Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 272
1.
Sci Adv ; 10(20): eadm9326, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758792

Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.


Cognition , Histone Acetyltransferases , Wnt Signaling Pathway , Animals , Mice , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Thrombospondins/metabolism , Thrombospondins/genetics , Thrombospondins/deficiency , Neuronal Plasticity , Mice, Knockout
2.
Exp Neurol ; 365: 114406, 2023 07.
Article En | MEDLINE | ID: mdl-37062352

Structural and functional deficits in the hippocampus are a prominent feature of moderate-severe traumatic brain injury (TBI). In this work, we investigated the potential of Quantitative Susceptibility Imaging (QSM) to reveal the temporal changes in myelin integrity in a mouse model of concussion (mild TBI). We employed a cross-sectional design wherein we assigned 43 mice to cohorts undergoing either a concussive impact or a sham procedure, with QSM imaging at day 2, 7, or 14 post-injury, followed by Luxol Fast Blue (LFB) myelin staining to assess the structural integrity of hippocampal white matter (WM). We assessed spatial learning in the mice using the Active Place Avoidance Test (APA), recording their ability to use visual cues to locate and avoid zone-dependent mild electrical shocks. QSM and LFB staining indicated changes in the stratum lacunosum-molecular layer of the hippocampus in the concussion groups, suggesting impairment of this key relay between the entorhinal cortex and the CA1 regions. These imaging and histology findings were consistent with demyelination, namely increased magnetic susceptibility to MR imaging and decreased LFB staining. In the APA test, sham animals showed fewer entries into the shock zone compared to the concussed cohort. Thus, we present radiological, histological, and behavioral findings that concussion can induce significant and alterations in hippocampal integrity and function that evolve over time after the injury.


Brain Concussion , Demyelinating Diseases , Disease Models, Animal , Hippocampus , Magnetic Phenomena , Animals , Mice , Brain Concussion/pathology , Cross-Sectional Studies , Demyelinating Diseases/pathology , Hippocampus/pathology , Electroshock , Spatial Learning , White Matter/pathology , Entorhinal Cortex/pathology , Avoidance Learning , Cues , Photic Stimulation , CA1 Region, Hippocampal/pathology , Male , Axons/pathology , CA3 Region, Hippocampal/pathology
3.
Cell Rep ; 37(13): 110177, 2021 12 28.
Article En | MEDLINE | ID: mdl-34965426

The hippocampus is a temporal lobe structure critical for cognition, such as learning, memory, and attention, as well as emotional responses. Hippocampal dysfunction can lead to persistent anxiety and/or depression. However, how millions of neurons in the hippocampus are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing the coagulation factor c homolog (COCH) gene. COCH-expressing neurons or COCH neurons are topographically segregated in the distal region of the ventral CA3 hippocampus and express Mtf1 and Cacna1h. MTF1 activation of Cacna1h transcription in COCH neurons encodes the ability of COCH neurons to burst action potentials and cause social-stress-induced anxiety-like behaviors by synapsing directly with a subset of GABAergic inhibitory neurons in the lateral septum. Together, this study provides a molecular and circuitry-based framework for understanding how COCH neurons in the hippocampus are assembled to engage social behavior.


Action Potentials , Anxiety/pathology , CA3 Region, Hippocampal/pathology , Extracellular Matrix Proteins/metabolism , GABAergic Neurons/pathology , Social Behavior , Stress, Psychological , Animals , Anxiety/etiology , Anxiety/metabolism , CA3 Region, Hippocampal/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Emotions , Extracellular Matrix Proteins/genetics , Fear , GABAergic Neurons/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factor MTF-1
4.
Cell Mol Life Sci ; 78(21-22): 6941-6961, 2021 Nov.
Article En | MEDLINE | ID: mdl-34580742

Gulf War Illness (GWI), a disorder suffered by approximately 200,000 veterans of the first Gulf War, was caused by exposure to low-level organophosphate pesticides and nerve agents in combination with battlefield stress. To elucidate the mechanistic basis of the brain-related symptoms of GWI, human-induced pluripotent stem cells (hiPSCs) derived from veterans with or without GWI were differentiated into forebrain glutamatergic neurons and then exposed to a Gulf War (GW) relevant toxicant regimen consisting of a sarin analog and cortisol, a human stress hormone. Elevated levels of total and phosphorylated tau, reduced microtubule acetylation, altered mitochondrial dynamics/transport, and decreased neuronal activity were observed in neurons exposed to the toxicant regimen. Some of the data are consistent with the possibility that some veterans may have been predisposed to acquire GWI. Wistar rats exposed to a similar toxicant regimen showed a mild learning and memory deficit, as well as cell loss and tau pathology selectively in the CA3 region of the hippocampus. These cellular responses offer a mechanistic explanation for the memory loss suffered by veterans with GWI and provide a cell-based model for screening drugs and developing personalized therapies for these veterans.


Persian Gulf Syndrome/pathology , Animals , CA3 Region, Hippocampal/pathology , Cell Differentiation/physiology , Cells, Cultured , Disease Models, Animal , Gulf War , Humans , Induced Pluripotent Stem Cells/pathology , Male , Memory Disorders/pathology , Neurons/pathology , Rats , Rats, Wistar , Veterans
5.
J Neurochem ; 159(3): 525-542, 2021 11.
Article En | MEDLINE | ID: mdl-34379806

Sepsis-associated encephalopathy (SAE) represents diverse cerebral dysfunctions in response to pathogen-induced systemic inflammation. Peripheral exposure to lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall, has been extensively used to model systemic inflammation. Our previous studies suggested that LPS led to hippocampal neuron death and synaptic destruction in vivo. However, the underlying roles of activated microglia in these neuronal changes remained unclear. Here, LPS from two different bacterial strains (Salmonella enterica or E. coli) were compared and injected in 14- to 16-month-old mice and evaluated for neuroinflammation and neuronal integrity in the hippocampus at 7 or 63 days post-injection (dpi). LPS injection resulted in persistent neuroinflammation lasting for seven days and a subsequent normalisation by 63 dpi. Of note, increases in proinflammatory cytokines, microglial morphology and microglial mean lysosome volume were more pronounced after E. coli LPS injection than Salmonella LPS at 7 dpi. While inhibitory synaptic puncta density remained normal, excitatory synaptic puncta were locally reduced in the CA3 region of the hippocampus at 63 dpi. Finally, we provide evidence that excitatory synapses coated with complement factor 3 (C3) decreased between 7 dpi and 63 dpi. Although we did not find an increase of synaptic pruning by microglia, it is plausible that microglia recognised and eliminated these C3-tagged synapses between the two time points of investigation. Since a region-specific decline of CA3 synapses has previously been reported during normal ageing, we postulate that systemic inflammation may have accelerated or worsened the CA3 synaptic changes in the ageing brain.


Aging/pathology , CA3 Region, Hippocampal/pathology , Inflammation/pathology , Synapses/pathology , Animals , Female , Immunohistochemistry , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Microglia/pathology , Salmonella , Sepsis/pathology , Synaptosomes/pathology
6.
Neurosci Lett ; 763: 136181, 2021 10 15.
Article En | MEDLINE | ID: mdl-34416345

Motopsin is a serine protease that plays a crucial role in synaptic functions. Loss of motopsin function causes severe intellectual disability in humans. In this study, we evaluated the role of motopsin in the neuropathological development of cognitive impairments following chemotherapy, also known as chemobrain. Motopsin knockout (KO) and wild-type (WT) mice were intravenously injected with doxorubicin (Dox) or saline four times every 8 days and were evaluated for open field, novel object recognition, and passive avoidance tests. Parvalbumin-positive neurons in the hippocampus were immunohistochemically analyzed. Dox administration significantly decreased the total distance in the open field test in both WT and motopsin KO mice without affecting the duration spent in the center square. A significant interaction between the genotype and drug treatment was detected in the recognition index (the rate to investigate a novel object) in the novel object recognition test, although Dox treatment did not affect the total investigation time. Additionally, Dox treatment significantly decreased the recognition index in WT mice, whereas it tended to increase the recognition index in motopsin KO mice. Dox treatment did not affect the latency to enter a dark compartment in either WT or motopsin KO mice in the passive avoidance test. Interestingly, Dox treatment increased the parvalbumin-positive neurons in the stratum oriens of the hippocampus CA1 region of only WT mice, not motopsin KO mice. Our data suggest that motopsin deficiency imparted partial insensitivity to Dox-induced hippocampal impairments. Alternatively, motopsin may contribute to the neuropathology of chemobrain.


CA1 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Chemotherapy-Related Cognitive Impairment/pathology , Doxorubicin/adverse effects , Serine Endopeptidases/deficiency , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Chemotherapy-Related Cognitive Impairment/etiology , Disease Models, Animal , Humans , Locomotion/drug effects , Male , Mice , Mice, Knockout , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Neurons/drug effects , Neurons/pathology , Parvalbumins/metabolism , Serine Endopeptidases/genetics
7.
Bull Exp Biol Med ; 171(3): 327-332, 2021 Jul.
Article En | MEDLINE | ID: mdl-34297297

We studied the prolonged action of kainic acid on glutamatergic neurons in the dorsal hippocampus and the endocannabinoid-dependent protection against neurodegeneration. The pyramidal neurons of the CA3 field of the hippocampus, as well as granular and mossy cells of the dentate gyrus were examined. Light and electron microscopy revealed substantial damage to the components of the protein-synthesizing (rough endoplasmic reticulum, Golgi apparatus, and polyribosomes) and catabolic (lysosomes, autophagosomes, multivesicular structures, and lipofuscin formations) systems in all cells. Pyramidal and mossy neurons die mainly by the necrotic pathway. The death of granular cells occurred through both apoptosis and necrosis. The most vulnerable cells are mossy neurons located in the hilus. Activation of the endocannabinoid system induced by intracerebral injection of URB597, an inhibitor of degradation of endocannabinoid anandamide, protected the normal structure of the hippocampus and prevented neuronal damage and death induced by KA.


Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Nerve Degeneration/pathology , Polyunsaturated Alkamides/metabolism , Pyramidal Cells/drug effects , Status Epilepticus/pathology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Benzamides/pharmacology , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Carbamates/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Lysosomes/drug effects , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Microscopy, Electron , Necrosis/metabolism , Necrosis/pathology , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
8.
Laryngoscope ; 131(10): 2332-2340, 2021 10.
Article En | MEDLINE | ID: mdl-34156095

OBJECTIVES/HYPOTHESIS: Tinnitus can develop due to, or be aggravated by, stress in a rat model. To investigate stress as a possible causal factor in the development of tinnitus, we designed an animal study that included tinnitus behavior and excitatory/inhibitory neurotransmitter expression after noise exposure as well as restraint stress. STUDY DESIGN: An experimental animal study. METHODS: Wistar rats were grouped according to single or double exposure to noise and restraint stress. The noise exposure (NE) group was subjected to 110 dB sound pressure level (SPL) of 16 kHz narrow-band noise (NBN) for 1 hour, and the restraint stress (RS) group was restrained for 1 hour with or without noise exposure. Gap prepulse inhibition of the acoustic startle (GPIAS) reflex was measured at an NBN of 16 kHz to investigate tinnitus development. Various immunohistopathologic and molecular biologic studies were undertaken to evaluate possible mechanisms of tinnitus development after noise and/or restraint stress. RESULTS: The RS-only group showed a reduced GPIAS response, which is a reliable sign of tinnitus development. In the double-stimulus groups, more tinnitus-development signs of reduced GPIAS responses were observed. The expression of γ-aminobutyric acid A receptor α1 (GABAAR α1) in the hippocampus decreased in the NE│RS group. Increased N-methyl-d-aspartate receptor1 intensities in the NE│RS group and decreased GABAAR α1 intensities in the RS and NE│RS groups were observed in the CA3 region of the hippocampus. CONCLUSIONS: Tinnitus appeared to develop after stress alone in this animal study. An imbalance in excitatory and inhibitory neurotransmitters in the hippocampus may be related to the development of tinnitus after acute NE and/or stress. LEVEL OF EVIDENCE: NA Laryngoscope, 131:2332-2340, 2021.


CA3 Region, Hippocampal/pathology , Noise/adverse effects , Stress, Psychological/complications , Tinnitus/etiology , Acoustic Stimulation/adverse effects , Acoustic Stimulation/methods , Animals , Disease Models, Animal , Humans , Male , Rats , Receptors, GABA-A/analysis , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/analysis , Receptors, N-Methyl-D-Aspartate/metabolism , Reflex, Startle , Stress, Psychological/psychology , Tinnitus/diagnosis , Tinnitus/pathology , Tinnitus/psychology
9.
Sci Rep ; 11(1): 8535, 2021 04 20.
Article En | MEDLINE | ID: mdl-33879805

BDNF plays a crucial role in the regulation of synaptic plasticity. It is synthesized as a precursor (proBDNF) that can be proteolytically cleaved to mature BDNF (mBDNF). Previous studies revealed a bidirectional mode of BDNF actions, where long-term potentiation (LTP) was mediated by mBDNF through tropomyosin related kinase (Trk) B receptors whereas long-term depression (LTD) depended on proBDNF/p75 neurotrophin receptor (p75NTR) signaling. While most experimental evidence for this BDNF dependence of synaptic plasticity in the hippocampus was derived from Schaffer collateral (SC)-CA1 synapses, much less is known about the mechanisms of synaptic plasticity, in particular LTD, at hippocampal mossy fiber (MF) synapses onto CA3 neurons. Since proBDNF and mBDNF are expressed most abundantly at MF-CA3 synapses in the rodent brain and we had shown previously that MF-LTP depends on mBDNF/TrkB signaling, we now explored the role of proBDNF/p75NTR signaling in MF-LTD. Our results show that neither acute nor chronic inhibition of p75NTR signaling impairs MF-LTD, while short-term plasticity, in particular paired-pulse facilitation, at MF-CA3 synapses is affected by a lack of functional p75NTR signaling. Furthermore, MF-CA3 synapses showed normal LTD upon acute inhibition of TrkB receptor signaling. Nonetheless, acute inhibition of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of both intracellular and extracellular proBDNF cleavage, impaired MF-LTD. This seems to indicate that LTD at MF-CA3 synapses involves BDNF, however, MF-LTD does not depend on p75NTRs. Altogether, our experiments demonstrate that p75NTR signaling is not warranted for all glutamatergic synapses but rather needs to be checked separately for every synaptic connection.


CA3 Region, Hippocampal/metabolism , Long-Term Synaptic Depression/physiology , Mossy Fibers, Hippocampal/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CA3 Region, Hippocampal/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Mossy Fibers, Hippocampal/pathology , Neuronal Plasticity/physiology , Protein-Tyrosine Kinases/metabolism , Signal Transduction
10.
Molecules ; 26(6)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805696

Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders' models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area.


Benzoquinones/pharmacology , CA3 Region, Hippocampal/drug effects , Neuroprotective Agents/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/physiology , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiopathology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Endoplasmic Reticulum Stress/drug effects , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/physiopathology , Excitatory Amino Acid Agonists/toxicity , Female , In Vitro Techniques , Kainic Acid/toxicity , Male , Neuronal Plasticity/drug effects , Rats , Rats, Wistar
11.
Sci Rep ; 11(1): 6013, 2021 03 16.
Article En | MEDLINE | ID: mdl-33727609

Epidemiologic studies have indicated that dyslipidemia may facilitate the progression of cognitive dysfunction. We previously showed that patients with metabolic syndrome (MetS) had significantly higher plasma levels of electronegative very-low-density lipoprotein (VLDL) than did healthy controls. However, the effects of electronegative-VLDL on the brain and cognitive function remain unclear. In this study, VLDL isolated from healthy volunteers (nVLDL) or patients with MetS (metVLDL) was administered to mice by means of tail vein injection. Cognitive function was assessed by using the Y maze test, and plasma and brain tissues were analyzed. We found that mice injected with metVLDL but not nVLDL exhibited significant hippocampus CA3 neuronal cell loss and cognitive dysfunction. In mice injected with nVLDL, we observed mild glial cell activation in the medial prefrontal cortex (mPFC) and hippocampus CA3. However, in mice injected with metVLDL, plasma and brain TNF-α and Aß-42 levels and glial cell activation in the mPFC and whole hippocampus were higher than those in control mice. In conclusion, long-term exposure to metVLDL induced levels of TNF-α, Aß-42, and glial cells in the brain, contributing to the progression of cognitive dysfunction. Our findings suggest that electronegative-VLDL levels may represent a new therapeutic target for cognitive dysfunction.


CA3 Region, Hippocampal , Cognitive Dysfunction , Lipoproteins, VLDL/toxicity , Prefrontal Cortex , Animals , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Dyslipidemias/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Lipoproteins, VLDL/metabolism , Male , Metabolic Syndrome/metabolism , Mice , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology
12.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article En | MEDLINE | ID: mdl-33593893

Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."


CA1 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Cognitive Aging , Pyramidal Cells/pathology , Synapses/pathology , Animals , Male , Rats , Rats, Inbred BN , Rats, Inbred F344
13.
Biomed Pharmacother ; 135: 111230, 2021 Mar.
Article En | MEDLINE | ID: mdl-33434853

Diabetes mellitus is mainly associated with degeneration of the central nervous system, which eventually leads to cognitive deficit. Although some studies suggest that exercise can improve the cognitive decline associated with diabetes, the potential effects of endurance training (ET) accompanied by Matricaria chamomilla (M.ch) flowers extract on cognitive impairment in type 2 diabetes has been poorly understood. Forty male Wistar rats were randomized into 5 equal groups of 8: healthy-sedentary (H-sed), diabetes-sedentary (D-sed), diabetes-endurance training (D-ET), diabetes-Matricaria chamomilla. (D-M.ch), and diabetes-endurance training-Matricaria chamomilla. (D-ET-M.ch). Nicotinamide (110 mg/kg, i.p.) and Streptozotocin (65 mg/kg, i.p.) were utilized to initiate type 2 diabetes. Then, ET (5 days/week) and M.ch (200 mg/kg body weight/daily) were administered for 12 weeks. After 12 weeks of the experiment, cognitive functions were assessed using the Morris Water Maze (MWM) test and a passive avoidance paradigm using a shuttle box device. Subsequently, using crystal violet staining, neuron necrosis was examined in the CA3 area of the hippocampus. Diabetic rats showed cognitive impairment following an increase in the number of necrotic cells in region CA3 of the hippocampal tissue. Also, diabetes increased serum levels of lipid peroxidation and decreased total antioxidant capacity in serum and hippocampal tissue. ET + M.ch treatment prevented the necrosis of neurons in the hippocampal tissue. Following positive changes in hippocampal tissue and serum antioxidant enzyme levels, an improvement was observed in the cognitive impairment of the diabetic rats receiving ET + M.ch. Therefore the results showed that treatment with ET + M.ch could ameliorate memory and inactive avoidance in diabetic rats. Hence, the use of ET + M.ch interventions is proposed as a new therapeutic perspective on the death of hippocampal neurons and cognitive deficit caused by diabetes.


Behavior, Animal/drug effects , CA3 Region, Hippocampal/drug effects , Cognition/drug effects , Cognitive Dysfunction/prevention & control , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 2/therapy , Endurance Training , Matricaria , Physical Conditioning, Animal , Plant Extracts/pharmacology , Animals , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Combined Modality Therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/psychology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/psychology , Flowers , Lipid Peroxidation , Male , Matricaria/chemistry , Morris Water Maze Test/drug effects , Necrosis , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Rats, Wistar
14.
Cells ; 10(2)2021 01 20.
Article En | MEDLINE | ID: mdl-33498273

Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the current understanding of the role CypD plays in TBI pathobiology. Further, we directly assessed the role of CypD in mediating cell death following TBI by utilizing mice lacking the CypD encoding gene Ppif. Following controlled cortical impact (CCI), the genetic knockout of CypD protected acute mitochondrial bioenergetics at 6 h post-injury and reduced subacute cortical tissue and hippocampal cell loss at 18 d post-injury. The administration of CsA following experimental TBI in Ppif-/- mice improved cortical tissue sparing, highlighting the multiple cellular targets of CsA in the mitigation of TBI pathology. The loss of CypD appeared to desensitize the mitochondrial response to calcium burden induced by TBI; this maintenance of mitochondrial function underlies the observed neuroprotective effect of the CypD knockout. These studies highlight the importance of maintaining mitochondrial homeostasis after injury and validate CypD as a therapeutic target for TBI. Further, these results solidify the beneficial effects of CsA treatment following TBI.


Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Peptidyl-Prolyl Isomerase F/genetics , Animals , Brain Injuries, Traumatic/physiopathology , CA3 Region, Hippocampal/pathology , Cognition/drug effects , Peptidyl-Prolyl Isomerase F/deficiency , Peptidyl-Prolyl Isomerase F/metabolism , Cyclosporine/pharmacology , Energy Metabolism/drug effects , Memory/drug effects , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotection/drug effects
15.
J Neurosci Res ; 99(2): 604-620, 2021 02.
Article En | MEDLINE | ID: mdl-33078850

Individuals who regularly shift their sleep timing, like night and/or shift-workers suffer from circadian desynchrony and are at risk of developing cardiometabolic diseases and cancer. Also, shift-work is are suggested to be a risk factor for the development of mood disorders such as the burn out syndrome, anxiety, and depression. Experimental and clinical studies provide evidence that food intake restricted to the normal activity phase is a potent synchronizer for the circadian system and can prevent the detrimental health effects associated with circadian disruption. Here, we explored whether adult male Wistar rats exposed to an experimental model of shift-work (W-AL) developed depressive and/or anxiety-like behaviors and whether this was associated with neuroinflammation in brain areas involved with mood regulation. We also tested whether time-restricted feeding (TRF) to the active phase could ameliorate circadian disruption and therefore would prevent depressive and anxiety-like behaviors as well as neuroinflammation. In male Wistar rats, W-AL induced depressive-like behavior characterized by hypoactivity and anhedonia and induced increased anxiety-like behavior in the open field test. This was associated with increased number of glial fibrillary acidic protein and IBA-1-positive cells in the prefrontal cortex and basolateral amygdala. Moreover W-AL caused morphological changes in the microglia in the CA3 area of the hippocampus indicating microglial activation. Importantly, TRF prevented behavioral changes and decreased neuroinflammation markers in the brain. Present results add up evidence about the importance that TRF in synchrony with the light-dark cycle can prevent neuroinflammation leading to healthy mood states in spite of circadian disruptive conditions.


Anxiety/prevention & control , Brain/pathology , Depression/prevention & control , Feeding Behavior , Shift Work Schedule/adverse effects , Animals , Anxiety/etiology , Anxiety/pathology , Astrocytes/pathology , Basolateral Nuclear Complex/pathology , CA3 Region, Hippocampal/pathology , Calcium-Binding Proteins/analysis , Circadian Rhythm , Depression/etiology , Depression/pathology , Disease Models, Animal , Energy Intake , Food Preferences , Glial Fibrillary Acidic Protein/analysis , Inflammation , Liver/metabolism , Male , Microfilament Proteins/analysis , Microglia/ultrastructure , Open Field Test , Prefrontal Cortex/pathology , Random Allocation , Rats , Rats, Wistar , Recognition, Psychology , Shift Work Schedule/psychology , Time Factors , Weight Gain
16.
Behav Brain Res ; 396: 112895, 2021 01 01.
Article En | MEDLINE | ID: mdl-32890597

Heat exposure is an environmental stress that causes diverse heat related pathophysiological changes under extreme conditions. The brain including hippocampal region which is associated with learning and memory is significantly affected by heat stress resulting in memory impairment. However, the effect of heat on the spatial memory remains unclear. The present study aimed to explore the effect of heat stress on hippocampus and spatial memory in rats. Rat model of acute heat stress was used which was divided into two groups, viz. moderate heat stress (MHS) and severe heat stress (SHS). Redox parameters evaluation revealed that MHS and SHS exposure markedly increase the production of malondialdehyde (MDA), oxidised glutathione (GSSG), reactive oxidative species (ROS), protein oxidation level and decrease the reduced glutathione (GSH) levels in the hippocampal tissue. Furthermore, Cresyl Violet (CV) staining of hippocampal region showed higher pyknosis in rats exposed to SHS. Pronounced increase of caspase3 expression and Fluoro Jade-C (FJ-C) positive cells were observed in SHS resulting in neuronal injury and apoptosis in CA3 region of hippocampus culminating in spatial memory deficit. Our data also suggest that heat stress induces phospho Extracellular signal-regulated kinases (pERK)1/2 activation induced by Brain-derived neurotrophic factor (BDNF) leading to further activation of phospho cAMP-response element binding protein (pCREB) under MHS. However, during SHS, BDNF and pCREB expression were completely dysregulated and not sufficient to rescue cognitive decline in rats. In conclusion, SHS induces pathological alterations that include oxidative damage and apoptosis of hippocampal neurons, disturbing BDNF/ERK1/2/CREB axis that may affect spatial memory.


Brain-Derived Neurotrophic Factor/metabolism , CA3 Region, Hippocampal , CREB-Binding Protein/metabolism , Heat-Shock Response/physiology , MAP Kinase Signaling System/physiology , Memory Disorders , Oxidative Stress/physiology , Spatial Memory/physiology , Animals , Behavior, Animal/physiology , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , CA3 Region, Hippocampal/physiopathology , Disease Models, Animal , Male , Maze Learning/physiology , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/pathology , Memory Disorders/physiopathology , Rats , Rats, Sprague-Dawley
17.
J Chem Neuroanat ; 113: 101837, 2021 04.
Article En | MEDLINE | ID: mdl-32534024

Amyloid ß-peptides (Aß) are considered as a major hallmark of Alzheimer's disease (AD) that can induce synaptic loss and apoptosis in brain regions, particularly in the cortex and the hippocampus. Evidence suggests that crocin, as the major component of saffron, can exhibit neuromodulatory effects in AD. However, specific data related to their efficacy to attenuate the synaptic loss and neuronal death in animal models of AD are limited. Hence, we investigated the efficacy of crocin in the CA3 and dentate gyrus (DG) regions of the hippocampus and also in frontal cortex neurons employing a rat model of AD. Male Wistar rats were randomly divided into control, sham, AD model, crocin, and AD model + crocin groups, with 8 rats per group. AD model was established by injecting Aß1-42 into the frontal cortex rats, and thereafter the rats were administrated by crocin (30 mg/kg) for a duration of 12-day. The number of live cells, neuronal arborization and apoptosis were measured using a Cresyl violet, Golgi-Cox and TUNEL staining, respectively. Results showed that, the number of live cells in the hippocampus pyramidal neurons in the CA3 and granular cells in the DG regions of the AD rats significantly decreased, which was significantly rescued by crocin. Compared with the control group, the axonal, spine and dendrites arborization in the frontal cortex and CA3 region of the AD model group significantly decreased. The crocin could significantly reverse this arborization loss in the AD rats (P < 0.05). The apoptotic cell number in the CA3 and DG regions in the AD model group was significantly higher than that of the control group (P < 0.05), while crocin significantly decreased the apoptotic cell number in the AD group (P < 0.05). Conclusion. Crocin can improve the synaptic loss and neuronal death of the AD rats possibly by reducing the neuronal apoptosis.


Alzheimer Disease/pathology , CA3 Region, Hippocampal/drug effects , Carotenoids/pharmacology , Dentate Gyrus/drug effects , Frontal Lobe/drug effects , Pyramidal Cells/drug effects , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apoptosis/drug effects , CA3 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/pathology , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Models, Animal , Frontal Lobe/metabolism , Frontal Lobe/pathology , Male , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Rats, Wistar
18.
J Alzheimers Dis ; 79(1): 237-247, 2021.
Article En | MEDLINE | ID: mdl-33252076

BACKGROUND: Predicting the prognosis of mild cognitive impairment (MCI) has outstanding clinical value, and the hippocampal volume is a reliable imaging biomarker of AD diagnosis. OBJECTIVE: We aimed to longitudinally assess hippocampal sub-regional difference (volume and asymmetry) among progressive MCI (pMCI), stable MCI (sMCI) patients, and normal elderly. METHODS: We identified 29 pMCI, 52 sMCI, and 102 normal controls (NC) from the ADNI database. All participants underwent neuropsychological assessment and 3T MRI scans three times. The time interval between consecutive MRI sessions was about 1 year. Volumes of hippocampal subfield were measured by Freesurfer. Based on the analysis of variance, repeated measures analyses, and receiver operating characteristic curves, we compared cross-sectional and longitudinal alteration sub-regional volume and asymmetry index. RESULTS: Compared to NC, both MCI groups showed significant atrophy in all subfields. At baseline, pMCI have a smaller volume than sMCI in the bilateral subiculum, molecular layer (ML), the molecular and granule cell layers of the dentate gyrus, cornu ammonis 4, and right tail. Furthermore, repeated measures analyses revealed that pMCI patients showed a faster volume loss than sMCI in bilateral subiculum and ML. After controlling for age, gender, and education, most results remained unchanged. However, none of the hippocampal sub-regional volumes performed better than the whole hippocampus in ROC analyses, and no asymmetric difference between pMCI and sMCI was found. CONCLUSION: The faster volume loss in subiculum and ML suggest a higher risk of disease progression in MCI patients. The hippocampal asymmetry may have smaller value in predicting the MCI prognosis.


Cognitive Dysfunction/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Aged, 80 and over , Aniline Compounds , Atrophy , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/pathology , Case-Control Studies , Cognitive Dysfunction/pathology , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Disease Progression , Ethylene Glycols , Female , Hippocampus/pathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Organ Size , Positron-Emission Tomography , ROC Curve
19.
Acta Neuropathol Commun ; 8(1): 198, 2020 11 23.
Article En | MEDLINE | ID: mdl-33225991

The brain pathology of Alzheimer's disease (AD) is characterized by the misfolding and aggregation of both the amyloid beta (Aß) peptide and hyperphosphorylated forms of the tau protein. Initial Aß deposition is considered to trigger a sequence of deleterious events contributing to tau pathology, neuroinflammation and ultimately causing the loss of synapses and neurons. To assess the effect of anti-Aß immunization in this context, we generated a mouse model by overexpressing the human tau protein in the hippocampus of 5xFAD mice. Aß plaque deposition combined with human tau overexpression leads to an array of pathological manifestations including the formation of tau-positive dystrophic neurites and accumulation of hyperphosphorylated tau at the level of neuritic plaques. Remarkably, the presence of human tau reduces microglial clustering in proximity to the Aß plaques, which may affect the barrier role of microglia. In this mouse model, continuous administration of anti-Aß antibodies enhances the clustering of microglial cells even in the presence of tau. Anti-Aß immunization increases plaque compaction, reduces the spread of tau in the hippocampal formation and prevents the formation of tau-positive dystrophic neurites. However, the treatment does not significantly reduce tau-induced neurodegeneration in the dentate gyrus. These results highlight that anti-Aß immunization is able to enhance microglial activity around neuritic plaques, mitigating part of the tau-induced pathological manifestations.


Alzheimer Disease/metabolism , Amyloid beta-Peptides/immunology , Antibodies/pharmacology , CA3 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Microglia/pathology , Plaque, Amyloid/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , CA3 Region, Hippocampal/pathology , Dentate Gyrus/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Immunization, Passive , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/genetics
20.
J Alzheimers Dis ; 78(3): 927-937, 2020.
Article En | MEDLINE | ID: mdl-33074228

BACKGROUND: Posterior cortical atrophy (PCA) and logopenic progressive aphasia (LPA) are two of the most common variants of atypical Alzheimer's disease (AD). Both PCA and LPA are associated with relative sparing of hippocampus compared to neocortex, although hippocampal atrophy is observed. It is unclear whether regional patterns of hippocampal subfield involvement differ between PCA and LPA, and whether they differ from typical AD. OBJECTIVE: To assess volume of specific subfields of the hippocampus in PCA, LPA, and typical AD. METHODS: Fifty-nine patients with PCA and 77 patients with LPA were recruited and underwent T1-weighted MRI and Pittsburgh Compound B (PiB) PET at Mayo Clinic. Thirty-six probable AD patients and 100 controls were identified from the Alzheimer's Disease Neuroimaging Initiative. Hippocampal subfield volumes were calculated using Freesurfer, and volumes were compared between PCA, LPA, AD, and controls using Kruskal-Wallis and Dunn tests. RESULTS: The LPA and PCA groups both showed the most striking abnormalities in CA4, presubiculum, molecular layer of the hippocampus, molecular and granule cell layers of the dentate gyrus, and the hippocampal-amygdala transition area, although atrophy was left-sided in LPA. PCA showed smaller volume of right presubiculum compared to LPA, with trends for smaller volumes of right parasubiculum and fimbria. LPA showed a trend for smaller volumes of left CA1 compared to PCA. The AD group showed smaller volumes of the right subiculum, CA1, and presubiculum compared to LPA. CONCLUSION: Patterns of hippocampal subfield atrophy differ across the different syndromic variants of AD.


Alzheimer Disease/diagnostic imaging , Hippocampus/diagnostic imaging , Aged , Alzheimer Disease/classification , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Aniline Compounds , Atrophy , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/diagnostic imaging , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/diagnostic imaging , CA3 Region, Hippocampal/pathology , Case-Control Studies , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Female , Hippocampus/pathology , Humans , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Parahippocampal Gyrus/diagnostic imaging , Parahippocampal Gyrus/pathology , Positron-Emission Tomography , Thiazoles
...