Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
Blood Adv ; 8(11): 2635-2645, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38564778

ABSTRACT

ABSTRACT: Chimeric antigen receptor (CAR) natural killer (NK) cells can eliminate tumors not only through the ability of the CAR molecule to recognize antigen-expressed cancer cells but also through NK-cell receptors themselves. This overcomes some of the limitations of CAR T cells, paving the way for CAR NK cells for safer and more effective off-the-shelf cellular therapy. In this study, CD70-specific (a pan-target of lymphoma) fourth-generation CAR with 4-1BB costimulatory domain and interleukin-15 (IL-15) was constructed and transduced into cord blood-derived NK cells by Baboon envelope pseudotyped lentiviral vector. CD70-CAR NK cells displayed superior cytotoxic activity in vitro and in vivo against CD19-negative B-cell lymphoma when compared with nontransduced NK cells and CD19-specific CAR NK cells. Importantly, mice that received 2 doses of CD70-CAR NK cells showed effective eradication of tumors, accompanied by increased concentration of plasma IL-15 and enhanced CAR NK cell proliferation and persistence. Our study suggests that repetitive administration-based CAR NK-cell therapy has clinical advantage compared with a single dose of CAR NK cells for the treatment of B-cell lymphoma.


Subject(s)
Antigens, CD19 , CD27 Ligand , Immunotherapy, Adoptive , Interleukin-15 , Killer Cells, Natural , Lymphoma, B-Cell , Receptors, Chimeric Antigen , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Humans , Mice , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Antigens, CD19/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cytotoxicity, Immunologic
2.
Cancer Discov ; 14(7): 1176-1189, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38583184

ABSTRACT

Therapeutic approaches for clear cell renal cell carcinoma (ccRCC) remain limited; however, chimeric antigen receptor (CAR) T-cell therapies may offer novel treatment options. CTX130, an allogeneic CD70-targeting CAR T-cell product, was developed for the treatment of advanced or refractory ccRCC. We report that CTX130 showed favorable preclinical proliferation and cytotoxicity profiles and completely regressed RCC xenograft tumors. We also report results from 16 patients with relapsed/refractory ccRCC who received CTX130 in a phase I, multicenter, first-in-human clinical trial. No patients encountered dose-limiting toxicity, and disease control was achieved in 81.3% of patients. One patient remains in a durable complete response at 3 years. Finally, we report on a next-generation CAR T construct, CTX131, in which synergistic potency edits to CTX130 confer improved expansion and efficacy in preclinical studies. These data represent a proof of concept for the treatment of ccRCC and other CD70+ malignancies with CD70- targeted allogeneic CAR T cells. Significance: Although the role of CAR T cells is well established in hematologic malignancies, the clinical experience in solid tumors has been disappointing. This clinical trial demonstrates the first complete response in a patient with RCC, reinforcing the potential benefit of CAR T cells in the treatment of solid tumors.


Subject(s)
CD27 Ligand , Carcinoma, Renal Cell , Immunotherapy, Adoptive , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/immunology , Animals , Kidney Neoplasms/therapy , Kidney Neoplasms/immunology , Immunotherapy, Adoptive/methods , Mice , Female , Male , Middle Aged , Receptors, Chimeric Antigen/immunology , Aged , Xenograft Model Antitumor Assays , Cell Line, Tumor , Adult
3.
J Transl Med ; 22(1): 368, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637886

ABSTRACT

In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Carcinoma, Renal Cell/therapy , T-Lymphocytes , Cell Line, Tumor , Kidney Neoplasms/therapy , Immunotherapy, Adoptive , Xenograft Model Antitumor Assays , CD27 Ligand
4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473788

ABSTRACT

Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide, with high morbidity and mortality rates. The evidence for the tumor-supporting capacities of cancer-associated fibroblasts (CAFs) that modulate cancer cell proliferation, invasion, metastasis, and tumor immunity, including in CRC, has been attracting attention. The present study examined the expression status of CD70 and POSTN in CRC and analyzed their association with clinicopathological features and clinical outcomes. In the present study, in total 15% (40/269) and 44% (119/269) of cases exhibited CD70 and POSTN expression on CAFs, respectively. Co-expression of CD70 and POSTN was detected in 8% (21/269) of patients. Fluorescent immunohistochemistry identified the co-expression of CD70 and POSTN with FAP and PDPN, respectively. ACTA2 was not co-expressed with CD70 or POSTN in CRC CAFs. CRC with CD70+/POSTN+ status in CAFs was significantly associated with distant organ metastasis (p = 0.0020) or incomplete resection status (p = 0.0011). CD70+/POSTN+ status tended to associate with advanced pT stage (p = 0.032) or peritoneal metastasis (p = 0.0059). Multivariate Cox hazards regression analysis identified CD70+/POSTN+ status in CAFs [hazard ratio (HR) = 3.78] as a potential independent risk factor. In vitro experiments revealed the activated phenotypes of colonic fibroblasts induced by CD70 and POSTN, while migration and invasion assays identified enhanced migration and invasion of CRC cells co-cultured with CD70- and POSTN-expressing colonic fibroblasts. On the basis of our observations, CD70 and POSTN immunohistochemistry can be used in the prognostication of CRC patients. CRC CAFs may be a promising target in the treatment of CRC patients.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Fibroblasts/metabolism , Immunohistochemistry , Cell Proliferation , Colorectal Neoplasms/pathology , Cell Adhesion Molecules/metabolism , CD27 Ligand/metabolism
5.
BMC Cancer ; 24(1): 352, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504180

ABSTRACT

BACKGROUND: The Cluster of Differentiation 27 (CD27) is aberrantly expressed in multiple myeloma (MM) -derived. This expression facilitates the interaction between tumor and immune cells within TME via the CD27-CD70 pathway, resulting in immune evasion and subsequent tumor progression. The objective of this study is to investigate the correlation between CD27 expression and the prognosis of MM, and to elucidate its potential relationship with the immune microenvironment. METHODS: In this research, CD27 expression in T cells within the 82 newly diagnosed MM microenvironment was assessed via flow cytometry. We then examined the association between CD27 expression levels and patient survival. Subsequent a series of bioinformatics and in vitro experiments were conducted to reveal the role of CD27 in MM. RESULTS: Clinical evidence suggests that elevated CD27 expression in T cells within the bone marrow serves as a negative prognostic marker for MM survival. Data analysis from the GEO database has demonstrated a strong association between MM-derived CD27 and the immune response, as well as the hematopoietic system. Importantly, patients with elevated levels of CD27 expression were also found to have an increased presence of MDSCs and macrophages in the bone marrow microenvironment. Furthermore, the PERK-ATF4 signaling pathway has been implicated in mediating the effects of CD27 in MM. CONCLUSIONS: We revealed that CD27 expression levels serve as an indicative marker for the prognosis of MM patients. The CD27- PERK-ATF4 is a promising target for the treatment of MM.


Subject(s)
Multiple Myeloma , Humans , Prognosis , CD27 Ligand , Bone Marrow/pathology , Signal Transduction , Tumor Microenvironment
6.
J Hematol Oncol ; 17(1): 8, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38331849

ABSTRACT

BACKGROUND: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS: RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS: In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS: We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.


Subject(s)
Cancer-Associated Fibroblasts , Lymphoma , Humans , Animals , Mice , Cytotoxicity, Immunologic , Interleukin-15/metabolism , Cell Line, Tumor , Killer Cells, Natural , Immunotherapy, Adoptive/methods , Lymphoma/metabolism , Cytokines/metabolism , CD27 Ligand
7.
J Immunol Res ; 2024: 2875635, 2024.
Article in English | MEDLINE | ID: mdl-38314087

ABSTRACT

Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.


Subject(s)
Cancer Vaccines , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/therapy , CD27 Ligand/genetics , Computational Biology/methods , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Immunoinformatics , Kidney Neoplasms/therapy , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Subunit Vaccines , Receptors, Tumor Necrosis Factor
8.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38354704

ABSTRACT

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Subject(s)
CD28 Antigens , Gene Regulatory Networks , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , CD28 Antigens/metabolism , Signal Transduction , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , CD27 Ligand/genetics , CD27 Ligand/metabolism , CD8-Positive T-Lymphocytes
9.
Clin Genitourin Cancer ; 22(2): 347-353, 2024 04.
Article in English | MEDLINE | ID: mdl-38195301

ABSTRACT

BACKGROUND: CD70 is commonly overexpressed in renal cell carcinoma and is minimally expressed in normal human tissue, making it a potential therapeutic target for patients with advanced renal cell carcinoma. The expression frequency of CD70 in metastatic renal cell carcinoma is not well established. MATERIALS AND METHODS: We assessed CD70 immunohistochemistry in 391 primary renal tumors and 72 metastatic renal cell carcinomas on a tissue microarray including 26 sets of paired primary and metastatic tumors. RESULTS: CD70 was frequently overexpressed in clear cell carcinoma, with a significantly lower expression rate in papillary renal cell carcinoma (P < .0001). No expression of CD70 was detected in other types of renal tumors and normal renal parenchyma. In clear cell renal cell carcinoma, CD70 expression was significantly correlated with hypoxia pathway proteins, corroborating with a recent study suggesting that CD70 is a downstream target gene of hypoxia-inducible factor. While higher expression levels were observed in males and non-Caucasians, CD70 expression was not associated with tumor grade, sarcomatoid differentiation, stage, or cancer-specific survival. Further, analysis of 26 paired primary and metastatic tumors from same individuals revealed a concordance rate of 85%. CONCLUSION: Our findings validated CD70 as a promising therapeutic target for patients with metastatic clear cell renal cell carcinoma. The utility of primary tumor tissue as surrogate samples for metastatic clear cell carcinoma awaits future CD70-targeted clinical trials.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Male , Humans , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Kidney/pathology , Hypoxia , Biomarkers, Tumor , CD27 Ligand/metabolism
10.
Cancer Sci ; 115(4): 1073-1084, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279834

ABSTRACT

In CD70-expressing tumors, the interaction of CD70 on tumor cells with its lymphocyte receptor, CD27, is thought to play a role in immunosuppression in the tumor microenvironment and elevated serum levels of soluble CD27 (sCD27). Previous studies showed that CD70 is expressed in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related malignancy. However, the association between intratumoral CD70/CD27 expression and serum levels of sCD27 in NPC remains unclear. In the present study, we show that CD70 is primarily expressed by tumor cells in NPC and that CD27-positive lymphocytes infiltrate around tumor cells. NPC patients with CD27-positive lymphocytes had significantly better prognosis than patients lacking these cells. In addition, high CD70 expression by tumor cells tended to be correlated with shorter survival in NPC patients with CD27-positive lymphocytes. Serum sCD27 levels were significantly increased in patients with NPC and provided good diagnostic accuracy for discriminating patients from healthy individuals. The concentration of serum sCD27 in patients with CD70-positive NPC with CD27-positive lymphocytes was significantly higher than in patients with tumors negative for CD70 and/or CD27, indicating that the intratumoral CD70/CD27 interaction boosts the release of sCD27. Furthermore, positive expression of CD70 by NPC cells was significantly correlated with EBV infection. Our results suggest that CD70/CD27-targeted immunotherapies may be promising treatment options and that sCD27 may become an essential tool for evaluating the applicability of these therapies by predicting the intratumoral CD70/CD27 interaction in NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Biomarkers , CD27 Ligand/metabolism , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Nasopharyngeal Carcinoma , Tumor Microenvironment , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
11.
J Autoimmun ; 142: 103137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38064919

ABSTRACT

BACKGROUND: Environmental factors can influence epigenetic regulation, including DNA methylation, potentially contributing to systemic lupus erythematosus (SLE) development and progression. We compared methylation of the B cell costimulatory CD70 gene, in persons with lupus and controls, and characterized associations with age. RESULTS: In 297 adults with SLE and 92 controls from the Michigan Lupus Epidemiology and Surveillance (MILES) Cohort, average CD70 methylation of CD4+ T cell DNA across 10 CpG sites based on pyrosequencing of the promoter region was higher for persons with SLE compared to controls, accounting for covariates [ß = 2.3, p = 0.011]. Using Infinium MethylationEPIC array data at 18 CD70-annoted loci (CD4+ and CD8+ T cell DNA), sites within the promoter region tended to be hypomethylated in SLE, while those within the gene region were hypermethylated. In SLE but not controls, age was significantly associated with pyrosequencing-based CD70 methylation: for every year increase in age, methylation increased by 0.14 percentage points in SLE, accounting for covariates. Also within SLE, CD70 methylation approached a significantly higher level in Black persons compared to White persons (ß = 1.8, p = 0.051). CONCLUSIONS: We describe altered CD70 methylation patterns in T lymphocyte subsets in adults with SLE relative to controls, and report associations particular to SLE between methylation of this immune-relevant gene and both age and race, possibly a consequence of "weathering" or accelerated aging which may have implications for SLE pathogenesis and potential intervention strategies.


Subject(s)
Epigenesis, Genetic , Lupus Erythematosus, Systemic , Adult , Humans , CD4-Positive T-Lymphocytes/metabolism , Michigan/epidemiology , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics , DNA Methylation , DNA , CD27 Ligand/genetics , CD27 Ligand/metabolism
12.
J Pathol ; 262(2): 189-197, 2024 02.
Article in English | MEDLINE | ID: mdl-37933684

ABSTRACT

Primary cutaneous CD4+ small or medium T-cell lymphoproliferative disorder (PCSM-LPD) is a clonal T-cell proliferation disease confined to the skin. PCSM-LPD shares expression of T follicular helper (Tfh) cell markers with various mature T-cell lymphomas. However, the benign presentation of PCSM-LPD contrasts the clinical behavior of other Tfh-lymphomas. The aim of our study was to delineate the molecular similarities and differences between PCSM-LPD and other Tfh-derived lymphomas to explain the clinical behavior and unravel possible pathological mechanisms. We performed targeted next-generation sequencing of 19 genes recurrently mutated in T-cell neoplasms in n = 17 PCSM-LPD with high and in n = 21 PCSM-LPD with low tumor cell content. Furthermore, gene expression profiling was used to identify genes potentially expressed in the PD1-positive (PD1+) neoplastic cells. Expression of some of these genes was confirmed in situ using multistain immunofluorescence. We found that PCSM-LPD rarely harbored mutations recurrently detected in other T-cell neoplasms. PCSM-LPD is characterized by the invariable expression of the T-cell-receptor-associated LCK protein. CD70 and its ligand CD27 are co-expressed on PD1+ PCSM-LPD cells, suggestive of autoactivation of the CD70 pathway. In conclusion, PCSM-LPD differs from disseminated lymphomas of Tfh origin by their mutation profile. Activation of CD70 signaling also found in cutaneous T-cell lymphoma represents a potential driver of neoplastic proliferation of this benign neoplasia of Tfh. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Lymphoproliferative Disorders , Skin Diseases , Skin Neoplasms , Humans , CD4-Positive T-Lymphocytes/pathology , Skin Diseases/pathology , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , CD27 Ligand/genetics
13.
Front Immunol ; 14: 1252274, 2023.
Article in English | MEDLINE | ID: mdl-37965342

ABSTRACT

Introduction: T cell expressed CD27 provides costimulation upon binding to inducible membrane expressed trimeric CD70 and is required for protective CD8 T cell responses. CD27 agonists could therefore be used to bolster cellular vaccines and anti-tumour immune responses. To date, clinical development of CD27 agonists has focussed on anti-CD27 antibodies with little attention given to alternative approaches. Methods: Here, we describe the generation and activity of soluble variants of CD70 that form either trimeric (t) or dimer-of-trimer proteins and conduct side-by-side comparisons with an agonist anti-CD27 antibody. To generate a dimer-of-trimer protein (dt), we fused three extracellular domains of CD70 to the Fc domain of mouse IgG1 in a 'string of beads' configuration (dtCD70-Fc). Results: Whereas tCD70 failed to costimulate CD8 T cells, both dtCD70-Fc and an agonist anti-CD27 antibody were capable of enhancing T cell proliferation in vitro. Initial studies demonstrated that dtCD70-Fc was less efficacious than anti-CD27 in boosting a CD8 T cell vaccine response in vivo, concomitant with rapid clearance of dtCD70-Fc from the circulation. The accelerated plasma clearance of dtCD70-Fc was not due to the lack of neonatal Fc receptor binding but was dependent on the large population of oligomannose type glycosylation. Enzymatic treatment to reduce the oligomannose-type glycans in dtCD70-Fc improved its half-life and significantly enhanced its T cell stimulatory activity in vivo surpassing that of anti-CD27 antibody. We also show that whereas the ability of the anti-CD27 to boost a vaccine response was abolished in Fc gamma receptor (FcγR)-deficient mice, dtCD70-Fc remained active. By comparing the activity of dtCD70-Fc with a variant (dtCD70-Fc(D265A)) that lacks binding to FcγRs, we unexpectedly found that FcγR binding to dtCD70-Fc was required for maximal boosting of a CD8 T cell response in vivo. Interestingly, both dtCD70-Fc and dtCD70-Fc(D265A) were effective in prolonging the survival of mice harbouring BCL1 B cell lymphoma, demonstrating that a substantial part of the stimulatory activity of dtCD70-Fc in this setting is retained in the absence of FcγR interaction. Discussion: These data reveal that TNFRSF ligands can be generated with a tunable activity profile and suggest that this class of immune agonists could have broad applications in immunotherapy.


Subject(s)
Receptors, IgG , Vaccines , Animals , Mice , CD27 Ligand/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Immunization
15.
J Immunother Cancer ; 11(11)2023 11 29.
Article in English | MEDLINE | ID: mdl-38030302

ABSTRACT

BACKGROUND: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS: Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS: We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS: Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.


Subject(s)
Cancer Vaccines , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Topotecan/pharmacology , Topotecan/therapeutic use , DNA Topoisomerases, Type I , Papillomavirus E7 Proteins , Vaccines, Subunit , Uterine Cervical Neoplasms/drug therapy , Cell Proliferation , Tumor Microenvironment , CD27 Ligand
16.
Emerg Microbes Infect ; 12(2): 2271068, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37824079

ABSTRACT

Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.


Subject(s)
HIV Infections , Immune Reconstitution , Humans , CD4-Positive T-Lymphocytes , Disease Progression , Cell Differentiation , CD27 Ligand/genetics , CD27 Ligand/metabolism
17.
Immunotherapy ; 15(15): 1257-1273, 2023 10.
Article in English | MEDLINE | ID: mdl-37661910

ABSTRACT

Background: Soft tissue and bone sarcomas are rare entities, hence, standardized therapeutic strategies are difficult to assess. Materials & methods: Immunohistochemistry was performed on 68 sarcoma samples to assess the expression of PD-1, PD-L1, IDO and CD70 in different tumor compartments and molecular analysis was performed to assess microsatellite instability status. Results: PD-1/PD-L1, IDO and CD70 pathways are at play in the immune evasion of sarcomas in general. Soft tissue sarcomas more often show an inflamed phenotype compared with bone sarcomas. Specific histologic sarcoma types show high expression levels of different markers. Finally, this is the first presentation of a microsatellite instability-high Kaposi sarcoma. Discussion/conclusion: Immune evasion occurs in sarcomas. Specific histologic types might benefit from immunotherapy, for which further investigation is needed.


Sarcomas of the soft tissue and bone are rare cancers. When these cancers spread to other parts of the body, it is hard to find good treatments. Recently, doctors have been using a new type of treatment called immunotherapy to fight several types of cancer. Immunotherapy works by getting one's body's own defense cells to attack the cancer cells. Unfortunately, immunotherapy does not work well for sarcomas and we do not know why. This study was designed to determine if there are certain mechanisms in these tumors that help the cancer cells to hide from defense cells. Determining how to change these mechanisms could make immunotherapy a better treatment for sarcomas in the future.


Subject(s)
Bone Neoplasms , Osteosarcoma , Sarcoma , Soft Tissue Neoplasms , Humans , Programmed Cell Death 1 Receptor , Immune Evasion , B7-H1 Antigen/genetics , Microsatellite Instability , Sarcoma/genetics , Sarcoma/therapy , CD27 Ligand
18.
J Immunol ; 211(7): 1067-1072, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37722095

ABSTRACT

Osteosarcoma is a primary malignant bone tumor. Effective chemotherapy regimens for refractory disease are scarce, accounting for no improvement in survival. Immune-based cell therapies have emerged as novel alternatives. However, advancements with these therapies have been seen mostly when immune cells are armed to target specific tumor Ags. Recent studies identified cluster of differentiation 70 (CD70) as a promising target to osteosarcoma particularly because CD70 is highly expressed in osteosarcoma lung metastases (Pahl et al. 2015. Cancer Cell Int. 15: 31), and its overexpression by tumors has been correlated with immune evasion and tumor proliferation (Yang et al. 2007. Blood 110: 2537-2544). However, the limited knowledge of the overall CD70 expression within normal tissues and the potential for off-target effect pose several challenges (Flieswasser et al. 2022. J. Exp. Clin. Cancer Res. 41: 12). Nonetheless, CD70-based clinical trials are currently ongoing and are preliminarily showing promising results for patients with osteosarcoma. The present review sheds light on the recent literature on CD70 as it relates to osteosarcoma and highlights the benefits and challenges of targeting this pathway.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Osteosarcoma/therapy , Cell- and Tissue-Based Therapy , Immune Evasion , Bone Neoplasms/drug therapy , CD27 Ligand
19.
Toxicol Sci ; 195(1): 123-142, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37436718

ABSTRACT

Lead (Pb) is a heavy metal highly toxic to human health in the environment. The aim of this study was to investigate the mechanism of Pb impact on the quiescence of hematopoietic stem cells (HSC). WT C57BL/6 (B6) mice treated with 1250 ppm Pb via drinking water for 8 weeks had increased the quiescence of HSC in the bone marrow (BM), which was caused by the suppressed activation of the Wnt3a/ß-catenin signaling. Mechanically, a synergistic action of Pb and IFNγ on BM-resident macrophages (BM-Mφ) reduced their surface expression of CD70, which thereby dampened the Wnt3a/ß-catenin signaling to suppress the proliferation of HSC in mice. In addition, a joint action of Pb and IFNγ also suppressed the expression of CD70 on human Mφ to impair the Wnt3a/ß-catenin signaling and reduce the proliferation of human HSC purified from umbilical cord blood of healthy donors. Moreover, correlation analyses showed that the blood Pb concentration was or tended to be positively associated with the quiescence of HSC, and was or tended to be negatively associated with the activation of the Wnt3a/ß-catenin signaling in HSC in human subjects occupationally exposed to Pb. Collectively, these data indicate that an occupationally relevant level of Pb exposure suppresses the Wnt3a/ß-catenin signaling to increase the quiescence of HSC via reducing the expression of CD70 on BM-Mφ in both mice and humans.


Subject(s)
Bone Marrow , Lead , Mice , Humans , Animals , Lead/toxicity , beta Catenin/metabolism , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Macrophages/metabolism , CD27 Ligand/metabolism
20.
Nat Commun ; 14(1): 1912, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024479

ABSTRACT

Despite the intense CD8+ T-cell infiltration in the tumor microenvironment of nasopharyngeal carcinoma, anti-PD-1 immunotherapy shows an unsatisfactory response rate in clinical trials, hindered by immunosuppressive signals. To understand how microenvironmental characteristics alter immune homeostasis and limit immunotherapy efficacy in nasopharyngeal carcinoma, here we establish a multi-center single-cell cohort based on public data, containing 357,206 cells from 50 patient samples. We reveal that nasopharyngeal carcinoma cells enhance development and suppressive activity of regulatory T cells via CD70-CD27 interaction. CD70 blocking reverts Treg-mediated suppression and thus reinvigorate CD8+ T-cell immunity. Anti-CD70+ anti-PD-1 therapy is evaluated in xenograft-derived organoids and humanized mice, exhibiting an improved tumor-killing efficacy. Mechanistically, CD70 knockout inhibits a collective lipid signaling network in CD4+ naïve and regulatory T cells involving mitochondrial integrity, cholesterol homeostasis, and fatty acid metabolism. Furthermore, ATAC-Seq delineates that CD70 is transcriptionally upregulated by NFKB2 via an Epstein-Barr virus-dependent epigenetic modification. Our findings identify CD70+ nasopharyngeal carcinoma cells as a metabolic switch that enforces the lipid-driven development, functional specialization and homeostasis of Tregs, leading to immune evasion. This study also demonstrates that CD70 blockade can act synergistically with anti-PD-1 treatment to reinvigorate T-cell immunity against nasopharyngeal carcinoma.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Animals , Mice , T-Lymphocytes, Regulatory , Nasopharyngeal Carcinoma/genetics , CD27 Ligand/genetics , CD27 Ligand/metabolism , Herpesvirus 4, Human/metabolism , Nasopharyngeal Neoplasms/genetics , Lipids , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...