Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.003
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 243-251, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097867

ABSTRACT

Oil seeds now make up the world's second-largest food source after cereals. In recent years, the medicinal- oil plant Camelina sativa has attracted much attention for its high levels of unsaturated fatty acids and low levels of saturated fatty acids as well as its resistance to abiotic stresses. Improvement of oil quality is considered an important trait in this plant. Erucic acid is one of the fatty acids affecting the quality of camelina oil. Altering the fatty acid composition in camelina oil through genetic manipulation requires the identification, isolation, and cloning of genes involved in fatty acid biosynthesis. The Fatty Acid Elongase 1 (FAE1) gene encodes the enzyme ß-ketoacyl CoA synthase (KCS), a crucial enzyme in the biosynthesis of erucic acid. In this study, the isolation and cloning of the FAE1 gene from Camelina sativa were conducted to construct an antisense structure. The molecular homology modeling of DFAE1 proteins using the SWISS-MODEL server on ExPASy led to the generation of the 3D structures of FAE1 and DFAE1 proteins. The GMQE values of 0.44 for FAE1 and 0.08 for DFAE1 suggest high accuracy in the structural estimation of these genes. The fragments were isolated from the DNA source of the genomic Soheil cultivar with an erucic acid content of about 3% (in matured seeds) using PCR. After cloning the FAE1 gene into the Bluescript II SK+ vector and sequencing, the resulting fragments were utilized to construct the antisense structure in the pBI121 plant expression vector. The approved antisense structure was introduced into the Camelina plant using the Agrobacterium-mediated method, with optimization of tissue culture and gene transfer conditions. This approach holds potential to advance our knowledge of fat biosynthesis, leading to potential improvements in oil quality in Camelina sativa.


Subject(s)
Brassicaceae , Cloning, Molecular , Erucic Acids , Fatty Acid Elongases , Brassicaceae/genetics , Brassicaceae/metabolism , Cloning, Molecular/methods , Erucic Acids/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Amino Acid Sequence , Seeds/genetics , Seeds/metabolism , Models, Molecular , Gene Expression Regulation, Plant , Acetyltransferases/genetics , Acetyltransferases/metabolism , Genes, Plant
2.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39110621

ABSTRACT

BACKGROUND: The economic importance of the globally distributed Brassicaceae family resides in the large diversity of crops within the family and the substantial variety of agronomic and functional traits they possess. We reviewed the current classifications of crop wild relatives (CWRs) in the Brassicaceae family with the aim of identifying new potential cross-compatible species from a total of 1,242 species using phylogenetic approaches. RESULTS: In general, cross-compatibility data between wild species and crops, as well as phenotype and genotype characterisation data, were available for major crops but very limited for minor crops, restricting the identification of new potential CWRs. Around 70% of wild Brassicaceae did not have genetic sequence data available in public repositories, and only 40% had chromosome counts published. Using phylogenetic distances, we propose 103 new potential CWRs for this family, which we recommend as priorities for cross-compatibility tests with crops and for phenotypic characterisation, including 71 newly identified CWRs for 10 minor crops. From the total species used in this study, more than half had no records of being in ex situ conservation, and 80% were not assessed for their conservation status or were data deficient (IUCN Red List Assessments). CONCLUSIONS: Great efforts are needed on ex situ conservation to have accessible material for characterising and evaluating the species for future breeding programmes. We identified the Mediterranean region as one key conservation area for wild Brassicaceae species, with great numbers of endemic and threatened species. Conservation assessments are urgently needed to evaluate most of these wild Brassicaceae.


Subject(s)
Brassicaceae , Conservation of Natural Resources , Crops, Agricultural , Phylogeny , Brassicaceae/genetics , Brassicaceae/classification , Crops, Agricultural/genetics , Phenotype , Genotype
3.
Cell ; 187(14): 3504-3505, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996485

ABSTRACT

Organisms experience a constantly changing environment and must adjust their development to maximize fitness. These "life histories" are fantastically diverse and have fascinated biologists for decades. Recent work published in Cell reveals the complex genetic mechanisms that drive life-history variation within and among species in the Brassicaceae plant family.


Subject(s)
Reproduction , Brassicaceae/physiology , Brassicaceae/genetics , Environment
4.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066857

ABSTRACT

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Subject(s)
Plant Diseases , Plant Leaves , Plant Leaves/microbiology , Plant Leaves/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Microbiota/genetics , Ecosystem , Actinobacteria/genetics , Actinobacteria/isolation & purification , Metagenomics/methods , Metagenome/genetics , Phylogeny , Brassicaceae/microbiology , Brassicaceae/genetics
5.
Genes (Basel) ; 15(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39062665

ABSTRACT

Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.


Subject(s)
Brassicaceae , Genome, Chloroplast , Microsatellite Repeats , Phylogeny , Genome, Chloroplast/genetics , Brassicaceae/genetics , Brassicaceae/classification , Microsatellite Repeats/genetics , Evolution, Molecular
6.
Genes (Basel) ; 15(7)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39062734

ABSTRACT

Closely-related plant groups with distinct microbiomes, chemistries and ecological characteristics represent tractable models to explore mechanisms shaping species spread, competitive dynamics and community assembly at the interface of native and introduced ranges. We investigated phyllosphere microbial communities, volatile organic compound (VOC) compositions, and potential interactions among introduced S. trilobata, native S. calendulacea and their hybrid in South China. S. trilobata exhibited higher α diversity but significantly different community composition compared to the native and hybrid groups. However, S. calendulacea and the hybrid shared certain microbial taxa, suggesting potential gene flow or co-existence. The potent antimicrobial VOC profile of S. trilobata, including unique compounds like p-cymene (13.33%), likely contributes to its invasion success. The hybrid's intermediate microbial and VOC profiles suggest possible consequences for species distribution, genetic exchange, and community assembly in heterogeneous environments. This hybrid deserves further study as both an opportunity for and threat to diversity maintenance. These differentiating yet connected plant groups provide insight into ecological and evolutionary dynamics shaping microbiome structure, species co-occurrence and competitive outcomes during biological exchange and habitat transformation. An interdisciplinary approach combining chemical and microbial ecology may reveal mechanisms underlying community stability and change, informing management of species spread in a globalized world.


Subject(s)
Introduced Species , Microbiota , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Brassicaceae/microbiology , Brassicaceae/genetics , China
7.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39073781

ABSTRACT

The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.


Subject(s)
Genome, Plant , Gene Duplication , Evolution, Molecular , DNA Transposable Elements , Stress, Physiological , Brassicaceae/genetics , Gene Expression Regulation, Plant
8.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000052

ABSTRACT

Triacylglycerols (TAGs) are the storage oils of plant seeds, and these lipids provide energy for seed germination and valuable oils for human consumption. Three diacylglycerol acyltransferases (DGAT1, DGAT2, and DGAT3) and phospholipid:diacylglycerol acyltransferases participate in the biosynthesis of TAGs. DGAT1 and DGAT2 participate in the biosynthesis of TAGs through the endoplasmic reticulum (ER) pathway. In this study, we functionally characterized CsDGAT1 and CsDGAT2 from camelina (Camelina sativa). Green fluorescent protein-fused CsDGAT1 and CsDGAT2 localized to the ER when transiently expressed in Nicotiana benthamiana leaves. To generate Csdgat1 and Csdgat2 mutants using the CRISPR/Cas9 system, camelina was transformed with a binary vector carrying Cas9 and the respective guide RNAs targeting CsDGAT1s and CsDGAT2s via the Agrobacterium-mediated floral dip method. The EDD1 lines had missense and nonsense mutations in the CsDGAT1 homoeologs, suggesting that they retained some CsDGAT1 function, and their seeds showed decreased eicosaenoic acid (C20:1) contents and increased C18:3 contents compared to the wild type (WT). The EDD2 lines had a complete knockout of all CsDGAT2 homoeologs and a slightly decreased C18:3 content compared to the WT. In conclusion, CsDGAT1 and CsDGAT2 have a small influence on the seed oil content and have an acyl preference for C20:1 and C18:3, respectively. This finding can be applied to develop oilseed plants containing high omega-3 fatty acids or high oleic acid.


Subject(s)
Brassicaceae , Diacylglycerol O-Acyltransferase , Fatty Acids , Plant Proteins , Seeds , Fatty Acids/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Seeds/metabolism , Seeds/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , CRISPR-Cas Systems , Triglycerides/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Mutation , Gene Editing
9.
Planta ; 260(1): 24, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858226

ABSTRACT

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Subject(s)
Droughts , Microbiota , Soil Microbiology , Microbiota/genetics , Stress, Physiological , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Plant Roots/genetics , RNA, Ribosomal, 16S/genetics , Fungi/physiology , Fungi/genetics , Rhizosphere , Brassicaceae/microbiology , Brassicaceae/genetics , Brassicaceae/physiology , Plant Leaves/microbiology , Plant Leaves/genetics
10.
BMC Genomics ; 25(1): 599, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877397

ABSTRACT

BACKGROUND: Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, ß- and γ-subfamilies, while α- and ß-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function. The aim of this research is to identify and characterize tubulins of an emerging biofuel crop Camelina sativa. RESULTS: We report comprehensive identification and characterization of tubulin gene family in C. sativa, including analyses of exon-intron organization, duplicated genes comparison, proper isotype designation, phylogenetic analysis, and expression patterns in different tissues. 17 α-, 34 ß- and 6 γ-tubulin genes were identified and assigned to a particular isotype. Recognition of orthologous tubulin isotypes was cross-referred, involving data of phylogeny, synteny analyses and genes allocation on reconstructed genomic blocks of Ancestral Crucifer Karyotype. An investigation of expression patterns of tubulin homeologs revealed the predominant role of N6 (A) and N7 (B) subgenomes in tubulin expression at various developmental stages, contrarily to general the dominance of transcripts of H7 (C) subgenome. CONCLUSIONS: For the first time a complete set of tubulin gene family members was identified and characterized for allohexaploid C. sativa species. The study demonstrates the comprehensive approach of precise inferring gene orthology. The applied technique allowed not only identifying C. sativa tubulin orthologs in model Arabidopsis species and tracking tubulin gene evolution, but also uncovered that A. thaliana is missing orthologs for several particular isotypes of α- and ß-tubulins.


Subject(s)
Evolution, Molecular , Genome, Plant , Multigene Family , Phylogeny , Tubulin , Tubulin/genetics , Brassicaceae/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Synteny , Gene Expression Regulation, Plant , Gene Duplication , Introns/genetics , Exons/genetics
11.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928441

ABSTRACT

Hybridization is common between invasive and native species and may produce more adaptive hybrids. The hybrid (Sphagneticola × guangdongensis) of Sphagneticola trilobata (an invasive species) and S. calendulacea (a native species) was found in South China. In this study, S. trilobata, S. calendulacea, and Sphagneticola × guangdongensis were used as research materials to explore their adaptability to flooding stress. Under flooding stress, the ethylene content and the expression of key enzyme genes related to ethylene synthesis in Sphagneticola × guangdongensis and S. calendulacea were significantly higher than those in S. trilobata. A large number of adventitious roots and aerenchyma were generated in Sphagneticola × guangdongensis and S. calendulacea. The contents of reactive oxygen species and malondialdehyde in Sphagneticola × guangdongensis and S. calendulacea were lower than those in S. trilobata, and the leaves of S. trilobata were the most severely damaged under flooding stress. The results indicate that hybridization catalyzed the tolerance of Sphagneticola × guangdongensis to flooding stress, and the responses of Sphagneticola × guangdongensis to flooding stress were more similar to that of its native parent. This suggests that hybridization with native relatives is an important way for invasive species to overcome environmental pressure and achieve invasion.


Subject(s)
Floods , Hybridization, Genetic , Introduced Species , Stress, Physiological , Adaptation, Physiological/genetics , Plant Roots/genetics , Plant Roots/metabolism , Ethylenes/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , China , Brassicaceae/genetics , Brassicaceae/physiology , Plant Leaves/genetics , Plant Leaves/metabolism
12.
BMC Plant Biol ; 24(1): 353, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693493

ABSTRACT

BACKGROUND: Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS: In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS: In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.


Subject(s)
Acetates , Glucosinolates , Glycoside Hydrolases , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Gene Expression Regulation, Plant , Brassicaceae/genetics , Brassicaceae/metabolism , Brassicaceae/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics
13.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38810645

ABSTRACT

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Subject(s)
Brassicaceae , Flowers , Gene Expression Regulation, Plant , Brassicaceae/genetics , Brassicaceae/physiology , Crops, Agricultural/genetics , Flowers/genetics , Flowers/physiology , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Plant Physiological Phenomena , Chromosome Mapping , Mutation
14.
Int J Biol Macromol ; 270(Pt 1): 132273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734348

ABSTRACT

The basic leucine zipper (bZIP) transcription factors (TFs) function importantly in numerous life processes in plants. However, bZIP members and their biological roles remain unknown in Camelina sativa, a worldwide promising oil crop. Here, 220 CsbZIP proteins were identified in camelina and classified into thirteen groups. Two and 347 pairs of tandem and segmental duplication genes were detected to be underwent purification selection, with segmental duplication as the main driven-force of CsbZIP gene family expansion. Most CsbZIP genes displayed a tissue-specific expression pattern. Particularly, CsbZIP-A12 significantly positively correlated with many FA/oil biosynthesis-related genes, indicating CsbZIP-A12 may regulate lipid biosynthesis. Notably, yeast one-hybrid (Y1H), ß-Glucuronidase (GUS), dual-luciferase (LUC) and EMSA assays evidenced that CsbZIP-A12 located in nucleus interacted with the promoters of CsSAD2-3 and CsFAD3-3 genes responsible for unsaturated fatty acid (UFA) synthesis, thus activating their transcriptions. Overexpression of CsbZIP-A12 led to an increase of total lipid by 3.275 % compared to the control, followed with oleic and α-linolenic acid levels enhanced by 3.4 % and 5.195 %, and up-regulated the expressions of CsSAD2-3, CsFAD3-3 and CsPDAT2-3 in camelina seeds. Furthermore, heterogeneous expression of CsbZIP-A12 significantly up-regulated the expressions of NtSAD2, NtFAD3 and NtPDAT genes in tobacco plants, thereby improving the levels of total lipids and UFAs in both leaves and seeds without negative effects on other agronomic traits. Together, our findings suggest that CsbZIP-A12 upregulates FA/oil biosynthesis by activating CsSAD2-3 and CsFAD3-3 as well as possible other related genes. These data lay a foundation for further functional analyses of CsbZIPs, providing new insights into the TF-based lipid metabolic engineering to increase vegetable oil yield and health-beneficial quality in oilseeds.


Subject(s)
Brassicaceae , Fatty Acids, Unsaturated , Gene Expression Regulation, Plant , Plant Proteins , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Oils/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Promoter Regions, Genetic , Phylogeny , Nicotiana/genetics , Nicotiana/metabolism
15.
Nat Plants ; 10(6): 1018-1026, 2024 06.
Article in English | MEDLINE | ID: mdl-38806655

ABSTRACT

The endosperm is a reproductive tissue supporting embryo development. In most flowering plants, the initial divisions of endosperm nuclei are not succeeded by cellularization; this process occurs only after a specific number of mitotic cycles have taken place. The timing of cellularization significantly influences seed viability and size. Previous research implicated auxin as a key factor in initiating nuclear divisions and determining the timing of cellularization. Here we uncover the involvement of a family of clustered auxin response factors (cARFs) as dosage-sensitive regulators of endosperm cellularization. cARFs, maternally expressed and paternally silenced, are shown to induce cellularization, thereby restricting seed growth. Our findings align with the predictions of the parental conflict theory, suggesting that cARFs represent major molecular targets in this conflict. We further demonstrate a recurring amplification of cARFs in the Brassicaceae, suggesting an evolutionary response to parental conflict by reinforcing maternal control over endosperm cellularization. Our study highlights that antagonistic parental control on endosperm cellularization converges on auxin biosynthesis and signalling.


Subject(s)
Arabidopsis , Endosperm , Gene Expression Regulation, Plant , Indoleacetic Acids , Endosperm/metabolism , Endosperm/genetics , Indoleacetic Acids/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Brassicaceae/physiology , Plant Growth Regulators/metabolism
16.
PLoS One ; 19(4): e0302292, 2024.
Article in English | MEDLINE | ID: mdl-38626181

ABSTRACT

Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.


Subject(s)
Arabidopsis , Brassicaceae , Brassicaceae/genetics , Gene Duplication , Phylogeny , Evolution, Molecular , Genome, Plant , Arabidopsis/genetics , Plant Proteins/genetics , Plant Proteins/chemistry , Mustard Plant/genetics , Protein Sorting Signals/genetics , Gene Expression Regulation, Plant
17.
Methods Mol Biol ; 2787: 39-53, 2024.
Article in English | MEDLINE | ID: mdl-38656480

ABSTRACT

The study of natural variations in photosynthesis in the Brassicaceae family offers the possibility of identifying mechanisms to enhance photosynthetic efficiency in crop plants. Indeed, this family, and particularly its tribe Brassiceae, has been shown to harbor species that have a higher-than-expected photosynthetic efficiency, possibly as a result of a complex evolutionary history. Over the past two decades, methods have been developed to measure photosynthetic efficiency based on chlorophyll fluorescence. Chlorophyll fluorescence measurements are performed with special cameras, such as the FluorCams, which can be included in robotic systems to create high-throughput phenotyping platforms. While these platforms have so far demonstrated high efficiency in measuring small model species like Arabidopsis thaliana, they have the drawback of limited adaptability to accommodate different plant sizes. As a result, the range of species that can be analyzed is restricted. This chapter presents our approach to analyze the photosynthetic parameters: ϕPSII and Fv/Fm for a panel of Brassicaceae species, including a high-photosynthesis species, Hirschfeldia incana, and the adaptations to the phenotyping platform that are required to accommodate this varied group of plants.


Subject(s)
Brassicaceae , Chlorophyll , Photosynthesis , Brassicaceae/physiology , Brassicaceae/metabolism , Brassicaceae/genetics , Chlorophyll/metabolism , High-Throughput Screening Assays/methods , Phenotype , Fluorescence
18.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 264-280, 2024.
Article in English | MEDLINE | ID: mdl-38599847

ABSTRACT

Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.


Subject(s)
Brassicaceae , Solanaceae , Humans , Brassicaceae/genetics , Solanaceae/genetics , Plants , Pollen , Flowers , Plant Proteins
19.
Nat Ecol Evol ; 8(6): 1129-1139, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637692

ABSTRACT

Self-incompatibility and recurrent transitions to self-compatibility have shaped the extant mating systems underlying the nonrandom mating critical for speciation in angiosperms. Linkage between self-incompatibility and speciation is illustrated by the shared pollen rejection pathway between self-incompatibility and interspecific unilateral incompatibility (UI) in the Brassicaceae. However, the pollen discrimination system that activates this shared pathway for heterospecific pollen rejection remains unknown. Here we show that Stigma UI3.1, the genetically identified stigma determinant of UI in Arabidopsis lyrata × Arabidopsis arenosa crosses, encodes the S-locus-related glycoprotein 1 (SLR1). Heterologous expression of A. lyrata or Capsella grandiflora SLR1 confers on some Arabidopsis thaliana accessions the ability to discriminate against heterospecific pollen. Acquisition of this ability also requires a functional S-locus receptor kinase (SRK), whose ligand-induced dimerization activates the self-pollen rejection pathway in the stigma. SLR1 interacts with SRK and interferes with SRK homomer formation. We propose a pollen discrimination system based on competition between basal or ligand-induced SLR1-SRK and SRK-SRK complex formation. The resulting SRK homomer levels would be sensed by the common pollen rejection pathway, allowing discrimination among conspecific self- and cross-pollen as well as heterospecific pollen. Our results establish a mechanistic link at the pollen recognition phase between self-incompatibility and interspecific incompatibility.


Subject(s)
Arabidopsis , Pollen , Arabidopsis/genetics , Arabidopsis/physiology , Brassicaceae/genetics , Brassicaceae/physiology , Self-Incompatibility in Flowering Plants , Pollination , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Capsella/genetics
20.
Plant Cell Physiol ; 65(7): 1160-1172, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38590036

ABSTRACT

Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate ß-glucosidases, which hydrolyze specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knock-out resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knock-out of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants and thereby possibly contribute to the defense against herbivores.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Endoplasmic Reticulum , Gene Expression Regulation, Plant , Plant Leaves , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/cytology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Endoplasmic Reticulum/metabolism , Cell Differentiation , Brassicaceae/genetics , Brassicaceae/cytology , Brassicaceae/metabolism , Brassicaceae/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Endoreduplication
SELECTION OF CITATIONS
SEARCH DETAIL