genetics , Mycelium/genetics , Mice , Animals , Agaricales/genetics , Agaricales/metabolism , RNA-Seq/methods , Brain Diseases/genetics , Brain Diseases/metabolism , Transcriptome/genetics , Gene Expression Regulation, Fungal/drug effects , Mushroom Poisoning
3.
CNS Neurosci Ther ; 30(6): e14809, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923822

ABSTRACT

BACKGROUND: As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS: To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD: We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS: The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS: Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.


Subject(s)
Brain Diseases , Ion Channels , Mechanotransduction, Cellular , Humans , Animals , Ion Channels/metabolism , Ion Channels/physiology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Mechanotransduction, Cellular/physiology , Brain/metabolism
4.
Cell Rep Med ; 5(6): 101609, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897176

ABSTRACT

ATP-binding cassette (ABC) transporters facilitate the movement of diverse molecules across cellular membranes, including those within the CNS. While most extensively studied in microvascular endothelial cells forming the blood-brain barrier (BBB), other CNS cell types also express these transporters. Importantly, disruptions in the CNS microenvironment during disease can alter transporter expression and function. Through this comprehensive review, we explore the modulation of ABC transporters in various brain pathologies and the context-dependent consequences of these changes. For instance, downregulation of ABCB1 may exacerbate amyloid beta plaque deposition in Alzheimer's disease and facilitate neurotoxic compound entry in Parkinson's disease. Upregulation may worsen neuroinflammation by aiding chemokine-mediated CD8 T cell influx into multiple sclerosis lesions. Overall, ABC transporters at the BBB hinder drug entry, presenting challenges for effective pharmacotherapy. Understanding the context-dependent changes in ABC transporter expression and function is crucial for elucidating the etiology and developing treatments for brain diseases.


Subject(s)
ATP-Binding Cassette Transporters , Blood-Brain Barrier , Brain , Humans , ATP-Binding Cassette Transporters/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , Brain Diseases/metabolism , Brain Diseases/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology
5.
Diabetes ; 73(9): 1513-1526, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38869375

ABSTRACT

Diabetic encephalopathy (DE) is a severe complication of the central nervous system associated with diabetes. In this study, we investigated the regulatory role of mammalian target of rapamycin (mTOR) on nuclear factor κB (NF-κB) in mice with DE, and the neuroprotective effect and therapeutic mechanisms of luteolin, a natural flavonoid compound with anti-inflammatory, antioxidant, and neuroprotective properties. The results indicated that treatment with luteolin improved the degree of cognitive impairment in mice with DE. It also decreased the levels of phosphorylated mTOR, phosphorylated NF-κB, and histone deacetylase 2 (HDAC2) and increased the expression of brain-derived neurotrophic factor and synaptic-related proteins. Furthermore, protein-protein interaction and the Gene Ontology analysis revealed that luteolin was involved in the regulatory network of HDAC2 expression through the mTOR/NF-κB signaling cascade. Our bioinformatics and molecular docking results indicated that luteolin may also directly target HDAC2, as an HDAC2 inhibitor, to alleviate DE, complementing mTOR/NF-κB signaling inhibition. Analysis of luteolin's target proteins and their interactions suggest an effect on HDAC2 and cognition. In conclusion, HDAC2 and tau hyperphosphorylation are regulated by the mTOR/NF-κB signaling cascade in DE, and luteolin is found to reverse these effects, demonstrating its protective role in DE.


Subject(s)
Histone Deacetylase 2 , Luteolin , NF-kappa B , tau Proteins , Luteolin/pharmacology , Luteolin/therapeutic use , Animals , Histone Deacetylase 2/metabolism , NF-kappa B/metabolism , Mice , tau Proteins/metabolism , Phosphorylation/drug effects , Male , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Brain Diseases/metabolism , Brain Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Molecular Docking Simulation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism
6.
Neuroscience ; 552: 100-111, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38936457

ABSTRACT

Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.


Subject(s)
Brain Diseases , Lactic Acid , Humans , Animals , Lactic Acid/metabolism , Brain Diseases/metabolism , Brain Diseases/drug therapy , Astrocytes/metabolism , Microglia/metabolism , Brain/metabolism , Neurons/metabolism
7.
Curr Opin Neurobiol ; 87: 102886, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901329

ABSTRACT

The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.


Subject(s)
Brain Diseases , Neuronal Plasticity , Proteostasis , Synapses , Humans , Proteostasis/physiology , Animals , Synapses/physiology , Synapses/metabolism , Synapses/pathology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Neuronal Plasticity/physiology , Stress, Physiological/physiology , Brain/metabolism
8.
J Clin Invest ; 134(15)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874642

ABSTRACT

GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G protein Gαo. Of the more than 80 pathogenic mutations, most are single amino acid substitutions spreading across the Gαo sequence. We performed extensive characterization of Gαo mutants, showing abnormal GTP uptake and hydrolysis and deficiencies in binding Gßγ and RGS19. Plasma membrane localization of Gαo was decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerged for the more severe mutants. Pathogenic mutants massively gained interaction with Ric8A and, surprisingly, Ric8B proteins, relocalizing them from cytoplasm to Golgi. Of these 2 mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/Gαo, Gαq, and Gα12/Gα13 subfamilies, and Ric8B solely responsible for Gαs/Gαolf. Ric8 mediates the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through imbalance of the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work uncovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights into other maladies caused by G protein malfunctioning and further genetic diseases.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go , Animals , Female , Humans , Male , Brain Diseases/genetics , Brain Diseases/metabolism , Brain Diseases/pathology , Drosophila melanogaster , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Mutation
9.
Neurosci Biobehav Rev ; 162: 105731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763180

ABSTRACT

Fragile X messenger ribonucleoprotein 1 (FMRP) is a widely expressed RNA binding protein involved in several steps of mRNA metabolism. Mutations in the FMR1 gene encoding FMRP are responsible for fragile X syndrome (FXS), a leading genetic cause of intellectual disability and autism spectrum disorder, and fragile X-associated tremor-ataxia syndrome (FXTAS), a neurodegenerative disorder in aging men. Although FMRP is mainly expressed in neurons, it is also present in glial cells and its deficiency or altered expression can affect functions of glial cells with implications for the pathophysiology of brain disorders. The present review focuses on recent advances on the role of glial subtypes, astrocytes, oligodendrocytes and microglia, in the pathophysiology of FXS and FXTAS, and describes how the absence or reduced expression of FMRP in these cells can impact on glial and neuronal functions. We will also briefly address the role of FMRP in radial glial cells and its effects on neural development, and gliomas and will speculate on the role of glial FMRP in other brain disorders.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Neuroglia , Humans , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Neuroglia/metabolism , Animals , Fragile X Syndrome/metabolism , Fragile X Syndrome/physiopathology , Fragile X Syndrome/pathology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Brain Diseases/genetics , Ataxia/metabolism , Ataxia/physiopathology , Ataxia/genetics , Tremor/metabolism , Tremor/physiopathology , Tremor/genetics
10.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791281

ABSTRACT

In recent years, particular attention has been paid to the serotonin 4 receptor, which is well expressed in the brain, but also peripherally in various organs. The cerebral distribution of this receptor is well conserved across species, with high densities in the basal ganglia, where they are expressed by GABAergic neurons. The 5-HT4 receptor is also present in the cerebral cortex, hippocampus, and amygdala, where they are carried by glutamatergic or cholinergic neurons. Outside the central nervous system, the 5-HT4 receptor is notably expressed in the gastrointestinal tract. The wide distribution of the 5-HT4 receptor undoubtedly contributes to its involvement in a plethora of functions. In addition, the modulation of this receptor influences the release of serotonin, but also the release of other neurotransmitters such as acetylcholine and dopamine. This is a considerable asset, as the modulation of the 5-HT4 receptor can therefore play a direct or indirect beneficial role in various disorders. One of the main advantages of this receptor is that it mediates a much faster antidepressant and anxiolytic action than classical selective serotonin reuptake inhibitors. Another major benefit of the 5-HT4 receptor is that its activation enhances cognitive performance, probably via the release of acetylcholine. The expression of the 5-HT4 receptor is also altered in various eating disorders, and its activation by the 5-HT4 agonist negatively regulates food intake. Additionally, although the cerebral expression of this receptor is modified in certain movement-related disorders, it is still yet to be determined whether this receptor plays a key role in their pathophysiology. Finally, there is no longer any need to demonstrate the value of 5-HT4 receptor agonists in the pharmacological management of gastrointestinal disorders.


Subject(s)
Receptors, Serotonin, 5-HT4 , Humans , Receptors, Serotonin, 5-HT4/metabolism , Animals , Brain Diseases/metabolism , Brain Diseases/drug therapy , Serotonin 5-HT4 Receptor Agonists/pharmacology , Brain/metabolism
11.
Hum Mol Genet ; 33(15): 1328-1338, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38692286

ABSTRACT

Syntaxin-binding protein 1 (STXBP1) is a presynaptic protein that plays important roles in synaptic vesicle docking and fusion. STXBP1 haploinsufficiency causes STXBP1 encephalopathy (STXBP1-E), which encompasses neurological disturbances including epilepsy, neurodevelopmental disorders, and movement disorders. Most patients with STXBP1-E present with regression and movement disorders in adulthood, highlighting the importance of a deeper understanding of the neurodegenerative aspects of STXBP1-E. An in vitro study proposed an interesting new role of STXBP1 as a molecular chaperone for α-Synuclein (αSyn), a key molecule in the pathogenesis of neurodegenerative disorders. However, no studies have shown αSyn pathology in model organisms or patients with STXBP1-E. In this study, we used Drosophila models to examine the effects of STXBP1 haploinsufficiency on αSyn-induced neurotoxicity in vivo. We demonstrated that haploinsufficiency of Ras opposite (Rop), the Drosophila ortholog of STXBP1, exacerbates compound eye degeneration, locomotor dysfunction, and dopaminergic neurodegeneration in αSyn-expressing flies. This phenotypic aggravation was associated with a significant increase in detergent-insoluble αSyn levels in the head. Furthermore, we tested whether trehalose, which has neuroprotective effects in various models of neurodegenerative disorders, mitigates αSyn-induced neurotoxicity exacerbated by Rop haploinsufficiency. In flies expressing αSyn and carrying a heterozygous Rop null variant, trehalose supplementation effectively alleviates neuronal phenotypes, accompanied by a decrease in detergent-insoluble αSyn in the head. In conclusion, this study revealed that Rop haploinsufficiency exacerbates αSyn-induced neurotoxicity by altering the αSyn aggregation propensity. This study not only contributes to understanding the mechanisms of neurodegeneration in STXBP1-E patients, but also provides new insights into the pathogenesis of α-synucleinopathies.


Subject(s)
Disease Models, Animal , Drosophila Proteins , Drosophila melanogaster , Haploinsufficiency , Munc18 Proteins , alpha-Synuclein , Animals , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Haploinsufficiency/genetics , Drosophila melanogaster/genetics , Munc18 Proteins/genetics , Munc18 Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Synucleinopathies/genetics , Synucleinopathies/pathology , Synucleinopathies/metabolism , Trehalose/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Brain Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology
12.
J Mol Neurosci ; 74(2): 54, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760510

ABSTRACT

This article discusses a rare case of coexistent meningiomas and Primary familial brain calcification (PFBC). PFBC is a neurodegenerative disease characterized by brain calcifications and a variety of neuropsychiatric symptoms and signs, with pathogenic variants in specific genes. The study explores the potential link between PFBC and meningiomas, highlighting shared features like intralesional calcifications and common genes such as MEA6. The article also revisits PFBC patients developing other brain tumors, particularly gliomas, emphasizing the intersection of oncogenes like PDGFB and PDGFRB in both calcifications and tumor progression. In recent investigations, attention has extended beyond brain tumors to breast cancer metastasis, unveiling a noteworthy connection. These findings suggest a broader connection between brain calcifications and tumors, encouraging a reevaluation of therapeutic approaches for PFBC.


Subject(s)
Brain Neoplasms , Calcinosis , Meningioma , Humans , Calcinosis/genetics , Calcinosis/pathology , Meningioma/genetics , Meningioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Brain Diseases/metabolism
13.
Drug Des Devel Ther ; 18: 1349-1368, 2024.
Article in English | MEDLINE | ID: mdl-38681208

ABSTRACT

Background: Sepsis is recognized as a multiorgan and systemic damage caused by dysregulated host response to infection. Its acute systemic inflammatory response highly resembles that of lipopolysaccharide (LPS)-induced endotoxemia. Propofol and dexmedetomidine are two commonly used sedatives for mechanical ventilation in critically ill patients and have been reported to alleviate cognitive impairment in many diseases. In this study, we aimed to explore and compare the effects of propofol and dexmedetomidine on the encephalopathy induced by endotoxemia and to investigate whether ferroptosis is involved, finally providing experimental evidence for multi-drug combination in septic sedation. Methods: A total of 218 C57BL/6J male mice (20-25 g, 6-8 weeks) were used. Morris water maze (MWM) tests were performed to evaluate whether propofol and dexmedetomidine attenuated LPS-induced cognitive deficits. Brain injury was evaluated using Nissl and Fluoro-Jade C (FJC) staining. Neuroinflammation was assessed by dihydroethidium (DHE) and DCFH-DA staining and by measuring the levels of three cytokines. The number of Iba1+ and GFAP+ cells was used to detect the activation of microglia and astrocytes. To explore the involvement of ferroptosis, the levels of ptgs2 and chac1; the content of iron, malondialdehyde (MDA), and glutathione (GSH); and the expression of ferroptosis-related proteins were investigated. Conclusion: The single use of propofol and dexmedetomidine mitigated LPS-induced cognitive impairment, while the combination showed poor performance. In alleviating endotoxemic neural loss and degeneration, the united sedative group exhibited the most potent capability. Both propofol and dexmedetomidine inhibited neuroinflammation, while propofol's effect was slightly weaker. All sedative groups reduced the neural apoptosis, inhibited the activation of microglia and astrocytes, and relieved neurologic ferroptosis. The combined group was most prominent in combating genetic and biochemical alterations of ferroptosis. Fpn1 may be at the core of endotoxemia-related ferroptosis activation.


Subject(s)
Dexmedetomidine , Endotoxemia , Ferroptosis , Lipopolysaccharides , Mice, Inbred C57BL , Propofol , Dexmedetomidine/pharmacology , Animals , Propofol/pharmacology , Ferroptosis/drug effects , Mice , Male , Endotoxemia/drug therapy , Endotoxemia/metabolism , Endotoxemia/chemically induced , Lipopolysaccharides/pharmacology , Dose-Response Relationship, Drug , Brain Diseases/drug therapy , Brain Diseases/metabolism , Brain Diseases/pathology , Hypnotics and Sedatives/pharmacology
14.
Adv Mater ; 36(26): e2402445, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583077

ABSTRACT

Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.


Subject(s)
Biomimetic Materials , Blood-Brain Barrier , Cell Membrane , Humans , Blood-Brain Barrier/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry , Animals , Biomimetic Materials/chemistry , Biomimetics/methods , Nanoparticles/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Brain Diseases/drug therapy , Brain Diseases/metabolism
15.
Cell Calcium ; 120: 102882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631162

ABSTRACT

Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.


Subject(s)
Astrocytes , Brain , Astrocytes/metabolism , Humans , Hydrogen-Ion Concentration , Animals , Brain/metabolism , Brain Diseases/metabolism , Brain Diseases/pathology , Homeostasis
16.
Adv Sci (Weinh) ; 11(24): e2307953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582517

ABSTRACT

FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.


Subject(s)
Disease Models, Animal , Forkhead Transcription Factors , Nerve Tissue Proteins , Proto-Oncogene Proteins , Animals , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain Diseases/genetics , Brain Diseases/metabolism , Behavior, Animal , Male
17.
Redox Biol ; 70: 103061, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341954

ABSTRACT

RATIONALE: MER proto-oncogene tyrosine kinase (MerTK) is a key receptor for the clearance of apoptotic cells (efferocytosis) and plays important roles in redox-related human diseases. We will explore MerTK biology in human cells, tissues, and diseases based on big data analytics. METHODS: The human RNA-seq and scRNA-seq data about 42,700 samples were from NCBI Gene Expression Omnibus and analyzed by QIAGEN Ingenuity Pathway Analysis (IPA) with about 170,000 crossover analysis. MerTK expression was quantified as Log2 (FPKM + 0.1). RESULTS: We found that, in human cells, MerTK is highly expressed in macrophages, monocytes, progenitor cells, alpha-beta T cells, plasma B cells, myeloid cells, and endothelial cells (ECs). In human tissues, MerTK has higher expression in plaque, blood vessels, heart, liver, sensory system, artificial tissue, bone, adrenal gland, central nervous system (CNS), and connective tissue. Compared to normal conditions, MerTK expression in related tissues is altered in many human diseases, including cardiovascular diseases, cancer, and brain disorders. Interestingly, MerTK expression also shows sex differences in many tissues, indicating that MerTK may have different impact on male and female. Finally, based on our proteomics from primary human aortic ECs, we validated the functions of MerTK in several human diseases, such as cancer, aging, kidney failure and heart failure. CONCLUSIONS: Our big data analytics suggest that MerTK may be a promising therapeutic target, but how it should be modulated depends on the disease types and sex differences. For example, MerTK inhibition emerges as a new strategy for cancer therapy due to it counteracts effect on anti-tumor immunity, while MerTK restoration represents a promising treatment for atherosclerosis and myocardial infarction as MerTK is cleaved in these disease conditions.


Subject(s)
Receptor Protein-Tyrosine Kinases , c-Mer Tyrosine Kinase , Female , Humans , Male , Apoptosis/genetics , c-Mer Tyrosine Kinase/genetics , Data Science , Endothelial Cells/metabolism , Genomics , Neoplasms/metabolism , Phagocytosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Brain Diseases/metabolism
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320662

ABSTRACT

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Subject(s)
Brain Diseases , Mitochondrial Encephalomyopathies , Mitophagy , Humans , Mitophagy/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Brain Diseases/genetics , Brain Diseases/metabolism , RNA, Transfer/genetics , RNA, Mitochondrial/metabolism
19.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396755

ABSTRACT

Brain diseases are oftentimes life-threatening and difficult to treat. The local administration of drug substances using brain implants can increase on-site concentrations and decrease systemic side effects. However, the biocompatibility of potential brain implant materials needs to be evaluated carefully as implants can trigger foreign body reactions, particularly by increasing the microglia and astrocyte reactivity. To date, these tests have been frequently conducted in very simple in vitro models, in particular not respecting the key players in glial cell reactions and the challenges of surgical implantation characterized by the disruption of oxygen and nutrient supply. Thus, we established an in vitro model in which we treated human glial cell lines with reduced oxygen and glucose levels. The model displayed cytokine and reactive oxygen species release from reactive microglia and an increase in a marker of reactive astrocytes, galectin-3. Moreover, the treatment caused changes in the cell survival and triggered the production of hypoxia-inducible factor 1α. In this comprehensive platform, we demonstrated the protective effect of the natural polyphenol resveratrol as a model substance, which might be included in brain implants to ease the undesired glial cell response. Overall, a glial-cell-based in vitro model of the initial challenges of local brain disease treatment may prove useful for investigating new therapy options.


Subject(s)
Brain Diseases , Neuroglia , Humans , Resveratrol/pharmacology , Resveratrol/metabolism , Neuroglia/metabolism , Astrocytes/metabolism , Microglia/metabolism , Brain Diseases/metabolism , Oxygen/metabolism
20.
Mol Neurobiol ; 61(9): 6864-6892, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38356095

ABSTRACT

Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.


Subject(s)
Brain Diseases , Cell Communication , Exosomes , Exosomes/metabolism , Humans , Animals , Brain Diseases/metabolism , Brain Diseases/pathology , Brain/metabolism , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL