Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.964
Filter
1.
Proc Natl Acad Sci U S A ; 121(39): e2403222121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39302967

ABSTRACT

Algae mostly occur either as unicellular (microalgae) or multicellular (macroalgae) species, both being uninucleate. There are important exceptions, however, as some unicellular algae are multinucleate and macroscopic, some of which inhabit tropical seas and contribute to biocalcification and coral reef robustness. The evolutionary mechanisms and ecological significance of multinucleation and associated traits (e.g., rapid wound healing) are poorly understood. Here, we report the genome of Halimeda opuntia, a giant multinucleate unicellular chlorophyte characterized by interutricular calcification. We achieve a high-quality genome assembly that shows segregation into four subgenomes, with evidence for polyploidization concomitant with historical sea level and climate changes. We further find myosin VIII missing in H. opuntia and three other unicellular multinucleate chlorophytes, suggesting a potential mechanism that may underpin multinucleation. Genome analysis provides clues about how the unicellular alga could survive fragmentation and regenerate, as well as potential signatures for extracellular calcification and the coupling of calcification with photosynthesis. In addition, proteomic alkalinity shifts were found to potentially confer plasticity of H. opuntia to ocean acidification (OA). Our study provides crucial genetic information necessary for understanding multinucleation, cell regeneration, plasticity to OA, and different modes of calcification in algae and other organisms, which has important implications in reef conservation and bioengineering.


Subject(s)
Calcification, Physiologic , Calcification, Physiologic/genetics , Chlorophyta/genetics , Chlorophyta/metabolism , Phylogeny , Genome, Plant , Photosynthesis/genetics
2.
Proc Biol Sci ; 291(2031): 20241161, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39317315

ABSTRACT

Reef-building coral populations are at serious risk of collapse due to the combined effects of ocean warming and acidification. Nonetheless, many corals show potential to adapt to the changing ocean conditions. Here we examine the broad sense heritability (H2) of coral calcification rates across an ecologically and phylogenetically diverse sampling of eight of the primary reef-building corals across the Indo-Pacific. We show that all eight species exhibit relatively high heritability of calcification rates under combined warming and acidification (0.23-0.56). Furthermore, tolerance to each factor is positively correlated and the two factors do not interact in most of the species, contrary to the idea of trade-offs between temperature and pH sensitivity, and all eight species can co-evolve tolerance to elevated temperature and reduced pH. Using these values together with historical data, we estimate potential increases in thermal tolerance of 1.0-1.7°C over the next 50 years, depending on species. None of these species are probably capable of keeping up with a high global change scenario and climate change mitigation is essential if reefs are to persist. Such estimates are critical for our understanding of how corals may respond to global change, accurately parametrizing modelled responses, and predicting rapid evolution.


Subject(s)
Anthozoa , Climate Change , Coral Reefs , Seawater , Anthozoa/physiology , Animals , Hydrogen-Ion Concentration , Seawater/chemistry , Global Warming , Calcification, Physiologic , Adaptation, Physiological , Oceans and Seas , Temperature , Indian Ocean
3.
Sci Rep ; 14(1): 21401, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271926

ABSTRACT

Current climate projections for mid-latitude regions globally indicate an intensification of wind-driven coastal upwelling due to warming conditions. The dynamics of mid-latitude coastal upwelling are marked by environmental variability across temporal scales, which affect key physiological processes in marine calcifying organisms and can impact their large-scale distribution patterns. In this context, marine invertebrates often exhibit phenotypic plasticity, enabling them to adapt to environmental change. In this study, we examined the physiological performance (i.e., metabolism, Thermal Performance Curves, and biomass and calcification rates) of individuals of the intertidal mollusk Chiton granosus, a chiton found from northern Peru to Cape Horn (5° to 55°S). Our spatial study design indicated a pattern of contrasting conditions among locations. The Talcaruca site, characterized by persistent upwelling and serving as a biogeographic break, exhibited lower pH and carbonate saturation states, along with higher pCO2, compared to the sites located to the north and south of this location (Huasco and Los Molles, respectively). In agreement with the spatial pattern in carbonate system parameters, long-term temperature records showed lower temperatures that changed faster over synoptic scales (1-15 days) at Talcaruca, in contrast to the more stable conditions at the sites outside the break. Physiological performance traits from individuals from the Talcaruca population exhibited higher values and more significant variability, along with significantly broader and greater warming tolerance than chitons from the Huasco and Los Molles populations. Moreover, marked changes in local abundance patterns over three years suggested population-level responses to the challenging environmental conditions at the biogeographic break. Thus, C. granosus from the Talcaruca upwelling zone represents a local population with wide tolerance ranges that may be capable of withstanding future upwelling intensification on the Southern Eastern Pacific coast and likely serving as a source of propagules for less adapted populations.


Subject(s)
Temperature , Animals , Ecosystem , Biomass , Peru , Seawater , Adaptation, Physiological , Climate Change , Calcification, Physiologic
4.
FASEB J ; 38(17): e23892, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39230563

ABSTRACT

Mesenchymal stromal stem cells (MSCs) or skeletal stem cells (SSCs) play a major role in tissue repair due to their robust ability to differentiate into osteoblasts, chondrocytes, and adipocytes. Complex cell signaling cascades tightly regulate this differentiation. In osteogenic differentiation, Runt-related transcription factor 2 (RUNX2) and ALP activity are essential. Furthermore, during the latter stages of osteogenic differentiation, mineral formation mediated by the osteoblast occurs with the secretion of a collagenous extracellular matrix and calcium deposition. Activation of nuclear factor erythroid 2-related factor 2 (NRF2), an important transcription factor against oxidative stress, inhibits osteogenic differentiation and mineralization via modulation of RUNX2 function; however, the exact role of NRF2 in osteoblastogenesis remains unclear. Here, we demonstrate that NRF2 activation in human bone marrow-derived stromal cells (HBMSCs) suppressed osteogenic differentiation. NRF2 activation increased the expression of STRO-1 and KITLG (stem cell markers), indicating NRF2 protects HBMSCs stemness against osteogenic differentiation. In contrast, NRF2 activation enhanced mineralization, which is typically linked to osteogenic differentiation. We determined that these divergent results were due in part to the modulation of cellular calcium flux genes by NRF2 activation. The current findings demonstrate a dual role for NRF2 as a HBMSC maintenance factor as well as a central factor in mineralization, with implications therein for elucidation of bone formation and cellular Ca2+ kinetics, dystrophic calcification and, potentially, application in the modulation of bone formation.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , NF-E2-Related Factor 2 , Osteoblasts , Osteogenesis , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Cell Differentiation/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Calcification, Physiologic/physiology , Cells, Cultured , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics
5.
Front Endocrinol (Lausanne) ; 15: 1286365, 2024.
Article in English | MEDLINE | ID: mdl-39129916

ABSTRACT

Introduction: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. Methods: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. Results: The bone phenotype could be detected especially in the area of​ the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. Discussion: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.


Subject(s)
Fibroblast Growth Factors , Mice, Knockout , Animals , Mice , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , X-Ray Microtomography , Bone and Bones/metabolism , Bone and Bones/pathology , Bone and Bones/diagnostic imaging , Bone and Bones/abnormalities , Calcification, Physiologic , Male , Osteogenesis , Female , Mice, Inbred C57BL , Phenotype
6.
J Appl Oral Sci ; 32: e20240034, 2024.
Article in English | MEDLINE | ID: mdl-39140581

ABSTRACT

OBJECTIVE: Bisphosphonates are prescribed to treat excessive bone resorption in patients with osteoporosis. However, its use is associated with potential adverse effects such as medication-related osteonecrosis of the jaw, prompting the introduction of the drug holiday concept in patients prior to dentoalveolar surgery. Furthermore, bisphosphonate discontinuation has been studied in vivo, in humans, and in animal models. However, it is not known whether this approach could affect bone cells in vitro. Therefore, the objective of this study was to investigate the potential effects of bisphosphonate discontinuation on pre-osteoblast and osteoblast activities in vitro. METHODOLOGY: Pre-osteoblasts (MC3T3) and osteoblasts were treated with bisphosphonate (alendronate) at concentrations of 1, 5, and 10 µM. Alendronate was then withdrawn at different time points. The negative control consisted of untreated cells (0 µM), while the positive control consisted of cells incubated with alendronate throughout the experiment. Cell viability, cell adhesion, cell cytoskeleton, mineralization, and gene expressions were investigated. RESULTS: Pre-osteoblasts and osteoblasts showed a decrease in cell viability after treatment with 5-10 µM alendronate for 4 days or longer. Two days of alendronate discontinuation significantly increased cell viability compared with the positive control. However, these levels did not reach those of the negative control. Bone nodule formation was reduced by alendronate. Discontinuation of alendronate regained bone nodule formation. Longer periods of discontinuation were more effective in restoring nodule formation than shorter periods. Addition of alendronate resulted in an increase in the percentage of dead cells, which, in turn, decreased when alendronate was discontinued. Alendronate affected the cell cytoskeleton by disassembling actin stress fibers. Cell adhesion and cell morphological parameters were also affected by alendronate. Discontinuation of alendronate restored cell adhesion and these parameters. Overall, the highest improvement after alendronate discontinuation was seen at 10 µM. However, alendronate treatment and discontinuation did not affect osteoblast gene expression. CONCLUSION: Discontinuation of alendronate helps to reverse the negative effects of the drug on cell viability, cell adhesion, and mineralization by restoring the cell cytoskeleton. Our data suggest the benefits of drug holiday and/or intermittent strategies for alendronate administration at the cellular level.


Subject(s)
Alendronate , Bone Density Conservation Agents , Calcification, Physiologic , Cell Adhesion , Cell Survival , Cytoskeleton , Osteoblasts , Osteoblasts/drug effects , Alendronate/pharmacology , Cell Survival/drug effects , Bone Density Conservation Agents/pharmacology , Cytoskeleton/drug effects , Animals , Cell Adhesion/drug effects , Time Factors , Calcification, Physiologic/drug effects , Mice , Gene Expression/drug effects , Real-Time Polymerase Chain Reaction , Analysis of Variance
7.
Arch Oral Biol ; 167: 106062, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39094423

ABSTRACT

OBJECTIVE: Alveolar bone quality is essential for the maxillofacial integrity and function, and depends on alveolar bone mineralization. This study aims to investigate the in vivo changes in alveolar bone mineralization, from the perspective of mineral deposition and crystal transition in postnatal rats. DESIGN: Nine postnatal time points of Wistar rats, ranging from day 1 to 56, were set to obtain the maxillary alveolar bone samples. Each time point consisted of ninety rats, with 45 females and 45 males. Macromorphology of alveolar bone was reconducted by Micro-Computed Tomography and the mineral content was quantified via Thermogravimetric analysis, Scanning Electron Microscope, High-Resolution Transmission Electron Microscopy and vibrational spectroscopy. Furthermore, the crystallinity and composition were characterized by vibrational spectroscopy, X-ray Diffraction, X-ray Photoelectron Spectroscopy and Selected Area Electron Diffraction. RESULTS: The progressive increase of mineral deposition was accompanied by substantial growth in alveolar bone mass and volume in postnatal rats. Whereas the mineral percentage initially decreased and then increased, reaching a nadir on postnatal day 14 (P14) when tooth eruption was first observed. Besides, localized mineralization was initiated by the formation of amorphous precursors and then converted into mineral crystals, while there was no statistically significant change in the average crystallinity of the bone during growth. CONCLUSION: Mineralization of alveolar bone is ongoing throughout the early growth in postnatal rats. Mineral deposition increases with age, whereas the crystallinity remains stable within a certain range. Besides, the mineral percentage reaches its lowest point on P14, which may be attributed to tooth eruption.


Subject(s)
Alveolar Process , Calcification, Physiologic , Microscopy, Electron, Scanning , Rats, Wistar , X-Ray Microtomography , Animals , Rats , Female , Male , Calcification, Physiologic/physiology , Alveolar Process/growth & development , Alveolar Process/diagnostic imaging , Alveolar Process/metabolism , X-Ray Diffraction , Microscopy, Electron, Transmission , Thermogravimetry , Bone Density , Photoelectron Spectroscopy , Maxilla/growth & development
8.
Animal ; 18(8): 101241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096597

ABSTRACT

Skeleton bones, distinguished by trabecular and cortical bone tissue content, exhibit varied growth and composition, in response to modified dietary calcium and phosphorus levels. The study investigated how gilts adapt their individual bone and bone region mineralisation kinetics in response to changing intake of Ca and P. A total of 24 gilts were fed according to a two-phase (Depletion (D) 60-95 and Repletion (R) 95-140 kg BW, respectively). During the D phase, gilts were fed either 60% (D60) or 100% (D100) of the estimated P requirement. Subsequently, during the R phase, half of the gilts from each D diet were fed either 100% (R100) or 160% (R160) of the estimated P requirement according to a 2 × 2 factorial arrangement. Bone mineral content (BMC) was assessed in the whole body, individual bones (femur and lumbar spine L2-L4), and bone regions (head, front legs, trunk, pelvis, femur, and hind legs) every 2 weeks using dual-energy X-ray absorptiometry (DXA). At 95 kg BW, gilts fed D60 showed reduced BMC and BMC/BW ratio in all studied sites compared to those fed D100 (P < 0.001). During the depletion phase, the allometric BW-dependent regressions slopes for BMC of D100 gilts remained close to 1 for all sites and did not differ from each other. In contrast, the slopes were lower in D60 gilts (P < 0.05), with an 18% reduction in the whole body, except for the front and hind legs, femur, and pelvis, which exhibited higher reductions (P < 0.05). At 140 kg BW, BMC and BMC/BW ratio of all studied sites were similar in gilts previously fed D60 and D100, but higher in R160 than in R100 gilts (P < 0.05), except for front and hind legs. During the repletion phase, the allometric BW dependent regressions slopes for BMC were lower (P < 0.05) in R100 than in R160 gilts (for whole body -10%; P < 0.01) except for front and hind legs, femur, and pelvis. In conclusion, bone demineralisation and recovery followed similar trends for all measured body sites. However, the lumbar spine region was most sensitive whereas the hind legs were least sensitive. These data suggest that using bone regions such as the head and forelegs that can be collected easily at the slaughterhouse may be a viable alternative to whole body DXA measurement.


Subject(s)
Animal Feed , Bone Density , Bone and Bones , Calcium, Dietary , Phosphorus, Dietary , Animals , Female , Calcium, Dietary/metabolism , Calcium, Dietary/administration & dosage , Bone Density/drug effects , Phosphorus, Dietary/administration & dosage , Phosphorus, Dietary/metabolism , Animal Feed/analysis , Swine/physiology , Swine/growth & development , Absorptiometry, Photon/veterinary , Diet/veterinary , Calcification, Physiologic/drug effects , Animal Nutritional Physiological Phenomena , Phosphorus/metabolism , Sus scrofa/growth & development , Sus scrofa/physiology
9.
Elife ; 132024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150037

ABSTRACT

Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ 'mineralization of extracellular matrix' attributed to hyaline rotaliid shells, or 'mineralization within intracellular vesicles' attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.


Subject(s)
Foraminifera , Microscopy, Electron, Scanning , Foraminifera/metabolism , Calcification, Physiologic , Calcium Carbonate/metabolism , Calcium Carbonate/chemistry , Biomineralization , Phylogeny
10.
Tissue Cell ; 90: 102508, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128193

ABSTRACT

BACKGROUND: The present study aimed to evaluate the viability of human dental pulp stem cells (hDPSCs) exposed to boric acid (BA) and injectable platelet-rich fibrin (I-PRF). MATERIALS AND METHODS: hDPSCs were isolated from impacted third molars. Nine milliliters of whole blood was transferred to I-PRF tubes and centrifuged at 700 rpm for 3 minutes. A BA solution was prepared by dissolving BA in a 0.1 g/ml stock solution. The cells were divided into four groups: control, I-PRF, BA, and BA + I-PRF. Cell viability was evaluated using flow cytometry. Mineralized calcium nodules were observed using Alizarin Red staining. The data were analyzed using two-way analysis of variance and Tukey's HSD test (p<0.05). RESULTS: The highest percentage of viable cells was in the I-PRF group, and the lowest percentage of viable cells was in the BA group at all times. Larger calcium nodules were observed in the BA group compared to the other groups. CONCLUSION: The use of I-PRF with or without BA had a positive effect on cell viability. BA and I-PRF affected the formation of mineralized calcium nodules. I-PRF and BA may be used in combination because these substances minimally reduce cell viability and promote mineralized nodule formation.


Subject(s)
Boric Acids , Cell Survival , Dental Pulp , Platelet-Rich Fibrin , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Boric Acids/pharmacology , Cell Survival/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Calcification, Physiologic/drug effects
11.
EMBO J ; 43(17): 3587-3603, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951609

ABSTRACT

Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.


Subject(s)
Inflammation , Long Interspersed Nucleotide Elements , Mesenchymal Stem Cells , eIF-2 Kinase , Animals , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Mice , Humans , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Mesenchymal Stem Cells/metabolism , Long Interspersed Nucleotide Elements/genetics , Osteoblasts/metabolism , Calcification, Physiologic/genetics
12.
Dent Mater ; 40(10): 1591-1601, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39068091

ABSTRACT

OBJECTIVE: Drug-loaded non-resorbable polymeric nanoparticles (NPs) are proposed as an adjunctive treatment for pulp regenerative strategies. The present in vitro investigation aimed to evaluate the effectiveness of tideglusib-doped nanoparticles (TDg-NPs) in mitigating the adverse effects of bacterial lipopolysaccharide endotoxin (LPS) on the viability, morphology, migration, differentiation and mineralization potential of human dental pulp stem cells (hDPSCs). METHODS: Cell viability, proliferation, and differentiation were assessed using a MTT assay, cell migration evaluation, cell cytoskeleton staining analysis, Alizarin Red S staining and expression of the odontogenic related genes by a real-time quantitative polymerase chain reaction (RT-qPCR) were also performed. Cells were tested both with and without stimulation with LPS at various time points. One-way ANOVA and Tukey's test were employed for statistical analysis (p < 0.05). RESULTS: Adequate cell viability was encountered in all groups and at every tested time point (24, 48, 72 and 168 h), without differences among the groups (p > 0.05). The analysis of cell cytoskeleton showed nuclear alteration in cultures with undoped NPs after LPS stimulation. These cells exhibited an in blue diffuse and multifocal appearance. Some nuclei looked fragmented and condensed. hDPSCs after LPS stimulation but in the presence of TDg-NPs exhibited less nuclei changes. LPS induced down-regulation of Alkaline phosphatase, Osteonectin and Collagen1 gene markers, after 21d. LPS half-reduced the cells production of calcium deposits in all groups (p < 0.05), except in the group with TDg-NPs (decrease about 10 %). SIGNIFICANCE: LPS induced lower mineral deposition and cytoskeletal disorganization in hDPSCs. These effects were counteracted by TDg-NPs, enhancing osteogenic differentiation and mineralization.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Dental Pulp , Lipopolysaccharides , Nanoparticles , Osteogenesis , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Lipopolysaccharides/pharmacology , Cell Differentiation/drug effects , Osteogenesis/drug effects , Stem Cells/drug effects , Cell Survival/drug effects , Cells, Cultured , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Cell Movement/drug effects , Calcification, Physiologic/drug effects , In Vitro Techniques
13.
Sci Data ; 11(1): 720, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956105

ABSTRACT

Calcification and biomass production by planktonic marine organisms influences the global carbon cycle and fuels marine ecosystems. The major calcifying plankton group coccolithophores are highly diverse, comprising ca. 250-300 extant species. However, coccolithophore size (a key functional trait) and degree of calcification are poorly quantified, as most of our understanding of this group comes from a small number of species. We generated a novel reference dataset of coccolithophore morphological traits, including cell-specific data for coccosphere and cell size, coccolith size, number of coccoliths per cell, and cellular calcite content. This dataset includes observations from 1074 individual cells and represents 61 species from 25 genera spanning equatorial to temperate coccolithophore populations that were sampled during the Atlantic Meridional Transect (AMT) 14 cruise in 2004. This unique dataset can be used to explore relationships between morphological traits (cell size and cell calcite) and environmental conditions, investigate species-specific and community contributions to pelagic carbonate production, export and plankton biomass, and inform and validate coccolithophore representation in marine ecosystem and biogeochemical models.


Subject(s)
Haptophyta , Atlantic Ocean , Plankton , Biomass , Calcification, Physiologic , Calcium Carbonate , Ecosystem
14.
PLoS One ; 19(7): e0306725, 2024.
Article in English | MEDLINE | ID: mdl-39078831

ABSTRACT

The global increase in anthropogenic CO2 is leading to ocean warming and acidification, which is threatening corals. In Ischia, Italy, two species of Mediterranean scleractinian corals-the symbiotic Cladocora caespitosa and the asymbiotic Astroides calycularis-were collected from ambient pH sites (average pHT = 8.05) and adjacent CO2 vent sites (average pHT = 7.8) to evaluate their response to ocean acidification. Coral colonies from both sites were reared in a laboratory setting for six months at present day pH (pHT ~ 8.08) or low pH (pHT ~7.72). Previous work showed that these corals were tolerant of low pH and maintained positive calcification rates throughout the experiment. We hypothesized that these corals cope with low pH by increasing their heterotrophic capacity (i.e., feeding and/or proportion of heterotrophically derived compounds incorporated in their tissues), irrespective of site of origin, which was quantified indirectly by measuring δ13C, δ15N, and sterols. To further characterize coral health, we quantified energy reserves by measuring biomass, total lipids, and lipid classes. Additional analysis for C. caespitosa included carbohydrates (an energy reserve) and chlorophyll a (an indicator of photosynthetic capacity). Isotopic evidence shows that ambient-sourced Mediterranean corals, of both species, decreased heterotrophy in response to six months of low pH. Despite maintaining energy reserves, lower net photosynthesis (C. caespitosa) and a trend of declining calcification (A. calycularis) suggest a long-term cost to low heterotrophy under ocean acidification conditions. Conversely, vent-sourced corals maintained moderate (C. caespitosa) or high (A. calycularis) heterotrophic capacity and increased photosynthesis rates (C. caespitosa) in response to six months at low pH, allowing them to sustain themselves physiologically. Provided there is sufficient zooplankton and/or organic matter to meet their heterotrophic needs, vent-sourced corals are more likely to persist this century and potentially be a source for new corals in the Mediterranean.


Subject(s)
Anthozoa , Carbon Dioxide , Animals , Anthozoa/physiology , Anthozoa/metabolism , Hydrogen-Ion Concentration , Carbon Dioxide/metabolism , Heterotrophic Processes/physiology , Mediterranean Sea , Seawater/chemistry , Photosynthesis , Calcification, Physiologic
15.
Gene ; 927: 148748, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38969245

ABSTRACT

Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.


Subject(s)
Animal Shells , CRISPR-Cas Systems , Calcification, Physiologic , Calcium Carbonate , Crassostrea , Gene Knockout Techniques , Animals , Crassostrea/genetics , Crassostrea/growth & development , Crassostrea/metabolism , Animal Shells/metabolism , Animal Shells/growth & development , Gene Knockout Techniques/methods , Calcification, Physiologic/genetics , Calcium Carbonate/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Biomineralization/genetics
16.
Int J Biol Macromol ; 275(Pt 1): 133597, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960232

ABSTRACT

BACKGROUND: Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS: In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS: The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE: By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.


Subject(s)
Alginates , Bone Regeneration , Hydrogels , Selenium , Tretinoin , Bone Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Alginates/chemistry , Tretinoin/pharmacology , Tretinoin/chemistry , Animals , Mice , Selenium/chemistry , Selenium/pharmacology , Osteogenesis/drug effects , Hydroxyapatites/chemistry , Hydroxyapatites/pharmacology , Calcification, Physiologic/drug effects , Immunomodulation/drug effects , Cell Line , Osteoblasts/drug effects , Tissue Engineering/methods , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry
17.
Aquat Toxicol ; 273: 107033, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084117

ABSTRACT

Cadmium (Cd) poses significant risks to aquatic organisms due to its toxicity and ability to disrupt the cellular processes. Given the similar atomic radius of Cd and calcium (Ca), Cd may potentially affect the Ca homeostasis, which can lead to impaired mineralization of skeletal structures and behavioral abnormalities. The formation of the spinal skeleton involves Ca transport and mineralization. In this study, we conducted an in-depth investigation on the effects of Cd at environmental concentrations on zebrafish (Danio rerio) skeletal development and the underlying molecular mechanisms. As the concentration of Cd increased, the accumulation of Cd in zebrafish larvae also rose, while the Ca content decreased significantly by 3.0 %-57.3 %, and vertebral deformities were observed. Transcriptomics analysis revealed that sixteen genes involved in metal absorption were affected. Exposure to 2 µg/L Cd significantly upregulated the expression of these genes, whereas exposure to 10 µg/L resulted in their downregulation. Consequently, exposure of zebrafish larvae to 10 µg/L of Cd inhibited the body segmentation growth and skeletal mineralization development by 29.1 %-56.7 %. This inhibition was evidenced by the downregulation of mineral absorption genes and decreased Ca accumulation. The findings of this study suggested that the inhibition of skeletal mineralization was likely attributed to the disruption of mineral absorption, thus providing novel insights into the mechanisms by which metal pollutants inhibit the skeletal development of fish.


Subject(s)
Cadmium , Calcium , Water Pollutants, Chemical , Zebrafish , Animals , Cadmium/toxicity , Water Pollutants, Chemical/toxicity , Calcium/metabolism , Behavior, Animal/drug effects , Larva/drug effects , Calcification, Physiologic/drug effects , Bone Development/drug effects
18.
Connect Tissue Res ; 65(4): 313-329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982804

ABSTRACT

AIM: As osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3. METHODS: Due to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (ß-glycerophosphate (ßGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker. RESULTS: ßGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. ßGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing ßGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition. CONCLUSIONS: This work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation.


Subject(s)
Glycerophosphates , Osteoblasts , Osteocytes , Stress, Mechanical , Glycerophosphates/pharmacology , Glycerophosphates/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Animals , Osteocytes/metabolism , Osteocytes/cytology , Cell Line , Mice , Osteogenesis/drug effects , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Ascorbic Acid/analogs & derivatives
19.
J Cell Mol Med ; 28(14): e18569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072972

ABSTRACT

Epimedium is thought to enhance the integrity of tendons and bones, ease joint discomfort and rigidity and enhance kidney function. Although glucocorticoids are commonly used in clinical practice, the mechanism by which the active compound Epimedin C (EC) alleviates glucocorticoid-induced osteoporosis (GIOP) is not well understood. The therapeutic potential of EC in treating GIOP was evaluated using alizarin red S staining, calcein immersion and fluorescence imaging, and bone mineralization, bone mass accumulation and bone density in zebrafish larvae were determined. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the key signalling pathways related to bone development were identified. A protein-protein interaction network (PPIN) was constructed to identify osteoclast characteristic genes and the findings were verified using real-time quantitative PCR (RT-qPCR). The bone tissue damage caused by prednisolone was reduced by EC. It also altered physiological processes, improved bone density, boosted mineralization and increased bone mass and activity. Subsequent empirical investigations showed that EC impacted the major signalling pathways involved in bone development, such as osteoclast differentiation, oestrogen, MAPK, insulin resistance, PPAR and AMPK signalling pathways. It also decreased the expression of genes typical of osteoclasts. The results of our study uncover a previously unknown function of EC in controlling bone formation and emphasize the potential of EC as a therapeutic target. The osteoprotective effect of EC indicates its potential as a cost-effective strategy for treating GIOP.


Subject(s)
Disease Models, Animal , Flavonoids , Glucocorticoids , Osteoclasts , Osteoporosis , Signal Transduction , Zebrafish , Animals , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/drug therapy , Flavonoids/pharmacology , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Osteoclasts/metabolism , Osteoclasts/drug effects , Signal Transduction/drug effects , Bone Density/drug effects , Protein Interaction Maps , Osteogenesis/drug effects , Osteogenesis/genetics , Calcification, Physiologic/drug effects
20.
Eur J Orthod ; 46(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39066623

ABSTRACT

BACKGROUND: The robustness and credibility of RT-qPCR results are critically dependent on the selection of suitable reference genes. However, the mineralization of the extracellular matrix can alter the intracellular tension and energy metabolism within cells, potentially impacting the expression of traditional reference genes, namely Actb and Gapdh. OBJECTIVE: To methodically identify appropriate reference genes for research focused on mouse cementoblast mineralization. MATERIALS AND METHODS: Time-series transcriptomic data of mouse cementoblast mineralization were used. To ensure expression stability and medium to high expression levels, three specific criteria were applied to select potential reference genes. The expression stability of these genes was ranked based on the DI index (1/coefficient of variation) to identify the top six potential reference genes. RT-qPCR validation was performed on these top six candidates, comparing their performance against six previously used reference genes (Rpl22, Ppib, Gusb, Rplp0, Actb, and Gapdh). Cq values of these 12 genes were analyzed by RefFinder to get a stability ranking. RESULTS: A total of 4418 (12.27%) genes met the selection criteria. Among them, Rab5if, Chmp4b, Birc5, Pea15a, Nudc, Supt4a were identified as candidate reference genes. RefFinder analyses revealed that two candidates (Birc5 and Nudc) exhibited superior performance compared to previously used reference genes. LIMITATIONS: RefFinder's stability ranking does not consider the influence of primer efficiency. CONCLUSIONS AND IMPLICATIONS: We propose Birc5 and Nudc as candidate reference genes for RT-qPCR studies investigating mouse cementoblast mineralization and cementum repair.


Subject(s)
Dental Cementum , Real-Time Polymerase Chain Reaction , Survivin , Animals , Mice , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Survivin/genetics , Reference Standards , RNA-Seq/methods , RNA-Seq/standards , Calcification, Physiologic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL