Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58.776
1.
Sci Rep ; 14(1): 12820, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834641

Genetic counseling and testing are more accessible than ever due to reduced costs, expanding indications and public awareness. Nonetheless, many patients missed the opportunity of genetic counseling and testing due to barriers that existed at that time of their cancer diagnoses. Given the identified implications of pathogenic mutations on patients' treatment and familial outcomes, an opportunity exists to utilize a 'traceback' approach to retrospectively examine their genetic makeup and provide consequent insights to their disease and treatment. In this study, we identified living patients diagnosed with breast cancer (BC) between July 2007 and January 2022 who would have been eligible for testing, but not tested. Overall, 422 patients met the eligibility criteria, 282 were reached and invited to participate, and germline testing was performed for 238, accounting for 84.4% of those invited. The median age (range) was 39.5 (24-64) years at BC diagnosis and 49 (31-75) years at the date of testing. Genetic testing revealed that 25 (10.5%) patients had pathogenic/likely pathogenic (P/LP) variants; mostly in BRCA2 and BRCA1. We concluded that long overdue genetic referral through a traceback approach is feasible and effective to diagnose P/LP variants in patients with history of BC who had missed the opportunity of genetic testing, with potential clinical implications for patients and their relatives.


BRCA1 Protein , Breast Neoplasms , Genetic Counseling , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Female , Middle Aged , Adult , Genetic Testing/methods , Aged , BRCA1 Protein/genetics , Retrospective Studies , BRCA2 Protein/genetics , Young Adult
2.
Sci Rep ; 14(1): 12761, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834687

Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.


Algorithms , Computational Biology , Genetic Predisposition to Disease , MicroRNAs , MicroRNAs/genetics , Humans , Computational Biology/methods , Breast Neoplasms/genetics
3.
Sci Rep ; 14(1): 12766, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834715

Metabolic reprogramming is widely recognized as a hallmark of malignant tumors, and the targeting of metabolism has emerged as an appealing approach for cancer treatment. Mitochondria, as pivotal organelles, play a crucial role in the metabolic regulation of tumor cells, and their morphological and functional alterations are intricately linked to the biological characteristics of tumors. As a key regulatory subunit of mitochondria, mitochondrial inner membrane protein (IMMT), plays a vital role in degenerative diseases, but its role in tumor is almost unknown. The objective of this research was to investigate the roles that IMMT play in the development and progression of breast cancer (BC), as well as to elucidate the underlying biological mechanisms that drive these effects. In this study, it was confirmed that the expression of IMMT in BC tissues was significantly higher than that in normal tissues. The analysis of The Cancer Genome Atlas (TCGA) database revealed that IMMT can serve as an independent prognostic factor for BC patients. Additionally, verification in clinical specimens of BC demonstrated a positive association between high IMMT expression and larger tumor size (> 2 cm), Ki-67 expression (> 15%), and HER-2 status. Furthermore, in vitro experiments have substantiated that the suppression of IMMT expression resulted in a reduction in cell proliferation and alterations in mitochondrial cristae, concomitant with the liberation of cytochrome c, but it did not elicit mitochondrial apoptosis. Through Gene Set Enrichment Analysis (GSEA) analysis, we have predicted the associated metabolic genes and discovered that IMMT potentially modulates the advancement of BC through its interaction with 16 metabolic-related genes, and the changes in glycolysis related pathways have been validated in BC cell lines after IMMT inhibition. Consequently, this investigation furnishes compelling evidence supporting the classification of IMMT as prognostic marker in BC, and underscoring its prospective utility as a novel target for metabolic therapy.


Breast Neoplasms , Cell Proliferation , Mitochondria , Mitochondrial Proteins , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Middle Aged , Prognosis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , MCF-7 Cells , Muscle Proteins
4.
BMC Cancer ; 24(1): 681, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834966

BACKGROUND: Our previous studies have indicated that mRNA and protein levels of PPIH are significantly upregulated in Hepatocellular Carcinoma (LIHC) and could act as predictive biomarkers for patients with LIHC. Nonetheless, the expression and implications of PPIH in the etiology and progression of common solid tumors have yet to be explored, including its potential as a serum tumor marker. METHODS: We employed bioinformatics analyses, augmented with clinical sample evaluations, to investigate the mRNA and protein expression and gene regulation networks of PPIH in various solid tumors. We also assessed the association between PPIH expression and overall survival (OS) in cancer patients using Kaplan-Meier analysis with TCGA database information. Furthermore, we evaluated the feasibility and diagnostic efficacy of PPIH as a serum marker by integrating serological studies with established clinical tumor markers. RESULTS: Through pan-cancer analysis, we found that the expression levels of PPIH mRNA in multiple tumors were significantly different from those in normal tissues. This study is the first to report that PPIH mRNA and protein levels are markedly elevated in LIHC, Colon adenocarcinoma (COAD), and Breast cancer (BC), and are associated with a worse prognosis in these cancer patients. Conversely, serum PPIH levels are decreased in patients with these tumors (LIHC, COAD, BC, gastric cancer), and when combined with traditional tumor markers, offer enhanced sensitivity and specificity for diagnosis. CONCLUSION: Our findings propose that PPIH may serve as a valuable predictive biomarker in tumor patients, and its secreted protein could be a potential serum marker, providing insights into the role of PPIH in cancer development and progression.


Biomarkers, Tumor , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Prognosis , Female , Liver Neoplasms/genetics , Liver Neoplasms/blood , Liver Neoplasms/mortality , Gene Expression Regulation, Neoplastic , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/diagnosis , Neoplasms/genetics , Neoplasms/blood , Neoplasms/mortality , Neoplasms/diagnosis , Male , Computational Biology/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kaplan-Meier Estimate , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/mortality , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/blood , Stomach Neoplasms/diagnosis , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/blood , Colonic Neoplasms/diagnosis , Colonic Neoplasms/pathology , Colonic Neoplasms/mortality , Gene Regulatory Networks
5.
J Exp Clin Cancer Res ; 43(1): 154, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822363

BACKGROUND: RNA modifications of transfer RNAs (tRNAs) are critical for tRNA function. Growing evidence has revealed that tRNA modifications are related to various disease processes, including malignant tumors. However, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7G tRNA modifications in breast cancer (BC) remain largely obscure. METHODS: The biological role of METTL1 in BC progression were examined by cellular loss- and gain-of-function tests and xenograft models both in vitro and in vivo. To investigate the change of m7G tRNA modification and mRNA translation efficiency in BC, m7G-methylated tRNA immunoprecipitation sequencing (m7G tRNA MeRIP-seq), Ribosome profiling sequencing (Ribo-seq), and polysome-associated mRNA sequencing were performed. Rescue assays were conducted to decipher the underlying molecular mechanisms. RESULTS: The tRNA m7G methyltransferase complex components METTL1 and WD repeat domain 4 (WDR4) were down-regulated in BC tissues at both the mRNA and protein levels. Functionally, METTL1 inhibited BC cell proliferation, and cell cycle progression, relying on its enzymatic activity. Mechanistically, METTL1 increased m7G levels of 19 tRNAs to modulate the translation of growth arrest and DNA damage 45 alpha (GADD45A) and retinoblastoma protein 1 (RB1) in a codon-dependent manner associated with m7G. Furthermore, in vivo experiments showed that overexpression of METTL1 enhanced the anti-tumor effectiveness of abemaciclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor. CONCLUSION: Our study uncovered the crucial tumor-suppressive role of METTL1-mediated tRNA m7G modification in BC by promoting the translation of GADD45A and RB1 mRNAs, selectively blocking the G2/M phase of the cell cycle. These findings also provided a promising strategy for improving the therapeutic benefits of CDK4/6 inhibitors in the treatment of BC patients.


Breast Neoplasms , Methyltransferases , RNA, Transfer , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Mice , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Methylation , Cell Line, Tumor , Cell Proliferation , Carcinogenesis/genetics , Cell Cycle Checkpoints , Protein Biosynthesis , Xenograft Model Antitumor Assays , Mice, Nude
6.
Mol Biol Rep ; 51(1): 718, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824224

BACKGROUND: Breast cancer is one of the most common diseases in females, arising from overexpression of a variety of oncogenes like HER2/neu. The amplification rate of this gene is variable in different breast cancer patients. In this study, the amplification of the HER2/neu oncogene was distinguished in breast cancer patients and its correlation with prognostic factors. Also, the simultaneous effect of prognostic factors on the occurrence of a specific prognostic factor was investigated. MATERIALS AND METHODS: The multiplex PCR technique was used to assay the amplification of the HER2/neu oncogene in breast cancer patients. After extracting DNA from 100 tumor tissue and 8 normal breast tissue samples, the amplification of the HER2/neu gene was distinguished by the co-amplification of a single-copy reference gene, γ-IFN, and the target gene HER2/neu in the PCR reaction and using the Gel analyzer software. SPSS 23 and STATA 9.1 software were used for statistical analysis. RESULTS: The HER2/neu gene was amplification in 30% of the tumor samples. The statistical analysis showed a statistically significant relationship between HER2/neu gene amplification and progesterone receptors. Amplification of the HER2/neu gene significantly increases the chance of lymph node involvement. Also, the amplification of this gene in tumors with histological grade II tissue is more than grade I. CONCLUSION: The amplification of the HER2/neu gene can be used as an independent prognostic factor in predicting lymph node involvement and histological grade in breast cancer patients.


Breast Neoplasms , Gene Amplification , Receptor, ErbB-2 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Prognosis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Iran , Middle Aged , Adult , Aged
7.
Mol Biol Rep ; 51(1): 707, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824255

BACKGROUND: Non-coding RNAs (ncRNAs) have a crucial impact on diverse cellular processes, influencing the progression of breast cancer (BC). The objective of this study was to identify novel ncRNAs in BC with potential effects on patient survival and disease progression. METHODS: We utilized the cancer genome atlas data to identify ncRNAs associated with BC pathogenesis. We explored the association between these ncRNA expressions and survival rates. A risk model was developed using candidate ncRNA expression and beta coefficients obtained from a multivariate Cox regression analysis. Co-expression networks were constructed to determine potential relationships between these ncRNAs and molecular pathways. For validation, we employed BC samples and the RT-qPCR method. RESULTS: Our findings revealed a noteworthy increase in the expression of AC093850.2 and CHCHD2P9 in BC, which was correlated with a poor prognosis. In contrast, ADAMTS9-AS1 and ZNF204P displayed significant downregulation and were associated with a favorable prognosis. The risk model, incorporating these four ncRNAs, robustly predicted patient survival. The co-expression network showed an effective association between levels of AC093850.2, CHCHD2P9, ADAMTS9-AS1, and ZNF204P and genes involved in pathways like metastasis, angiogenesis, metabolism, and DNA repair. The RT-qPCR results verified notable alterations in the expression of CHCHD2P9 and ZNF204P in BC samples. Pan-cancer analyses revealed alterations in the expression of these two ncRNAs across various cancer types. CONCLUSION: This study presents a groundbreaking discovery, highlighting the substantial dysregulation of CHCHD2P9 and ZNF204P in BC and other cancers, with implications for patient survival.


Breast Neoplasms , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Female , Prognosis , Gene Expression Regulation, Neoplastic/genetics , Biomarkers, Tumor/genetics , Middle Aged , RNA, Untranslated/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , Gene Expression Profiling/methods , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824268

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Breast Neoplasms , Epithelial-Mesenchymal Transition , Tumor-Associated Macrophages , Humans , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , MCF-7 Cells , Cell Movement/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Sequence Analysis, RNA/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
9.
Breast Cancer Res ; 26(1): 88, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822357

BACKGROUND: Associations between reproductive factors and risk of breast cancer differ by subtype defined by joint estrogen receptor (ER), progesterone receptor (PR), and HER2 expression status. Racial and ethnic differences in the incidence of breast cancer subtypes suggest etiologic heterogeneity, yet data are limited because most studies have included non-Hispanic White women only. METHODS: We analyzed harmonized data for 2,794 breast cancer cases and 4,579 controls, of whom 90% self-identified as African American, Asian American or Hispanic. Questionnaire data were pooled from three population-based studies conducted in California and data on tumor characteristics were obtained from the California Cancer Registry. The study sample included 1,530 luminal A (ER-positive and/or PR-positive, HER2-negative), 442 luminal B (ER-positive and/or PR-positive, HER2-positive), 578 triple-negative (TN; ER-negative, PR-negative, HER2-negative), and 244 HER2-enriched (ER-negative, PR-negative, HER2-positive) cases. We used multivariable unconditional logistic regression models to estimate subtype-specific ORs and 95% confidence intervals associated with parity, breast-feeding, and other reproductive characteristics by menopausal status and race and ethnicity. RESULTS: Subtype-specific associations with reproductive factors revealed some notable differences by menopausal status and race and ethnicity. Specifically, higher parity without breast-feeding was associated with higher risk of luminal A and TN subtypes among premenopausal African American women. In contrast, among Asian American and Hispanic women, regardless of menopausal status, higher parity with a breast-feeding history was associated with lower risk of luminal A subtype. Among premenopausal women only, luminal A subtype was associated with older age at first full-term pregnancy (FTP), longer interval between menarche and first FTP, and shorter interval since last FTP, with similar OR estimates across the three racial and ethnic groups. CONCLUSIONS: Subtype-specific associations with reproductive factors overall and by menopausal status, and race and ethnicity, showed some differences, underscoring that understanding etiologic heterogeneity in racially and ethnically diverse study samples is essential. Breast-feeding is likely the only reproductive factor that is potentially modifiable. Targeted efforts to promote and facilitate breast-feeding could help mitigate the adverse effects of higher parity among premenopausal African American women.


Breast Neoplasms , Menopause , Receptor, ErbB-2 , Receptors, Estrogen , Receptors, Progesterone , Humans , Female , Breast Neoplasms/etiology , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/ethnology , Receptor, ErbB-2/metabolism , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Middle Aged , Adult , Aged , Case-Control Studies , Risk Factors , California/epidemiology , Reproductive History , Pregnancy , Parity , Ethnicity/statistics & numerical data , Ethnic and Racial Minorities , Hispanic or Latino/statistics & numerical data
10.
JCO Precis Oncol ; 8: e2300639, 2024 Jun.
Article En | MEDLINE | ID: mdl-38838276

PURPOSE: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION: The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.


Brain Neoplasms , Breast Neoplasms , Cyclin-Dependent Kinases , Gene Rearrangement , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Receptor, ErbB-2/genetics , Cyclin-Dependent Kinases/genetics , Middle Aged , Adult , Aged
11.
J Cancer Res Clin Oncol ; 150(6): 293, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842687

The TOR1B gene is known to play a pivotal role in maintaining cellular homeostasis and responding to endoplasmic reticulum stress. However, its involvement in cancer remains relatively understudied. This study seeks to explore the prognostic implications of TOR1B across various cancers, with a specific focus on Basal-like Breast Cancer (BLBC) and its underlying cellular mechanisms. Through comprehensive analysis of data from TCGA, TARGET, GEO, and GTEx, we investigated TOR1B expression and its correlation with patient outcomes. Furthermore, in vitro experiments conducted on BLBC cell lines examined the impact of TOR1B modulation on cell viability, apoptosis, and metabolic activity under varying oxygen levels. Our statistical analysis encompassed differential expression analysis, survival analysis, and multivariate Cox regression. Our findings indicate that TOR1B is overexpressed in BLBC and other cancers, consistently correlating with poorer prognosis. Elevated TOR1B levels were significantly associated with reduced overall and disease-free survival in BLBC patients. In vitro experiments further revealed that TOR1B knockdown augmented apoptosis and influenced metabolic activity, particularly under hypoxic conditions, highlighting its potential role in cancer cell adaptation to stress. Overall, our study underscores the importance of TOR1B in cancer progression, particularly in BLBC, where it serves as a notable prognostic indicator. The interaction between TOR1B and metabolic pathways, as well as its regulation by HIF-1α, suggests its significance in adapting to hypoxia, thereby positioning TOR1B as a promising therapeutic target for aggressive breast cancer subtypes.


Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Prognosis , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Apoptosis
12.
Biomed Environ Sci ; 37(5): 457-470, 2024 May 20.
Article En | MEDLINE | ID: mdl-38843919

Objective: This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2 (HER2)-low early breast cancer (BC) and HER2-IHC0 BC. Methods: Patients diagnosed with HER2-negative BC ( N = 999) at our institution between January 2011 and December 2015 formed our study population. Clinicopathological characteristics, association between estrogen receptor (ER) expression and HER2-low, and evolution of HER2 immunohistochemical (IHC) score were assessed. Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes (5-year follow-up) between the HER2-IHC0 and HER2-low groups. Results: HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor (PgR) positivity than HER2-IHC0 BC group ( P < 0.001). The rate of HER2-low status increased with increasing ER expression levels (Mantel-Haenszel χ 2 test, P < 0.001, Pearson's R = 0.159, P < 0.001). Survival analysis revealed a significantly longer overall survival (OS) in HER2-low BC group than in HER2-IHC0 group ( P = 0.007) in the whole cohort and the hormone receptor (HR)-negative group. There were no significant differences between the two groups in terms of disease-free survival (DFS). The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion: HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.


Breast Neoplasms , Receptor, ErbB-2 , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Middle Aged , Prognosis , Adult , China/epidemiology , Aged , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , East Asian People
13.
BMC Cancer ; 24(1): 691, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844880

PURPOSE: The potential efficacy of metformin in breast cancer (BC) has been hotly discussed but never conclusive. This genetics-based study aimed to evaluate the relationships between metformin targets and BC risk. METHODS: Metformin targets from DrugBank and genome-wide association study (GWAS) data from IEU OpenGWAS and FinnGen were used to investigate the breast cancer (BC)-metformin causal link with various Mendelian Randomization (MR) methods (e.g., inverse-variance-weighting). The genetic association between type 2 diabetes (T2D) and the drug target of metformin was also analyzed as a positive control. Sensitivity and pleiotropic tests ensured reliability. RESULTS: The primary targets of metformin are PRKAB1, ETFDH and GPD1L. We found a causal association between PRKAB1 and T2D (odds ratio [OR] 0.959, P = 0.002), but no causal relationship was observed between metformin targets and overall BC risk (PRKAB1: OR 0.990, P = 0.530; ETFDH: OR 0.986, P = 0.592; GPD1L: OR 1.002, P = 0.806). A noteworthy causal relationship was observed between ETFDH and estrogen receptor (ER)-positive BC (OR 0.867, P = 0.018), and between GPD1L and human epidermal growth factor receptor 2 (HER2)-negative BC (OR 0.966, P = 0.040). Other group analyses did not yield positive results. CONCLUSION: The star target of metformin, PRKAB1, does not exhibit a substantial causal association with the risk of BC. Conversely, metformin, acting as an inhibitor of ETFDH and GPD1L, may potentially elevate the likelihood of developing ER-positive BC and HER2-negative BC. Consequently, it is not advisable to employ metformin as a standard supplementary therapy for BC patients without T2D.


Breast Neoplasms , Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Mendelian Randomization Analysis , Metformin , Humans , Metformin/therapeutic use , Metformin/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Female , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Chemotherapy, Adjuvant/methods , Hypoglycemic Agents/therapeutic use , Polymorphism, Single Nucleotide
14.
Breast Cancer Res ; 26(1): 94, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844963

BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.


Breast Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Methyltransferases , RNA Stability , Y-Box-Binding Protein 1 , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Mice , Animals , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Proliferation
15.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835038

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


BRCA1 Protein , Breast Neoplasms , Integrin alpha6 , Tumor Suppressor Protein p53 , Animals , Integrin alpha6/metabolism , Integrin alpha6/genetics , Female , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Stem Cells/metabolism , Gene Deletion , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism
16.
PLoS One ; 19(6): e0303134, 2024.
Article En | MEDLINE | ID: mdl-38837975

In recent years, a cancer research trend has shifted towards identifying novel therapeutic compounds from natural assets for the management of cancer. In this study, we aimed to assess the cytotoxic activity of Kigelia Africana (KA) extracts on breast cancer (MDA-MB-231 and MCF-7) and noncancerous kidney cells (HEK-293T) to develop an efficient anticancer medication. We used gas chromatography mass spectrometry (GC-MS to analyze the constituents of EKA and HKA extracts meanwhile the crystal violet and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assays were used to examine the possible cytotoxic effects of plant extracts on our cancer cell lines along with non-cancerous control. The quantitative real-time PCR (RT-PCR) was run on cell samples to evaluate the differential expression of cell proliferative markers of cancer (BCL-2 and TP53). These phytochemicals have been reported to have binding affinity for some other growth factors and receptors as well which was evaluated by the in-silico molecular docking against Bcl2, EGFR, HER2, and TP53. Our Morphological observation showed a significant difference in the cell morphology and proliferation potential which was decreased under the effect of plant extracts treatment as compared to the control samples. The ethanol extract exhibited a marked antiproliferative activity towards MDA-MB-231 and MCF-7 cell lines with IC50 = 20 and 32 µg/mL, respectively. Quantitative RT-PCR gene expression investigation revealed that the IC50 concentration of ethanolic extract regulated the levels of mRNA expression of apoptotic genes. With the target and active binding site amino acids discovered in the molecular docking investigation, TP53/Propanoic acid, 3-(2, 3, 6-trimethyl-1, 4-dioxaspiro [4.4] non-7-yl)-, methyl ester (-7.1 kcal/mol) is the best-docked ligand. The use of this plant in folk remedies justifies its high in vitro anti-cancer capabilities. This work highlights the role of phytochemicals in the inhibition of cancer proliferation. Based on all these findings, it can be concluded that EKA extract has promising anti-proliferative effect on cancerous cells but more study is required in future to further narrow down the active ingredients of total crude extract with specific targets in cancer cells.


Molecular Docking Simulation , Plant Extracts , Tumor Suppressor Protein p53 , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , MCF-7 Cells , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female , HEK293 Cells , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
17.
Sci Rep ; 14(1): 12924, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839863

Hormone-responsive breast cancer represents the most common type and has the best prognosis, but still approximately 40% of patients with this type can develop distant metastases, dramatically worsening the patient's survival. Monitoring metastatic breast cancer (mBC) for signs of progression is an important part of disease management. Circulating tumor cell (CTC) detection and molecular characteristics gain importance as a diagnostic tool, but do not represent a clinical standard and its value as a predictor of progression is not yet established. The main objective of this study was to estimate the prognostic value of not only the CTC numbers, but also the dynamics of the CTC numbers in the same patient during the continuous evaluation of CTCs in patients with advanced breast cancer. The other objective was to assess the molecular changes in CTCs compared to primary tumor samples by genetic analysis of the seven genes associated with estrogen signaling pathway, mutations in which are often responsible for the resistance to endocrine therapy, and subsequent progression. This approach was taken to evaluate if genetic analysis of CTCs can be used in tracking the resistance, signaling that hormonal therapy should be replaced. Consequently, this report presents the results of a longitudinal CTC study based on three subsequent blood collections from 135 patients with metastatic breast cancer, followed by molecular analysis of the isolated single CTCs. CTCs were detected and isolated using an image-based, EpCAM-independent system CytoTrack; this approach allowed evaluation of EpCAM expression in detected CTCs. Isolated CTCs were subjected to NGS analysis to assess mutational changes. The results confirm the importance of the status of the CTC for progression-free survival and overall survival and provide new data on the dynamics of the CTC during a long monitoring period and in relation to clinical progression, highlighting the advantage of constant monitoring over the single count of CTC. Furthermore, high genetic and phenotypic inter- and intrapatient heterogeneity observed in CTCs suggest that metastatic lesions are divergent. High genetic heterogeneity in the matching CTC/primary tumor samples may indicate early dissemination. The tendency towards the accumulation of activating/oncogenic mutation in CTCs, leading to anti-estrogen resistant disease, was not confirmed in this study.


Breast Neoplasms , Disease Progression , Neoplasm Metastasis , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/blood , Female , Middle Aged , Prognosis , Aged , Longitudinal Studies , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Cell Count
18.
BMC Genomics ; 25(1): 566, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840049

BACKGROUND: Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. RESULTS: Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. CONCLUSIONS: HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.


Gene Expression Profiling , Humans , Animals , Mice , Gene Expression Profiling/methods , Transcriptome , Deep Learning , Cluster Analysis , Computational Biology/methods , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Olfactory Bulb/metabolism
19.
PeerJ ; 12: e17492, 2024.
Article En | MEDLINE | ID: mdl-38827304

Background: The promising efficacy of novel anti-HER2 antibody-drug conjugates (ADC) in HER2-low breast cancer has made HER2-low a research hotspot. However, controversy remains regarding the neoadjuvant chemotherapy (NAC) efficacy, prognosis, and the relationship with hormone receptor (HR) status of HER2-low. Methods: A retrospective analysis was conducted on 975 patients with HER2-negative breast cancer undergoing NAC at Tianjin Medical University Cancer Institute and Hospital, evaluating pathological complete response (pCR) rate and prognosis between HER2-low and HER2-zero in the overall cohort and subgroups. Results: Overall, 579 (59.4%) and 396 (40.6%) patients were HER2-low and HER2-zero disease, respectively. Compared with HER2-zero, the HER2-low cohort consists of more postmenopausal patients, with lower histological grade and higher HR positivity. In the HR-positive subgroup, HER2-low cases remain to exhibit lower histological grade, while in the HR-negative subgroup, they show higher grade. The HER2-low group had lower pCR rates than the HER2-zero group (16.4% vs. 24.0%). In the HR-positive subgroup, HER2-low consistently showed lower pCR rate (8.1% vs. 15.5%), and served as an independent suppressive factor for the pCR rate. However, no significant difference was observed in the pCR rates between HER2-low and HER2-zero in the HR-negative breast cancer. In the entire cohort and in stratified subgroups based on HR and pCR statuses, no difference in disease-free survival were observed between HER2-low and HER2-zero. Conclusions: In the Chinese population, HER2-low breast cancer exhibits distinct characteristics and efficacy of NAC in different HR subgroups. Its reduced pCR rate in HR-positive subgroup is particularly important for clinical decisions. However, HER2-low is not a reliable factor for assessing long-term survival outcomes.


Breast Neoplasms , Neoadjuvant Therapy , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Female , Retrospective Studies , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Middle Aged , Neoadjuvant Therapy/methods , China/epidemiology , Prognosis , Adult , Aged , Chemotherapy, Adjuvant , Treatment Outcome , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism
20.
Oncol Res ; 32(6): 1093-1107, 2024.
Article En | MEDLINE | ID: mdl-38827320

Breast cancer is the leading cause of cancer-related deaths in women worldwide, with Hormone Receptor (HR)+ being the predominant subtype. Tamoxifen (TAM) serves as the primary treatment for HR+ breast cancer. However, drug resistance often leads to recurrence, underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates. Artemisinin (ART) has demonstrated efficacy in inhibiting the growth of drug-resistant cells, positioning art as a viable option for counteracting endocrine resistance. This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation. Five characterized genes (ar, cdkn1a, erbb2, esr1, hsp90aa1) and seven drug-disease crossover genes (cyp2e1, rorc, mapk10, glp1r, egfr, pgr, mgll) were identified using WGCNA crossover analysis. Subsequent functional enrichment analyses were conducted. Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and -sensitized patients. scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells, suggesting artemisinin's specific impact on tumor cells in estrogen receptor (ER)-positive BC tissues. Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes. These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.


Artemisinins , Breast Neoplasms , Computational Biology , Drug Resistance, Neoplasm , Receptors, Estrogen , Tamoxifen , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Drug Resistance, Neoplasm/genetics , Computational Biology/methods , Receptors, Estrogen/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Molecular Docking Simulation , Cell Proliferation/drug effects
...