Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 784
Filter
1.
Genes (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927590

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is a rare genetic disorder characterized by intellectual disability, facial dysmorphisms, and enlarged thumbs and halluces. Approximately 55% of RTS cases result from pathogenic variants in the CREBBP gene, with an additional 8% linked to the EP300 gene. Given the close relationship between these two genes and their involvement in epigenomic modulation, RTS is grouped into chromatinopathies. The extensive clinical heterogeneity observed in RTS, coupled with the growing number of disorders involving the epigenetic machinery, poses a challenge to a phenotype-based diagnostic approach for these conditions. Here, we describe the first case of a patient clinically diagnosed with RTS with a CREBBP truncating variant in mosaic form. We also review previously described cases of mosaicism in CREBBP and apply clinical diagnostic guidelines to these patients, confirming the good specificity of the consensus. Nonetheless, these reports raise questions about the potential underdiagnosis of milder cases of RTS. The application of a targeted phenotype-based approach, coupled with high-depth NGS, may enhance the diagnostic yield of whole-exome sequencing (WES) in mild and mosaic conditions.


Subject(s)
CREB-Binding Protein , Mosaicism , Mutation , Phenotype , Rubinstein-Taybi Syndrome , Female , Humans , Male , CREB-Binding Protein/genetics , Exome Sequencing/methods , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
2.
Stem Cell Res ; 78: 103456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820863

ABSTRACT

Rubinstein Taybi Syndrome (RSTS) is a rare genetic disorder which is caused by mutations in either CREBBP or EP300. RSTS with mutations in CREBBP is known as RSTS-1. We have generated an induced pluripotent stem cell (iPSC) line, IGIBi018-A from an Indian RSTS-patient using the episomal reprogramming method. The CREBBP gene in the patient harbours a nonsense mutation at position NM_004380.3(c.6876 del C). IGIBi018-A iPSC showed expression of pluripotent stem cell markers, has a normal karyotype and could be differentiated into three germ layers. This iPSC line will help to explore the role of CREBBP in RSTS associated developmental defects.


Subject(s)
Induced Pluripotent Stem Cells , Rubinstein-Taybi Syndrome , Humans , Induced Pluripotent Stem Cells/metabolism , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Rubinstein-Taybi Syndrome/pathology , Cell Line , Cell Differentiation , India , Male , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism
3.
Oncogene ; 43(28): 2172-2183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783101

ABSTRACT

Loss-of-function mutations in CREBBP, which encodes for a histone acetyltransferase, occur frequently in B-cell malignancies, highlighting CREBBP deficiency as an attractive therapeutic target. Using established isogenic cell models, we demonstrated that CREBBP-deficient cells are selectively vulnerable to AURKA inhibition. Mechanistically, we found that co-targeting CREBBP and AURKA suppressed MYC transcriptionally and post-translationally to induce replication stress and apoptosis. Inhibition of AURKA dramatically decreased MYC protein level in CREBBP-deficient cells, implying a dependency on AURKA to sustain MYC stability. Furthermore, in vivo studies showed that pharmacological inhibition of AURKA was efficacious in delaying tumor progression in CREBBP-deficient cells and was synergistic with CREBBP inhibitors in CREBBP-proficient cells. Our study sheds light on a novel synthetic lethal interaction between CREBBP and AURKA, indicating that targeting AURKA represents a potential therapeutic strategy for high-risk B-cell malignancies harboring CREBBP inactivating mutations.


Subject(s)
Aurora Kinase A , CREB-Binding Protein , Proto-Oncogene Proteins c-myc , Synthetic Lethal Mutations , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Animals , Mice , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis/genetics , Xenograft Model Antitumor Assays
4.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718570

ABSTRACT

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Subject(s)
Apigenin , Epithelial-Mesenchymal Transition , Glucose , Histones , Retinal Pigment Epithelium , Epithelial-Mesenchymal Transition/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Apigenin/pharmacology , Acetylation/drug effects , Humans , Glucose/metabolism , Glucose/toxicity , Histones/metabolism , Cell Line , Mice , p300-CBP Transcription Factors/metabolism , p300-CBP Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/drug therapy , E1A-Associated p300 Protein/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics
5.
Oncogene ; 43(25): 1900-1916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38671157

ABSTRACT

The long-term maintenance of leukaemia stem cells (LSCs) is responsible for the high degree of malignancy in MLL (mixed-lineage leukaemia) rearranged acute myeloid leukaemia (AML). The DNA damage response (DDR) and DOT1L/H3K79me pathways are required to maintain LSCs in MLLr-AML, but little is known about their interplay. This study revealed that the DDR enzyme ATM regulates the maintenance of LSCs in MLLr-AML with a sequential protein-posttranslational-modification manner via CBP-DOT1L. We identified the phosphorylation of CBP by ATM, which confers the stability of CBP by preventing its proteasomal degradation, and characterised the acetylation of DOT1L by CBP, which mediates the high level of H3K79me2 for the expression of leukaemia genes in MLLr-AML. In addition, we revealed that the regulation of CBP-DOT1L axis in MLLr-AML by ATM was independent of DNA damage activation. Our findings provide insight into the signalling pathways involoved in MLLr-AML and broaden the understanding of the role of DDR enzymes beyond processing DNA damage, as well as identigying them as potent cancer targets.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Damage , Histone-Lysine N-Methyltransferase , Leukemia, Myeloid, Acute , Myeloid-Lymphoid Leukemia Protein , Signal Transduction , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Signal Transduction/genetics , Animals , Mice , Cell Line, Tumor , Methyltransferases/metabolism , Methyltransferases/genetics , CREB-Binding Protein/metabolism , CREB-Binding Protein/genetics , Gene Rearrangement , Histones/metabolism , Histones/genetics , Phosphorylation , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Acetylation
6.
Acta Neuropathol Commun ; 12(1): 60, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637838

ABSTRACT

Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Neoplasms, Neuroepithelial , Adult , Humans , Central Nervous System Neoplasms/diagnostic imaging , Central Nervous System Neoplasms/genetics , Neoplasms, Neuroepithelial/diagnostic imaging , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/genetics , Methylation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , CREB-Binding Protein/genetics
7.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564048

ABSTRACT

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Receptors, Glucocorticoid/genetics , Transcription Factors , Chromatin , Acetyltransferases , Hepatocyte Nuclear Factor 3-alpha/genetics , E1A-Associated p300 Protein/genetics , CREB-Binding Protein/genetics
9.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600341

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Subject(s)
Carcinoma, Hepatocellular , Heterocyclic Compounds, 3-Ring , Liver Neoplasms , Pyrones , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
10.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
11.
Zhonghua Er Ke Za Zhi ; 62(4): 351-356, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38527506

ABSTRACT

Objective: To investigate the phenotypes of Rubinstein-Taybi syndrome (RSTS) caused by variants in the CREBBP or EP300 gene, and the correlation between genotype and phenotype. Methods: This case series study was performed on pediatric patients who were referred to the Children's Hospital of Capital Institute of Pediatrics between January 2013 and July 2022. Both point variant and copy number deletion in CREBBP or EP300 gene were detected by whole exome sequencing, chromosomal microarray analysis, or copy number variation sequencing (CNV-seq). The variant categories were summarized and phenotype numbers were re-visited for RSTS patients. Based on variant types, the patients were divided into different groups (point variant or copy number deletion, EP300 or CREBBP point variant, and loss of function or missense variant). Phenotype counts between different groups were compared using the rank-sum test of two independent samples. Results: A total of 21 RSTS patients were recruited, including 12 males and 9 females, with ages ranging from 1 month to 14 years and 2 months. Among them, 67% (14/21) had point variants, and 33% (7/21) had copy number deletions. Out of these, 20 variants (95%) were de novo. Among 20 patients finishing phenotype count during re-visit, 95% (19/20) of the patients exhibited developmental delays before the age of 2 years. Additionally, 80% (16/20) of the patients had distinctive facial features. Considering phenotype count, no statistically significant difference was found between point variant (14 cases) and copy number deletion (6 cases) (5.0 (3.0, 7.0) vs. 5.0 (2.5, 5.3), Z=0.75, P=0.452), CREBBP (10 cases) and EP300 gene (4 cases) point variant (5.0 (3.8, 7.0) vs. 4.0 (2.0, 6.0), Z=1.14, P=0.253), and loss of function (9 cases) and missense (5 cases) variant (6.0 (4.5, 7.0) vs. 3.0 (2.5, 5.5), Z=1.54, P=0.121). Conclusions: Patients with RSTS primarily exhibit developmental delays in early childhood. Specific facial features serve as suggested signs of genetic testing. However, no significant genotype-phenotype correlation is found.


Subject(s)
Rubinstein-Taybi Syndrome , Male , Female , Child , Humans , Child, Preschool , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , DNA Copy Number Variations , Genotype , Phenotype , Genetic Testing , CREB-Binding Protein/genetics , Mutation
12.
HGG Adv ; 5(3): 100287, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38553851

ABSTRACT

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.


Subject(s)
CREB-Binding Protein , DNA Methylation , E1A-Associated p300 Protein , Humans , DNA Methylation/genetics , CREB-Binding Protein/genetics , Male , E1A-Associated p300 Protein/genetics , Female , Child , Adolescent , Child, Preschool , Adult , Phenotype , Young Adult , Rubinstein-Taybi Syndrome/genetics , Mutation , Protein Domains/genetics
13.
Acta Neuropathol Commun ; 12(1): 8, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216991

ABSTRACT

The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors introduced the new tumor type CNS tumor with BCOR internal tandem duplication (ITD), characterized by a distinct DNA methylation profile and peculiar histopathological features, including a circumscribed growth pattern, ependymoma-like perivascular pseudorosettes, microcystic pattern, absent or focal GFAP immunostaining, OLIG2 positivity, and BCOR immunoreactivity. We describe a rare case of a CNS tumor in a 45-year-old man with histopathological and immunohistochemical features overlapping the CNS tumor with BCOR internal tandem duplication (ITD) but lacking BCOR immunostaining and BCOR ITD. Instead, the tumor showed CREBBP::BCORL1 fusion and pathogenic mutations in BCOR and CREBBP, along with a DNA methylation profile matching the "CNS tumor with EP300:BCOR(L1) fusion" methylation class. Two CNS tumors with fusions between CREBBP, or its paralog EP300, and BCORL1, and approximately twenty CNS tumors with CREBBP/EP300::BCOR fusions have been reported to date. They exhibited similar ependymoma-like features or a microcystic pattern, along with focal or absent GFAP immunostaining, and shared the same DNA methylation profile. Given their morphological and epigenetic similarities, circumscribed CNS tumors with EP300/CREBBP::BCOR(L1) fusions and CNS tumors with BCOR ITD may represent variants of the same tumor type. The ependymoma-like aspect coupled with the lack of diffuse GFAP immunostaining and the presence of OLIG2 positivity are useful clues for recognizing these tumors in histopathological practice. The diagnosis should be confirmed after testing for BCOR(L1) gene fusions and BCOR ITD.


Subject(s)
Central Nervous System Neoplasms , Ependymoma , Male , Humans , Middle Aged , Central Nervous System Neoplasms/genetics , Mutation/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , CREB-Binding Protein/genetics
14.
Mol Oncol ; 18(2): 305-316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37864465

ABSTRACT

The phase III IMPACT study (UMIN000044738) compared adjuvant gefitinib with cisplatin plus vinorelbine (cis/vin) in completely resected epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Although the primary endpoint of disease-free survival (DFS) was not met, we searched for molecular predictors of adjuvant gefitinib efficacy. Of 234 patients enrolled in the IMPACT study, 202 patients were analyzed for 409 cancer-related gene mutations and tumor mutation burden using resected lung cancer specimens. Frequent somatic mutations included tumor protein p53 (TP53; 58.4%), CUB and Sushi multiple domains 3 (CSMD3; 11.8%), and NOTCH1 (9.9%). Multivariate analysis showed that NOTCH1 co-mutation was a significant poor prognostic factor for overall survival (OS) in the gefitinib group and cAMP response element binding protein (CREBBP) co-mutation for DFS and OS in the cis/vin group. In patients with NOTCH1 co-mutations, gefitinib group had a shorter OS than cis/vin group (Hazard ratio 5.49, 95% CI 1.07-28.00), with a significant interaction (P for interaction = 0.039). In patients with CREBBP co-mutations, the gefitinib group had a longer DFS than the cis/vin group, with a significant interaction (P for interaction = 0.058). In completely resected EGFR-mutated NSCLC, NOTCH1 and CREBBP mutations might predict poor outcome in patients treated with gefitinib and cis/vin, respectively.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Gefitinib , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Cyclic AMP Response Element-Binding Protein , Translational Research, Biomedical , ErbB Receptors/genetics , Cisplatin , Vinorelbine/therapeutic use , Mutation/genetics , Protein Kinase Inhibitors/adverse effects , Receptor, Notch1/genetics , CREB-Binding Protein/genetics
15.
J Gene Med ; 26(1): e3591, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37721116

ABSTRACT

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Subject(s)
Intellectual Disability , Rhabdomyolysis , Rubinstein-Taybi Syndrome , Humans , CREB-Binding Protein/genetics , CREB-Binding Protein/chemistry , Intellectual Disability/genetics , Mutation , Mutation, Missense , Phenotype , Rhabdomyolysis/genetics , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/pathology
16.
Cell Rep ; 43(1): 113576, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38128530

ABSTRACT

Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Histones , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Histones/metabolism , DNA/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Gene Expression , Neurons/metabolism , Acetylation , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
17.
J Bone Miner Res ; 38(12): 1885-1899, 2023 12.
Article in English | MEDLINE | ID: mdl-37850815

ABSTRACT

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
CREB-Binding Protein , p300-CBP Transcription Factors , Animals , Humans , Mice , Acetylation , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Osteogenesis/genetics , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism
18.
Sci Rep ; 13(1): 16094, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752231

ABSTRACT

The microphthalmia-associated transcription factor (MITF) is one of four closely related members of the MiT/TFE family (TFEB, TFE3, TFEC) that regulate a wide range of cellular processes. MITF is a key regulator of melanocyte-associated genes, and essential to proper development of the melanocyte cell lineage. Abnormal MITF activity can contribute to the onset of several diseases including melanoma, where MITF is an amplified oncogene. To enhance transcription, MITF recruits the co-activator CREB-binding protein (CBP) and its homolog p300 to gene promoters, however the molecular determinants of their interaction are not yet fully understood. Here, we characterize the interactions between the C-terminal MITF transactivation domain and CBP/p300. Using NMR spectroscopy, protein pulldown assays, and isothermal titration calorimetry we determine the C-terminal region of MITF is intrinsically disordered and binds with high-affinity to both TAZ1 and TAZ2 of CBP/p300. Mutagenesis studies revealed two conserved motifs within MITF that are necessary for TAZ2 binding and critical for MITF-dependent transcription of a reporter gene. Finally, we observe the transactivation potential of the MITF C-terminal region is reliant on the N-terminal transactivation domain for function. Taken together, our study helps elucidate the molecular details of how MITF interacts with CBP/p300 through multiple redundant interactions that lend insight into MITF function in melanocytes and melanoma.


Subject(s)
CREB-Binding Protein , Melanoma , Humans , CREB-Binding Protein/genetics , Microphthalmia-Associated Transcription Factor/genetics , Transcriptional Activation , Oncogenes , Melanoma/genetics
19.
FASEB J ; 37(9): e22996, 2023 09.
Article in English | MEDLINE | ID: mdl-37566526

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Subject(s)
MicroRNAs , Myocardial Reperfusion Injury , Animals , Rats , Apoptosis , beta Catenin/genetics , beta Catenin/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism
20.
Nat Commun ; 14(1): 4103, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460559

ABSTRACT

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.


Subject(s)
Histones , Nucleosomes , Histones/metabolism , CREB-Binding Protein/genetics , Acetylation , Epigenesis, Genetic , p300-CBP Transcription Factors/genetics , p300-CBP Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL