Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28.084
1.
Biomed Environ Sci ; 37(4): 377-386, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727160

Objective: This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans (C. elegans). Methods: In this study, the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C. elegans. The worms were fed Escherichia coli OP50 ( E. coli OP50), glucose, and different concentrations of LFBEP-C1. Body size, lifespan, movement, triglyceride content, and gene expression were analyzed. The results were analyzed using ANOVA and Tukey's multiple comparison test. Results: Compared with the model group, the head-swing frequency of C. elegans in the group of LFBEP-C1 at 20 µg/mL increased by 33.88%, and the body-bending frequency increased by 27.09%. This indicated that LFBEP-C1 improved the locomotive ability of C. elegans. The average lifespan of C. elegans reached 13.55 days, and the body length and width of the C. elegans decreased after LFBEP-C1 intake. Additionally, LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels. The expression levels of sbp-1, daf-2, and mdt-15 significantly decreased, while those of daf-16, tph-1, mod-1, and ser-4 significantly increased after LFBEP-C1 intake. Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion: LFBEP-C1 significantly reduced lipid deposition in C. elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development, lifespan, and exercise behavior of C. elegans. In addition, LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein, insulin, and 5-hydroxytryptamine signaling pathways.


Caenorhabditis elegans , Hordeum , Lipid Metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Hordeum/chemistry , Lipid Metabolism/drug effects , Fermentation , Plant Extracts/pharmacology , Plant Extracts/chemistry , Lactobacillus plantarum , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
Curr Protoc ; 4(5): e1035, 2024 May.
Article En | MEDLINE | ID: mdl-38727641

Nematodes are naturally infected by the fungal-related pathogen microsporidia. These ubiquitous eukaryotic parasites are poorly understood, despite infecting most types of animals. Identifying novel species of microsporidia and studying them in an animal model can expedite our understanding of their infection biology and evolution. Nematodes present an excellent avenue for pursuing such work, as they are abundant in the environment and many species are easily culturable in the laboratory. The protocols presented here describe how to isolate bacterivorous nematodes from rotting substrates, screen them for microsporidia infection, and molecularly identify the nematode and microsporidia species. Additionally, we detail how to remove environmental contaminants and generate a spore preparation of microsporidia from infected samples. We also discuss potential pitfalls and provide suggestions on how to mitigate them. These protocols allow for the identification of novel microsporidia species, which can serve as an excellent starting point for genomic analysis, determination of host specificity, and infection characterization. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Gathering samples Support Protocol 1: Generating 10× and 40× Escherichia coli OP50 and seeding NGM plates Basic Protocol 2: Microsporidia screening, testing for Caenorhabditis elegans susceptibility, and sample freezing Basic Protocol 3: DNA extraction, PCR amplification, and sequencing to identify nematode and microsporidia species Basic Protocol 4: Removal of contaminating microbes and preparation of microsporidia spores Support Protocol 2: Bleach-synchronizing nematodes.


Microsporidia , Nematoda , Animals , Microsporidia/isolation & purification , Microsporidia/genetics , Microsporidia/classification , Microsporidia/pathogenicity , Nematoda/microbiology , Nematoda/genetics , Caenorhabditis elegans/microbiology , DNA, Fungal/genetics , Polymerase Chain Reaction , Microsporidiosis/microbiology , Spores, Fungal/isolation & purification
3.
Front Immunol ; 15: 1353747, 2024.
Article En | MEDLINE | ID: mdl-38751431

Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.


Caenorhabditis elegans , Host-Pathogen Interactions , Immunity, Innate , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/microbiology , Host-Pathogen Interactions/immunology , Epigenesis, Genetic , Signal Transduction , Neurons/immunology , Neurons/metabolism
4.
Proc Natl Acad Sci U S A ; 121(21): e2406565121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753507

While depolarization of the neuronal membrane is known to evoke the neurotransmitter release from synaptic vesicles, hyperpolarization is regarded as a resting state of chemical neurotransmission. Here, we report that hyperpolarizing neurons can actively signal neural information by employing undocked hemichannels. We show that UNC-7, a member of the innexin family in Caenorhabditis elegans, functions as a hemichannel in thermosensory neurons and transmits temperature information from the thermosensory neurons to their postsynaptic interneurons. By monitoring neural activities in freely behaving animals, we find that hyperpolarizing thermosensory neurons inhibit the activity of the interneurons and that UNC-7 hemichannels regulate this process. UNC-7 is required to control thermotaxis behavior and functions independently of synaptic vesicle exocytosis. Our findings suggest that innexin hemichannels mediate neurotransmission from hyperpolarizing neurons in a manner that is distinct from the synaptic transmission, expanding the way of neural circuitry operations.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Interneurons , Neurons , Synaptic Transmission , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Synaptic Transmission/physiology , Interneurons/metabolism , Interneurons/physiology , Neurons/physiology , Neurons/metabolism , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Taxis Response/physiology , Connexins/metabolism , Connexins/genetics , Membrane Proteins
5.
Proc Natl Acad Sci U S A ; 121(21): e2319060121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38753516

Multicellular organisms are composed of many tissue types that have distinct morphologies and functions, which are largely driven by specialized proteomes and interactomes. To define the proteome and interactome of a specific type of tissue in an intact animal, we developed a localized proteomics approach called Methionine Analog-based Cell-Specific Proteomics and Interactomics (MACSPI). This method uses the tissue-specific expression of an engineered methionyl-tRNA synthetase to label proteins with a bifunctional amino acid 2-amino-5-diazirinylnonynoic acid in selected cells. We applied MACSPI in Caenorhabditis elegans, a model multicellular organism, to selectively label, capture, and profile the proteomes of the body wall muscle and the nervous system, which led to the identification of tissue-specific proteins. Using the photo-cross-linker, we successfully profiled HSP90 interactors in muscles and neurons and identified tissue-specific interactors and stress-related interactors. Our study demonstrates that MACSPI can be used to profile tissue-specific proteomes and interactomes in intact multicellular organisms.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Proteome , Proteomics , Animals , Caenorhabditis elegans/metabolism , Proteomics/methods , Caenorhabditis elegans Proteins/metabolism , Proteome/metabolism , Methionine-tRNA Ligase/metabolism , Methionine-tRNA Ligase/genetics , HSP90 Heat-Shock Proteins/metabolism , Organ Specificity , Muscles/metabolism , Neurons/metabolism
6.
Elife ; 122024 May 08.
Article En | MEDLINE | ID: mdl-38717010

Interacting molecules create regulatory architectures that can persist despite turnover of molecules. Although epigenetic changes occur within the context of such architectures, there is limited understanding of how they can influence the heritability of changes. Here, I develop criteria for the heritability of regulatory architectures and use quantitative simulations of interacting regulators parsed as entities, their sensors, and the sensed properties to analyze how architectures influence heritable epigenetic changes. Information contained in regulatory architectures grows rapidly with the number of interacting molecules and its transmission requires positive feedback loops. While these architectures can recover after many epigenetic perturbations, some resulting changes can become permanently heritable. Architectures that are otherwise unstable can become heritable through periodic interactions with external regulators, which suggests that mortal somatic lineages with cells that reproducibly interact with the immortal germ lineage could make a wider variety of architectures heritable. Differential inhibition of the positive feedback loops that transmit regulatory architectures across generations can explain the gene-specific differences in heritable RNA silencing observed in the nematode Caenorhabditis elegans. More broadly, these results provide a foundation for analyzing the inheritance of epigenetic changes within the context of the regulatory architectures implemented using diverse molecules in different living systems.


Caenorhabditis elegans , Epigenesis, Genetic , Caenorhabditis elegans/genetics , Animals , Models, Genetic , Gene Regulatory Networks , Inheritance Patterns
7.
Lab Chip ; 24(10): 2811-2824, 2024 May 14.
Article En | MEDLINE | ID: mdl-38700452

The aging process has broad physiological impacts, including a significant decline in sensory function, which threatens both physical health and quality of life. One ideal model to study aging, neuronal function, and gene expression is the nematode Caenorhabditis elegans, which has a short lifespan and relatively simple, thoroughly mapped nervous system and genome. Previous works have identified that mechanosensory neuronal structure changes with age, but importantly, the actual age-related changes in the function and health of neurons, as well as the underlying genetic mechanisms responsible for these declines, are not fully understood. While advanced techniques such as single-cell RNA-sequencing have been developed to quantify gene expression, it is difficult to relate this information to functional changes in aging due to a lack of tools available. To address these limitations, we present a platform capable of measuring both physiological function and its associated gene expression throughout the aging process in individuals. Using our pipeline, we investigate the age-related changes in function of the mechanosensing ALM neuron in C. elegans, as well as some relevant gene expression patterns (mec-4 and mec-10). Using a series of devices for animals of different ages, we examined subtle changes in neuronal function and found that while the magnitude of neuronal response to a large stimulus declines with age, sensory capability does not significantly decline with age; further, gene expression is well maintained throughout aging. Additionally, we examine PVD, a harsh-touch mechanosensory neuron, and find that it exhibits a similar age-related decline in magnitude of neuronal response. Together, our data demonstrate that our strategy is useful for identifying genetic factors involved in the decline in neuronal health. We envision that this framework could be applied to other systems as a useful tool for discovering new biology.


Aging , Caenorhabditis elegans , Lab-On-A-Chip Devices , Neurons , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans/metabolism , Aging/physiology , Neurons/metabolism , Neurons/cytology , Mechanotransduction, Cellular , Microfluidic Analytical Techniques/instrumentation
8.
EBioMedicine ; 103: 105124, 2024 May.
Article En | MEDLINE | ID: mdl-38701619

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Clofazimine , Disease Models, Animal , Huntingtin Protein , Leprostatic Agents , PPAR gamma , Peptides , Zebrafish , Clofazimine/pharmacology , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Humans , Peptides/pharmacology , Leprostatic Agents/pharmacology , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism
9.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38740431

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Mechanistic Target of Rapamycin Complex 1 , RNA Polymerase III , Signal Transduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Longevity/genetics , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Aging/genetics , Aging/physiology
10.
BMC Bioinformatics ; 25(1): 183, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724908

BACKGROUND: In recent years, gene clustering analysis has become a widely used tool for studying gene functions, efficiently categorizing genes with similar expression patterns to aid in identifying gene functions. Caenorhabditis elegans is commonly used in embryonic research due to its consistent cell lineage from fertilized egg to adulthood. Biologists use 4D confocal imaging to observe gene expression dynamics at the single-cell level. However, on one hand, the observed tree-shaped time-series datasets have characteristics such as non-pairwise data points between different individuals. On the other hand, the influence of cell type heterogeneity should also be considered during clustering, aiming to obtain more biologically significant clustering results. RESULTS: A biclustering model is proposed for tree-shaped single-cell gene expression data of Caenorhabditis elegans. Detailedly, a tree-shaped piecewise polynomial function is first employed to fit non-pairwise gene expression time series data. Then, four factors are considered in the objective function, including Pearson correlation coefficients capturing gene correlations, p-values from the Kolmogorov-Smirnov test measuring the similarity between cells, as well as gene expression size and bicluster overlapping size. After that, Genetic Algorithm is utilized to optimize the function. CONCLUSION: The results on the small-scale dataset analysis validate the feasibility and effectiveness of our model and are superior to existing classical biclustering models. Besides, gene enrichment analysis is employed to assess the results on the complete real dataset analysis, confirming that the discovered biclustering results hold significant biological relevance.


Caenorhabditis elegans , Single-Cell Analysis , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Single-Cell Analysis/methods , Cluster Analysis , Gene Expression Profiling/methods , Algorithms
11.
PLoS One ; 19(5): e0301504, 2024.
Article En | MEDLINE | ID: mdl-38728303

In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.


Caenorhabditis elegans , Animals , Mice , Swine , Caenorhabditis elegans/metabolism , Hydrolysis , Plasma/metabolism , Cytokines/metabolism , Antioxidants/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology
12.
Cell Mol Life Sci ; 81(1): 202, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691171

Glial cells constitute nearly half of the mammalian nervous system's cellular composition. The glia in C. elegans perform majority of tasks comparable to those conducted by their mammalian equivalents. The cephalic sheath (CEPsh) glia, which are known to be the counterparts of mammalian astrocytes, are enriched with two nuclear hormone receptors (NHRs)-NHR-210 and NHR-231. This unique enrichment makes the CEPsh glia and these NHRs intriguing subjects of study concerning neuronal health. We endeavored to assess the role of these NHRs in neurodegenerative diseases and related functional processes, using transgenic C. elegans expressing human alpha-synuclein. We employed RNAi-mediated silencing, followed by behavioural, functional, and metabolic profiling in relation to suppression of NHR-210 and 231. Our findings revealed that depleting nhr-210 changes dopamine-associated behaviour and mitochondrial function in human alpha synuclein-expressing strains NL5901 and UA44, through a putative target, pgp-9, a transmembrane transporter. Considering the alteration in mitochondrial function and the involvement of a transmembrane transporter, we performed metabolomics study via HR-MAS NMR spectroscopy. Remarkably, substantial modifications in ATP, betaine, lactate, and glycine levels were seen upon the absence of nhr-210. We also detected considerable changes in metabolic pathways such as phenylalanine, tyrosine, and tryptophan biosynthesis metabolism; glycine, serine, and threonine metabolism; as well as glyoxalate and dicarboxylate metabolism. In conclusion, the deficiency of the nuclear hormone receptor nhr-210 in alpha-synuclein expressing strain of C. elegans, results in altered mitochondrial function, coupled with alterations in vital metabolite levels. These findings underline the functional and physiological importance of nhr-210 enrichment in CEPsh glia.


Caenorhabditis elegans , Disease Models, Animal , Mitochondria , Neuroglia , Parkinson Disease , alpha-Synuclein , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mitochondria/metabolism , Neuroglia/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals, Genetically Modified , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Dopamine/metabolism , Metabolomics , RNA Interference
13.
Nat Commun ; 15(1): 3367, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719808

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Anthelmintics , Caenorhabditis elegans , Electron Transport Complex I , Ubiquinone/analogs & derivatives , Animals , Anthelmintics/pharmacology , Anthelmintics/chemistry , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Caenorhabditis elegans/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Species Specificity , Quinones/chemistry , Quinones/pharmacology , Quinones/metabolism , Biological Products/pharmacology , Biological Products/chemistry
14.
Nat Commun ; 15(1): 3835, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714700

Aggregated forms of α-synuclein constitute the major component of Lewy bodies, the proteinaceous aggregates characteristic of Parkinson's disease. Emerging evidence suggests that α-synuclein aggregation may occur within liquid condensates formed through phase separation. This mechanism of aggregation creates new challenges and opportunities for drug discovery for Parkinson's disease, which is otherwise still incurable. Here we show that the condensation-driven aggregation pathway of α-synuclein can be inhibited using small molecules. We report that the aminosterol claramine stabilizes α-synuclein condensates and inhibits α-synuclein aggregation within the condensates both in vitro and in a Caenorhabditis elegans model of Parkinson's disease. By using a chemical kinetics approach, we show that the mechanism of action of claramine is to inhibit primary nucleation within the condensates. These results illustrate a possible therapeutic route based on the inhibition of protein aggregation within condensates, a phenomenon likely to be relevant in other neurodegenerative disorders.


Caenorhabditis elegans , Parkinson Disease , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Caenorhabditis elegans/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Humans , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Disease Models, Animal , Lewy Bodies/metabolism , Kinetics
15.
Sci Rep ; 14(1): 10453, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714725

Recent research has highlighted the importance of the gut microbiome in regulating aging, and probiotics are interventions that can promote gut health. In this study, we surveyed several novel lactic acid bacteria to examine their beneficial effect on organismal health and lifespan in C. elegans. We found that animals fed some lactic acid bacteria, including L. acidophilus 1244 and L. paracasei subsp. paracasei 2004, grew healthy. Supplementation with the lactic acid bacterial strains L. acidophilus 1244 or L. paracasei subsp. paracasei 2004 significantly improved health, including food consumption, motility, and resistance to oxidative stressor, hydrogen peroxide. Our RNA-seq analysis showed that supplementation with L. paracasei subsp. paracasei 2004 significantly increased the expression of daf-16, a C. elegans FoxO homolog, as well as genes related to the stress response. Furthermore, daf-16 deletion inhibited the longevity effect of L. paracasei subsp. paracasei 2004 supplementation. Our results suggest that L. paracasei subsp. paracasei 2004 improves health and lifespan in a DAF-16-dependent manner.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Forkhead Transcription Factors , Longevity , Probiotics , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/microbiology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lacticaseibacillus paracasei/physiology , Lacticaseibacillus paracasei/genetics , Oxidative Stress , Gastrointestinal Microbiome
16.
J Cell Biol ; 223(9)2024 Sep 02.
Article En | MEDLINE | ID: mdl-38767515

Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Microtubules , Mitochondria , Neurons , Animals , Microtubules/metabolism , Microtubules/genetics , Mitochondria/metabolism , Mitochondria/genetics , Cilia/metabolism , Cilia/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Mutation/genetics
17.
Nat Commun ; 15(1): 4273, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769103

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Sex Characteristics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Male , Female , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Profiling
18.
PLoS One ; 19(5): e0295701, 2024.
Article En | MEDLINE | ID: mdl-38771761

The Polarity/Protusion model of UNC-6/Netrin function in axon repulsion does not rely on a gradient of UNC-6/Netrin. Instead, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge. UNC-5 then inhibits growth cone protrusion ventrally based upon this polarity, resulting in dorsally-biased protrusion and dorsal migration away from UNC-6/Netrin. While previous studies have shown that UNC-5 inhibits growth cone protrusion by destabilizing actin, preventing microtubule + end entry, and preventing vesicle fusion, the signaling pathways involved are unclear. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5, suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Polarity , Growth Cones , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Growth Cones/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Netrin Receptors/metabolism , Netrin Receptors/genetics , Cell Movement , Animals, Genetically Modified , Netrins , Receptors, Cell Surface
19.
Biomolecules ; 14(5)2024 May 18.
Article En | MEDLINE | ID: mdl-38786006

Age is the primary risk factor for neurodegenerative diseases such as Alzheimer's and Huntington's disease. Alzheimer's disease is the most common form of dementia and a leading cause of death in the elderly population of the United States. No effective treatments for these diseases currently exist. Identifying effective treatments for Alzheimer's, Huntington's, and other neurodegenerative diseases is a major current focus of national scientific resources, and there is a critical need for novel therapeutic strategies. Here, we investigate the potential for targeting the kynurenine pathway metabolite 3-hydroxyanthranilic acid (3HAA) using Caenorhabditis elegans expressing amyloid-beta or a polyglutamine peptide in body wall muscle, modeling the proteotoxicity in Alzheimer's and Huntington's disease, respectively. We show that knocking down the enzyme that degrades 3HAA, 3HAA dioxygenase (HAAO), delays the age-associated paralysis in both models. This effect on paralysis was independent of the protein aggregation in the polyglutamine model. We also show that the mechanism of protection against proteotoxicity from HAAO knockdown is mimicked by 3HAA supplementation, supporting elevated 3HAA as the mediating event linking HAAO knockdown to delayed paralysis. This work demonstrates the potential for 3HAA as a targeted therapeutic in neurodegenerative disease, though the mechanism is yet to be explored.


3-Hydroxyanthranilic Acid , Amyloid beta-Peptides , Caenorhabditis elegans , Paralysis , Peptides , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Peptides/pharmacology , 3-Hydroxyanthranilic Acid/metabolism , Paralysis/chemically induced , Paralysis/metabolism , Paralysis/genetics , Disease Models, Animal , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Huntington Disease/metabolism , Huntington Disease/genetics , Dioxygenases/metabolism , Dioxygenases/genetics
20.
Elife ; 132024 May 15.
Article En | MEDLINE | ID: mdl-38747717

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
...