Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cells ; 12(20)2023 10 13.
Article in English | MEDLINE | ID: mdl-37887290

ABSTRACT

Febrile seizure (FS), which occurs as a response to fever, is the most common seizure that occurs in infants and young children. FS is usually accompanied by diverse neuropsychiatric symptoms, including impaired social behaviors; however, research on neuropsychiatric disorders and hippocampal inflammatory changes following febrile seizure occurrences is very limited. Here, we provide evidence linking FS occurrence with ASD pathogenesis in rats. We developed an FS juvenile rats model and found ASD-like abnormal behaviors including deficits in social novelty, repetitive behaviors, and hyperlocomotion. In addition, FS model juvenile rats showed enhanced levels of gliosis and inflammation in the hippocampal CA2 region and cerebellum. Furthermore, abnormal levels of social and repetitive behaviors persisted in adults FS model rats. These findings suggest that the inflammatory response triggered by febrile seizures in young children could potentially serve as a mediator of social cognitive impairments.


Subject(s)
Seizures, Febrile , Humans , Child , Rats , Animals , Child, Preschool , Seizures, Febrile/complications , Seizures, Febrile/pathology , CA2 Region, Hippocampal/pathology , Rats, Sprague-Dawley , Cytokines , Gliosis/complications
2.
Brain Res ; 1771: 147647, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34481787

ABSTRACT

Dendrobium nobile Lindl. alkaloid (DNLA) is effective against animal models of Alzheimer's disease. This study further examined its effect on anxiety and depression produced by chronic unpredictable stress (CUS). Rats were subjected to CUS for 42 days, followed by DNLA treatment (20 mg/kg/day, po) for 28 days. The behavioral tests, histopathology, neurotransmitters and RNA-Seq were examined. DNLA attenuated body weight loss and CUS-induced anxiety/depressive-like behaviors, as evidenced by the elevated-plus-maze test, open-field test and sucrose preference. DNLA alleviated neuronal damage and loss and increased Nissl bodies in the hippocampus CA2 region and cortex. DNLA decreased CUS-elevated 5-hydroxytryptamine, dopamine and monoamine oxidase and catechol-O-methyltransferase activities in the brain. DNLA attenuated HPA activation by decreasing adrenocorticotropic hormones and the expression of corticotropin-releasing hormone receptor-1, and increased the expression of glucocorticoid receptor in the brain. RNA-Seq revealed distinct gene expression patterns among groups. Gene ontology revealed the cell projection assembly, postsynapse and centrosome as top biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the cAMP, cGMP-PKG, glutamatergic synapse and circadian as major pathways for DNLA effects. Using DESeq2, CUS modulated 1700 differentially expressed genes (DEGs), which were prevented or attenuated by DNLA. CUS-induced DEGs were highly correlated with the Gene Expression Omnibus (GEO) database for anxiety and depression and were ameliorated by DNLA. Taken together, DNLA attenuated anxiety/depression-like behavior and neuronal damage induced by CUS in rats. The mechanisms could be related to regulation of the monoamine neurotransmitters and the HPA axis, and modulation of gene expression in the hippocampus.


Subject(s)
Alkaloids/therapeutic use , Anxiety/drug therapy , Dendrobium/chemistry , Depression/drug therapy , Stress, Psychological/drug therapy , Animals , Anxiety/genetics , Anxiety/psychology , Brain Chemistry , CA2 Region, Hippocampal/pathology , Chronic Disease , Depression/genetics , Depression/psychology , Gene Expression/drug effects , Hypothalamo-Hypophyseal System/drug effects , Male , Neurons/pathology , Neurotransmitter Agents/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/genetics , Stress, Psychological/psychology
3.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34228646

ABSTRACT

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


Subject(s)
CA2 Region, Hippocampal/physiopathology , Methyl-CpG-Binding Protein 2/deficiency , Rett Syndrome/physiopathology , Animals , CA2 Region, Hippocampal/pathology , Disease Models, Animal , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Humans , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/physiology , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Neurons , Rett Syndrome/genetics , Rett Syndrome/pathology
4.
Acta Neuropathol ; 142(4): 643-667, 2021 10.
Article in English | MEDLINE | ID: mdl-34170374

ABSTRACT

The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.


Subject(s)
CA2 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/pathology , Complement C1q/metabolism , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Synapses/physiology , Aged , Animals , Case-Control Studies , Cuprizone , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis/etiology
5.
J Neuropathol Exp Neurol ; 80(2): 102-111, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33367843

ABSTRACT

Primary age-related tauopathy (PART) is a neurodegenerative entity defined as Alzheimer-type neurofibrillary degeneration primarily affecting the medial temporal lobe with minimal to absent amyloid-ß (Aß) plaque deposition. The extent to which PART can be differentiated pathoanatomically from Alzheimer disease (AD) is unclear. Here, we examined the regional distribution of tau pathology in a large cohort of postmortem brains (n = 914). We found an early vulnerability of the CA2 subregion of the hippocampus to neurofibrillary degeneration in PART, and semiquantitative assessment of neurofibrillary degeneration in CA2 was significantly greater than in CA1 in PART. In contrast, subjects harboring intermediate-to-high AD neuropathologic change (ADNC) displayed relative sparing of CA2 until later stages of their disease course. In addition, the CA2/CA1 ratio of neurofibrillary degeneration in PART was significantly higher than in subjects with intermediate-to-high ADNC burden. Furthermore, the distribution of tau pathology in PART diverges from the Braak NFT staging system and Braak stage does not correlate with cognitive function in PART as it does in individuals with intermediate-to-high ADNC. These findings highlight the need for a better understanding of the contribution of PART to cognitive impairment and how neurofibrillary degeneration interacts with Aß pathology in AD and PART.


Subject(s)
Aging/pathology , CA2 Region, Hippocampal/pathology , Neurons/pathology , Tauopathies/pathology , Aged , Aged, 80 and over , Aging/metabolism , Amyloid beta-Peptides/metabolism , CA2 Region, Hippocampal/metabolism , Female , Humans , Male , Middle Aged , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurons/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Tauopathies/metabolism , tau Proteins/metabolism
6.
J Alzheimers Dis ; 79(1): 237-247, 2021.
Article in English | MEDLINE | ID: mdl-33252076

ABSTRACT

BACKGROUND: Predicting the prognosis of mild cognitive impairment (MCI) has outstanding clinical value, and the hippocampal volume is a reliable imaging biomarker of AD diagnosis. OBJECTIVE: We aimed to longitudinally assess hippocampal sub-regional difference (volume and asymmetry) among progressive MCI (pMCI), stable MCI (sMCI) patients, and normal elderly. METHODS: We identified 29 pMCI, 52 sMCI, and 102 normal controls (NC) from the ADNI database. All participants underwent neuropsychological assessment and 3T MRI scans three times. The time interval between consecutive MRI sessions was about 1 year. Volumes of hippocampal subfield were measured by Freesurfer. Based on the analysis of variance, repeated measures analyses, and receiver operating characteristic curves, we compared cross-sectional and longitudinal alteration sub-regional volume and asymmetry index. RESULTS: Compared to NC, both MCI groups showed significant atrophy in all subfields. At baseline, pMCI have a smaller volume than sMCI in the bilateral subiculum, molecular layer (ML), the molecular and granule cell layers of the dentate gyrus, cornu ammonis 4, and right tail. Furthermore, repeated measures analyses revealed that pMCI patients showed a faster volume loss than sMCI in bilateral subiculum and ML. After controlling for age, gender, and education, most results remained unchanged. However, none of the hippocampal sub-regional volumes performed better than the whole hippocampus in ROC analyses, and no asymmetric difference between pMCI and sMCI was found. CONCLUSION: The faster volume loss in subiculum and ML suggest a higher risk of disease progression in MCI patients. The hippocampal asymmetry may have smaller value in predicting the MCI prognosis.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Aged, 80 and over , Aniline Compounds , Atrophy , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/pathology , Case-Control Studies , Cognitive Dysfunction/pathology , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Disease Progression , Ethylene Glycols , Female , Hippocampus/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Organ Size , Positron-Emission Tomography , ROC Curve
7.
J Alzheimers Dis ; 78(3): 927-937, 2020.
Article in English | MEDLINE | ID: mdl-33074228

ABSTRACT

BACKGROUND: Posterior cortical atrophy (PCA) and logopenic progressive aphasia (LPA) are two of the most common variants of atypical Alzheimer's disease (AD). Both PCA and LPA are associated with relative sparing of hippocampus compared to neocortex, although hippocampal atrophy is observed. It is unclear whether regional patterns of hippocampal subfield involvement differ between PCA and LPA, and whether they differ from typical AD. OBJECTIVE: To assess volume of specific subfields of the hippocampus in PCA, LPA, and typical AD. METHODS: Fifty-nine patients with PCA and 77 patients with LPA were recruited and underwent T1-weighted MRI and Pittsburgh Compound B (PiB) PET at Mayo Clinic. Thirty-six probable AD patients and 100 controls were identified from the Alzheimer's Disease Neuroimaging Initiative. Hippocampal subfield volumes were calculated using Freesurfer, and volumes were compared between PCA, LPA, AD, and controls using Kruskal-Wallis and Dunn tests. RESULTS: The LPA and PCA groups both showed the most striking abnormalities in CA4, presubiculum, molecular layer of the hippocampus, molecular and granule cell layers of the dentate gyrus, and the hippocampal-amygdala transition area, although atrophy was left-sided in LPA. PCA showed smaller volume of right presubiculum compared to LPA, with trends for smaller volumes of right parasubiculum and fimbria. LPA showed a trend for smaller volumes of left CA1 compared to PCA. The AD group showed smaller volumes of the right subiculum, CA1, and presubiculum compared to LPA. CONCLUSION: Patterns of hippocampal subfield atrophy differ across the different syndromic variants of AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Alzheimer Disease/classification , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Aniline Compounds , Atrophy , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/pathology , Case-Control Studies , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Female , Hippocampus/pathology , Humans , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Parahippocampal Gyrus/diagnostic imaging , Parahippocampal Gyrus/pathology , Positron-Emission Tomography , Thiazoles
8.
Exp Neurol ; 330: 113357, 2020 08.
Article in English | MEDLINE | ID: mdl-32437708

ABSTRACT

BACKGROUND: Cognitive dysfunction is one of the most disabling non-motor symptoms of Parkinson's disease (PD), though its pathological correlates still remain elusive. Hippocampal Lewy pathology has recently been correlated by compelling evidence from post-mortem and imaging studies. Animal models recapitulating cognitive impairment in PD are essential to better understand the underlying pathophysiology. To investigate the hippocampal involvement in cognitive dysfunction of PD, we generated an experimental model by inducing midbrain and hippocampal α-synuclein pathology simultaneously. METHODS: Rats were injected either with human α-synuclein or green fluorescent protein (GFP) expressing adeno-associated viral vectors (AAV), or saline bilaterally into substantia nigra (SN) and dentate gyrus (DG). A group of untreated animals were used as naïve controls. Cognitive and behavioral changes were evaluated with tests probing for spatial learning, short-term memory, anxiety and hedonistic behavior. Immunohistochemical staining, immunoblotting and stereological analysis were performed for pathological characterization. RESULTS: Bilateral α-synuclein overexpression in SN and DG led to mild but significant motor impairment as well as dysfunctions in short-term memory and spatial learning. There was no hedonistic deficit, whereas a hypo-anxious state was induced. While stereological analysis revealed no significant neuronal loss in any sectors of cornu ammonis, there was considerable decrease (43%) in TH+-neurons in SN pars compacta supporting the well-known vulnerability of nigral dopaminergic neurons to α-synuclein mediated neurodegeneration. On the other hand, synaptophysin levels decreased in similar amounts both in striatum and hippocampus, suggesting comparable synaptic loss in target areas. Interestingly, phosphorylated-S129-α-synuclein staining revealed significant expression in CA2 characterized by more mature and dense cellular accumulations compared to CA1-CA3 sub-regions displaying more diffuse grain-like aggregates, suggesting preferential susceptibility of CA2 to produce α-synuclein induced pathology. CONCLUSION: Bilateral α-synuclein overexpression in DG and SN reproduced partial motor and hippocampus related cognitive deficits. Using this model, we showed a predisposition of CA2 for pathological α-synuclein accumulation, which may provide further insights for future experimental and clinical studies.


Subject(s)
CA2 Region, Hippocampal/pathology , Cognitive Dysfunction , Disease Models, Animal , Parkinson Disease/pathology , alpha-Synuclein/toxicity , Animals , Dentate Gyrus/pathology , Female , Humans , Rats , Rats, Sprague-Dawley , Substantia Nigra/pathology
9.
Cell ; 178(5): 1159-1175.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442405

ABSTRACT

Expansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions. Elevated BACE1 expression exacerbated Aß deposition and gliosis in AD mouse models and impaired hippocampal neurogenesis and olfactory axonal targeting. In SCA1 mice, polyglutamine-expanded mutant ataxin-1 led to the increase of BACE1 post-transcriptionally, both in cerebrum and cerebellum, and caused axonal-targeting deficit and neurodegeneration in the hippocampal CA2 region. These findings suggest that loss of ataxin-1 elevates BACE1 expression and Aß pathology, rendering it a potential contributor to AD risk and pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Ataxin-1/metabolism , Brain/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Ataxin-1/deficiency , Ataxin-1/genetics , Brain/pathology , CA2 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Frequency , Humans , Male , Mice , Mice, Transgenic , Neurogenesis , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Trinucleotide Repeats/genetics , Up-Regulation
10.
Neurobiol Aging ; 80: 21-28, 2019 08.
Article in English | MEDLINE | ID: mdl-31077957

ABSTRACT

A higher education level is a protective factor against cognitive decline in elders; however, the underlying neural mechanisms remain unclear. Modulated by both aging and education, the hippocampus is a starting point for understanding the long-lasting effect of education on the aging of human brain. Because the hippocampus possesses functionally heterogeneous subfields and exhibits sex differences, we examined hippocampal subfields in men and women separately. We performed both cross-sectional (n = 143) and longitudinal (n = 51) analyses on healthy participants aged 65-75 years, who underwent structural magnetic resonance imaging. Volumes of the hippocampi and their subfields were estimated by automated segmentation. We found significantly positive correlations between educational attainment and the volume of hippocampal CA2/3 in men but not in women. The longitudinal analysis focusing on this region validated the above results by showing that a higher education level attenuated the progression of atrophy during a 15-month follow-up period in the CA2/3 region in men. These findings suggest that, in men, education plays a role in the aging of specific hippocampal subfields.


Subject(s)
CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Educational Status , Healthy Aging/pathology , Aged , Atrophy , CA2 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male
11.
Acta Neuropathol Commun ; 7(1): 61, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31023342

ABSTRACT

Although the precise neuropathological substrates of cognitive decline in Parkinson's disease (PD) remain elusive, it has long been regarded that pathology in the CA2 hippocampal subfield is characteristic of Lewy body dementias, including dementia in PD (PDD). Early non-human primate tracer studies demonstrated connections from the nucleus of the vertical limb of the diagonal band of Broca (nvlDBB, Ch2) to the hippocampus. However, the relationship between Lewy pathology of the CA2 subfield and cholinergic fibres has not been explored. Therefore, in this study, we investigated the burden of pathology in the CA2 subsector of PD cases with varying degrees of cognitive impairment and correlated this with the extent of septohippocampal cholinergic deficit. Hippocampal sections from 67 PD, 34 PD with mild cognitive impairment and 96 PDD cases were immunostained for tau and alpha-synuclein, and the respective pathology burden was assessed semi-quantitatively. In a subset of cases, the degree of CA2 cholinergic depletion was quantified using confocal microscopy and correlated with cholinergic neuronal loss in Ch2. We found that only cases with dementia have a significantly greater Lewy pathology, whereas cholinergic fibre depletion was evident in cases with mild cognitive impairment and this was significantly correlated with loss of cholinergic neurons in Ch2. In addition, multiple antigen immunofluorescence demonstrated colocalisation between cholinergic fibres and alpha-synuclein but not tau pathology. Such specific Lewy pathology targeting the cholinergic system within the CA2 subfield may contribute to the unique memory retrieval deficit seen in patients with Lewy body disorders, as distinct from the memory storage deficit seen in Alzheimer's disease.


Subject(s)
CA2 Region, Hippocampal/pathology , Cholinergic Neurons/pathology , Cognitive Dysfunction/pathology , Lewy Bodies/pathology , Parkinson Disease/pathology , Aged , Aged, 80 and over , CA2 Region, Hippocampal/metabolism , Cholinergic Neurons/metabolism , Cognitive Dysfunction/complications , Cognitive Dysfunction/metabolism , Female , Humans , Lewy Bodies/metabolism , Male , Parkinson Disease/complications , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
12.
Neuroimage Clin ; 22: 101764, 2019.
Article in English | MEDLINE | ID: mdl-30904825

ABSTRACT

The profile of brain structural dysmorphology of individuals with Alcohol Use Disorders (AUD) involves disruption of the limbic system. In vivo imaging studies report hippocampal volume loss in AUD relative to controls, but only recently has it been possible to articulate different regions of this complex structure. Volumetric analysis of hippocampal regions rather than total hippocampal volume may augment differentiation of disease processes. For example, damage to hippocampal subfield cornu ammonis 1 (CA1) is often reported in Alzheimer's disease (AD), whereas deficits in CA4/dentate gyrus are described in response to stress and trauma. Two previous studies explored the effects of chronic alcohol use on hippocampal subfields: one reported smaller volume of the CA2+3 in alcohol-dependent subjects relative to controls, associated with years of alcohol consumption; the other, smaller volumes of presubiculum, subiculum, and fimbria in alcohol-dependent relative to control men. The current study, conducted in 24 adults with DSM5-diagnosed AUD (7 women, 53.7 ±â€¯8.8) and 20 controls (7 women, 54.1 ±â€¯9.3), is the first to use FreeSurfer 6.0, which provides state-of-the art hippocampal parcellation, to explore the sensitivity of hippocampal sufields to alcoholism. T1- and T2- images were collected on a GE MR750 system with a 32-channel Nova head coil. FreeSurfer 6.0 hippocampal subfield analysis produced 12 subfields: parasubiculum; presubiculum; subiculum; CA1; CA2+3; CA4; GC-ML-DG (Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)); molecular layer; hippocampus-amygdala-transition-area (HATA); fimbria; hippocampal tail; hippocampal fissure; and whole volume for left and right hippocampi. A comprehensive battery of neuropsychological tests comprising attention, memory and learning, visuospatial abilities, and executive functions was administered. Multiple regression analyses of raw volumetric data for each subfields by group, age, sex, hemisphere, and supratentorial volume (svol) showed significant effects of svol (p < .04) on nearly all structures (excluding tail and fissure). Volumes corrected for svol showed effects of age (fimbria, fissure) and group (subiculum, CA1, CA4, GC-ML-DG, HATA, fimbria); CA2+3 showed a diagnosis-by-age interaction indicating older AUD individuals had a smaller volume than would be expected for their age. There were no selective relations between hippocampal subfields and performance on neuropsychological tests, likely due to lack of statistical power. The current results concur with the previous study identifying CA2+3 as sensitive to alcoholism, extend them by identifying an alcoholism-age interaction, and suggest an imaging phenotype distinguishing AUD from AD and stress/trauma.


Subject(s)
Aging, Premature/pathology , Alcoholism/pathology , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Adult , Aged , Aging, Premature/diagnostic imaging , Aging, Premature/etiology , Alcoholism/complications , Alcoholism/diagnostic imaging , Alcoholism/physiopathology , CA2 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Female , Humans , Male , Middle Aged
13.
Sci Rep ; 8(1): 18046, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30575769

ABSTRACT

Corpora amylacea are cell-derived structures that appear physiologically in the aged human brain. While their histological identification is straightforward, their ultrastructural composition and microenvironment at the nanoscale have remained unclear so far, as has their relevance to aging and certain disease states that involve the sequestration of toxic cellular metabolites. Here, we apply correlative serial block-face scanning electron microscopy and transmission electron tomography to gain three-dimensional insight into the ultrastructure and surrounding microenvironment of cerebral Corpora amylacea in the human brainstem and hippocampal region. We find that cerebral Corpora amylacea are composed of dense labyrinth-like sheets of lipid membranes, contain vesicles as well as morphologically preserved mitochondria, and are in close proximity to blood vessels and the glymphatic system, primarily within the cytoplasm of perivascular glial cells. Our results clarify the nature of cerebral Corpora amylacea and provide first hints on how they may arise and develop in the aging brain.


Subject(s)
Brain/pathology , Brain/ultrastructure , Inclusion Bodies/pathology , Organelles/pathology , Aged , Aged, 80 and over , Autopsy , Brain/diagnostic imaging , Brain Stem/diagnostic imaging , Brain Stem/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/pathology , Humans , Imaging, Three-Dimensional , Microscopy, Electron/methods , Parkinson Disease/pathology , Pars Compacta/pathology
14.
Anal Chem ; 90(19): 11572-11580, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30188687

ABSTRACT

The brain functions through chemical interactions between many different cell types, including neurons and glia. Acquiring comprehensive information on complex, heterogeneous systems requires multiple analytical tools, each of which have unique chemical specificity and spatial resolution. Multimodal imaging generates complementary chemical information via spatially localized molecular maps, ideally from the same sample, but requires method enhancements that span from data acquisition to interpretation. We devised a protocol for performing matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance-mass spectrometry imaging (MSI), followed by infrared (IR) spectroscopic imaging on the same specimen. Multimodal measurements from the same tissue provide precise spatial alignment between modalities, enabling more advanced image processing such as image fusion and sharpening. Performing MSI first produces higher quality data from each technique compared to performing IR imaging before MSI. The difference is likely due to fixing the tissue section during MALDI matrix removal, thereby preventing analyte degradation occurring during IR imaging from an unfixed specimen. Leveraging the unique capabilities of each modality, we utilized pan sharpening of MS (mass spectrometry) ion images with selected bands from IR spectroscopy and midlevel data fusion. In comparison to sharpening with histological images, pan sharpening can employ a plethora of IR bands, producing sharpened MS images while retaining the fidelity of the initial ion images. Using Laplacian pyramid sharpening, we determine the localization of several lipids present within the hippocampus with high mass accuracy at 5 µm pixel widths. Further, through midlevel data fusion of the imaging data sets combined with k-means clustering, the combined data set discriminates between additional anatomical structures unrecognized by the individual imaging approaches. Significant differences between molecular ion abundances are detected between relevant structures within the hippocampus, such as the CA1 and CA3 regions. Our methodology provides high quality multiplex and multimodal chemical imaging of the same tissue sample, enabling more advanced data processing and analysis routines.


Subject(s)
Brain Chemistry/physiology , Brain/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Infrared , Animals , CA1 Region, Hippocampal/chemistry , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/chemistry , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/chemistry , CA3 Region, Hippocampal/pathology , Principal Component Analysis , Rats
15.
Neuroreport ; 27(5): 311-7, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26848998

ABSTRACT

Recent evidence has suggested that the hippocampal CA2 region plays an important role in the recognition process. We have reported that ischemic damage in the hippocampal CA2 region following transient ischemia is caused by apoptosis, but the underlying mechanisms are still not clear. Galectin-3 is a ß-galactosidase-binding lectin that is important in cell proliferation and apoptotic regulation. We have also reported that galectin-3 was expressed in activated microglia in the CA1 region 96 h after transient ischemia. The aim of this study is to determine the localization and time course of galectin-3 expression in the CA2 region following transient forebrain ischemia. Galectin-3 immunostaining was observed in both interior side of CA1 region and CA2 region in hippocampus 60 h after ischemic insult. At 66 h, galectin-3 was observed in the whole CA1 region adjacent to the CA2 region in the hippocampus. Both galectin-3 expression and neuronal cell death in the CA2 region were significantly inhibited by hypothermia and by apoptosis-inhibiting reagents. These results suggest that galectin-3 in the CA2 region is expressed independent of that in the CA1 region. Protection of the expression of galectin-3 in the CA2 region might contribute toward the survival of CA2 pyramidal neurons.


Subject(s)
CA2 Region, Hippocampal/pathology , Galectin 3/biosynthesis , Ischemic Attack, Transient/pathology , Animals , Apoptosis/drug effects , CA2 Region, Hippocampal/drug effects , CA2 Region, Hippocampal/metabolism , Disease Models, Animal , Gerbillinae , Hypothermia, Induced , Immunohistochemistry , Ischemic Attack, Transient/metabolism , Male , Neuroprotective Agents/pharmacology , Prosencephalon/pathology
16.
Behav Brain Res ; 301: 178-89, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26723539

ABSTRACT

Spontaneous vertical and horizontal exploratory movements are integral components of rodent behavior. Little is known, however, about the structural and functional consequences of restricted spontaneous exploration. Here, we report two experiments to probe whether restriction in vertical activity (rearing) in rats could induce neuro-hormonal and behavioral disturbances. Rearing movements in rats were deprived for 3h/day for 30 consecutive days by placing the animal into a circular tunnel task. Rats temporarily deprived of rearing behavior showed elevated plasma corticosterone levels but no detectable psychological distress and/or anxiety-related behavior within an elevated plus maze. However, rats emitted a greater number of 22-kHz ultrasonic vocalizations and spent significantly more time vocalizing than controls when deprived of their rearing behavior. Despite intact spatial performance within wet- and dry-land spatial tasks, rearing-deprived rats also exhibited a significant alteration in search strategies within both spatial tasks along with reduced volume and neuron number in the hippocampal subregion CA2. These data suggest a new approach to test the importance of free exploratory behavior in endocrine and structural manifestations. The results support a central role of the CA2 in spontaneous exploratory behavior and vulnerability to psychological stress.


Subject(s)
CA2 Region, Hippocampal/physiopathology , Motor Activity/physiology , Animals , Anxiety/physiopathology , Blood Glucose/physiology , CA2 Region, Hippocampal/pathology , Cell Count , Corticosterone/blood , Emotions/physiology , Exploratory Behavior/physiology , Male , Maze Learning/physiology , Neurons/pathology , Neurons/physiology , Neuropsychological Tests , Organ Size , Rats, Wistar , Spatial Behavior/physiology , Ultrasonics , Vocalization, Animal/physiology
17.
J Neurotrauma ; 33(14): 1349-57, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26493952

ABSTRACT

An imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p < 0.05, p < 0.10) and CA2-3 volumes (p's < 0.05) relative to healthy controls. Football athletes with and without a concussion history had a trend toward lower (p < 0.10) and significantly lower (p < 0.05) kynurenine levels compared with healthy controls, while athletes with a concussion history had greater levels of quinolinic acid compared with athletes without a concussion history (p < 0.05). Finally, plasma levels of 3-hydroxykynurenine inversely correlated with bilateral hippocampal volumes in football athletes with a concussion history (p < 0.01), and left hippocampal volume was correlated with the ratio of kynurenic acid to quinolinic acid in football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury.


Subject(s)
Athletic Injuries/blood , Brain Concussion/blood , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Dentate Gyrus/pathology , Kynurenine/analogs & derivatives , Kynurenine/blood , Quinolinic Acid/blood , Adolescent , Adult , Athletes , Athletic Injuries/diagnostic imaging , Athletic Injuries/pathology , Brain Concussion/diagnostic imaging , Brain Concussion/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/diagnostic imaging , Dentate Gyrus/diagnostic imaging , Football , Humans , Magnetic Resonance Imaging , Male , Universities , Young Adult
18.
Hippocampus ; 26(5): 577-88, 2016 May.
Article in English | MEDLINE | ID: mdl-26482541

ABSTRACT

Dentate granule cells and the hippocampal CA2 region are resistant to cell loss associated with mesial temporal lobe epilepsy (MTLE). It is known that granule cells undergo mossy fiber sprouting in the dentate gyrus which contributes to a recurrent, proepileptogenic circuitry in the hippocampus. Here it is shown that mossy fiber sprouting also targets CA2 pyramidal cell somata and that the CA2 region undergoes prominent structural reorganization under epileptic conditions. Using the intrahippocampal kainate mouse model for MTLE and the CA2-specific markers Purkinje cell protein 4 (PCP4) and regulator of G-Protein signaling 14 (RGS14), it was found that during epileptogenesis CA2 neurons survive and disperse in direction of CA3 and CA1 resulting in a significantly elongated CA2 region. Using transgenic mice that express enhanced green fluorescent protein (eGFP) in granule cells and mossy fibers, we show that the recently described mossy fiber projection to CA2 undergoes sprouting resulting in aberrant large, synaptoporin-expressing mossy fiber boutons which surround the CA2 pyramidal cell somata. This opens up the potential for altered synaptic transmission that might contribute to epileptic activity in CA2. Indeed, intrahippocampal recordings in freely moving mice revealed that epileptic activity occurs concomitantly in the dentate gyrus and in CA2. Altogether, the results call attention to CA2 as a region affected by MTLE-associated pathological restructuring.


Subject(s)
CA2 Region, Hippocampal/pathology , Epilepsy, Temporal Lobe/pathology , Mossy Fibers, Hippocampal/pathology , Pyramidal Cells/pathology , Animals , Disease Models, Animal , Electroencephalography , Epilepsy, Temporal Lobe/chemically induced , Excitatory Amino Acid Agonists/toxicity , Fluoresceins/pharmacokinetics , Functional Laterality , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kainic Acid/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Pyramidal Cells/metabolism , RGS Proteins/metabolism , Synaptophysin/metabolism , Time Factors
19.
Hippocampus ; 26(2): 220-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26286891

ABSTRACT

The hippocampus is composed of distinct subfields: the four cornu ammonis areas (CA1-CA4), dentate gyrus (DG), and subiculum. The few in vivo studies of human hippocampal subfields suggest that the extent of age differences in volume varies across subfields during healthy childhood development and aging. However, the associations between age and subfield volumes across the entire lifespan are unknown. Here, we used a high-resolution imaging technique and manually measured hippocampal subfield and entorhinal cortex volumes in a healthy lifespan sample (N = 202), ages 8-82 yrs. The magnitude of age differences in volume varied among the regions. Combined CA1-2 volume evidenced a negative linear association with age. In contrast, the associations between age and volumes of CA3-DG and the entorhinal cortex were negative in mid-childhood and attenuated in later adulthood. Volume of the subiculum was unrelated to age. The different magnitudes and patterns of age differences in subfield volumes may reflect dynamic microstructural factors and have implications for cognitive functions across the lifespan. © 2015 Wiley Periodicals, Inc.


Subject(s)
Aging , CA1 Region, Hippocampal/anatomy & histology , CA2 Region, Hippocampal/anatomy & histology , Dentate Gyrus/anatomy & histology , Entorhinal Cortex/anatomy & histology , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Child , Cross-Sectional Studies , Dentate Gyrus/pathology , Entorhinal Cortex/pathology , Female , Hippocampus/anatomy & histology , Hippocampus/pathology , Humans , Longitudinal Studies , Male , Middle Aged , Organ Size , Young Adult
20.
JAMA Psychiatry ; 71(7): 806-11, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24850422

ABSTRACT

IMPORTANCE: Research focusing on plasticity has shown adult neurogenesis in hippocampal subfields. Chronic alcoholism is associated with decreased plasticity and reduced whole hippocampal volume that could contribute to neuropsychiatric characteristics and outcome of the disease. OBJECTIVE: To investigate the effect of alcohol abstinence on neuronal plasticity measured as longitudinal volume change in distinct hippocampal subfields. DESIGN, SETTING, AND PARTICIPANTS: We acquired high-resolution structural images of 42 patients addicted to alcohol and 32 healthy control participants. Patients and control participants were both scanned twice, once after withdrawal and 2 weeks later. MAIN OUTCOMES AND MEASURES: Volumes of hippocampal subfields cornu ammonis (CA) 2+3, CA4+dentate gyrus, and subiculum were determined with a user-independent segmentation method. RESULTS: We found plasticity effects in bilateral CA2+3 in patients addicted to alcohol. Compared with healthy control participants, patients had lower CA2+3 volume at pretest (t31 = -0.73, P = .47) and showed a significant normalization of gray matter volume 2 weeks later. Pretest CA2+3 (t31 = -3.93, P < .001) volume was negatively associated with years of regular alcohol consumption (r42 = -0.32, P < .05) and more severe alcohol-withdrawal symptoms (r38 = -0.35, P < .05). Patients with stronger withdrawal symptoms displayed the largest volume increase of CA2+3 (r38 = 0.55, P < .001). CONCLUSIONS AND RELEVANCE: The observed normalization of the bilateral hippocampal CA2+3 volume deficit matches animal data, showing a strong increase of hippocampal neurogenesis after cessation of alcohol consumption, and fits the reported increase of patients' cognitive function within a few months of alcohol abstinence. The role of CA3 in pattern separation and completion is also critical for formation of hallucinations, which constitute a severe symptom of the withdrawal syndrome. The study adds further biological arguments from structural brain research to abstain from alcohol.


Subject(s)
Alcohol Abstinence , Alcoholism/pathology , Hippocampus/pathology , Neuronal Plasticity , Substance Withdrawal Syndrome/pathology , Adult , Alcohol Abstinence/psychology , Alcoholism/psychology , CA2 Region, Hippocampal/pathology , CA2 Region, Hippocampal/physiopathology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiopathology , Female , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging/psychology , Male , Middle Aged , Neuronal Plasticity/physiology , Severity of Illness Index , Substance Withdrawal Syndrome/psychology
SELECTION OF CITATIONS
SEARCH DETAIL