Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 283.569
1.
Food Res Int ; 188: 114457, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823859

The effect of the substitution of emulsifying salt by the young bamboo flour (BF) (0, 25, 50, 75, 100 % w/w) on requeijão cremoso processed cheese [REQ, REQ 25, REQ 75 REQ 100]) processing was investigated. Gross composition, calcium and sodium values, functional properties (melting rate), color parameters (L, a*, b*, C*, and Whiteness Index, WI), texture profile, fatty acid profile, volatile organic compounds (VOCs), and sensory profiling were evaluated. No effect was observed on the gross composition; however, sodium and melting rate values were decreased, and calcium values presented the opposite behavior. BF could modify the optical parameters, observing an increase in WI values. Higher BF addition increased hardness and lowered elasticity, and regarding the fatty acid profile, there is no significant difference. Different volatile compounds were noted in a proportional form with the BF addition, which was reflected in similar sensory acceptance for REQ 25 and control samples. Although some aspects require further in-depth studies, using BF as a substitute for emulsifying salt in requeijão cremoso processed cheese appears to be a viable option, especially when considering partial replacements.


Cheese , Flour , Food Handling , Volatile Organic Compounds , Cheese/analysis , Flour/analysis , Volatile Organic Compounds/analysis , Food Handling/methods , Humans , Taste , Fatty Acids/analysis , Color , Emulsions/chemistry , Hardness , Calcium/analysis , Calcium/chemistry
2.
Anal Chim Acta ; 1310: 342663, 2024 Jun 29.
Article En | MEDLINE | ID: mdl-38811130

The diagnosis of malignant melanoma, often an inconspicuous but highly aggressive tumor, is most commonly done by histological examination, while additional diagnostic methods on the level of elements and molecules are constantly being developed. Several studies confirmed differences in the chemical composition of healthy and tumor tissue. Our study presents the potential of the LIBS (Laser-Induced-Breakdown Spectroscopy) technique as a diagnostic tool in malignant melanoma (MM) based on the quantitative changes in elemental composition in cancerous tissue. Our patient group included 17 samples of various types of malignant melanoma and one sample of healthy skin tissue as a control. To achieve a clear perception of results, we have selected two biogenic elements (calcium and magnesium), which showed a dissimilar distribution in cancerous tissue from its healthy surroundings. Moreover, we observed indications of different concentrations of these elements in different subtypes of malignant melanoma, a hypothesis that requires confirmation in a more extensive sample set. The information provided by the LIBS Imaging method could potentially be helpful not only in the diagnostics of tumor tissue but also be beneficial in broadening the knowledge about the tumor itself.


Lasers , Magnesium , Melanoma , Skin Neoplasms , Spectrum Analysis , Humans , Melanoma/pathology , Melanoma/diagnostic imaging , Melanoma/diagnosis , Melanoma/chemistry , Spectrum Analysis/methods , Magnesium/analysis , Skin Neoplasms/pathology , Skin Neoplasms/diagnostic imaging , Calcium/analysis
3.
Curr Opin Nephrol Hypertens ; 33(4): 375-382, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38701324

PURPOSE OF REVIEW: Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS: Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY: Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.


Mutation , Parathyroid Hormone , Humans , Parathyroid Hormone/metabolism , Parathyroid Hormone/blood , Parathyroid Hormone/genetics , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Parathyroid Glands/metabolism , Rare Diseases/diagnosis , Rare Diseases/genetics , Animals , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Calcium/metabolism , Genetic Predisposition to Disease , Predictive Value of Tests , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics
4.
Nat Commun ; 15(1): 4503, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802334

The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.


Brain Neoplasms , Glioblastoma , Nerve Net , Glioblastoma/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/physiopathology , Glioblastoma/genetics , Animals , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Mice , Humans , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Glutamic Acid/metabolism , Neurons/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Calcium Signaling , Disease Models, Animal , Male , Calcium/metabolism , Female
5.
Nat Commun ; 15(1): 4609, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816425

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Calcium , Cytosol , DNA Replication , Membrane Proteins , TRPV Cation Channels , Humans , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Calcium/metabolism , Cytosol/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , HEK293 Cells , DNA/metabolism , HeLa Cells , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Phosphorylation , Genomic Instability , DNA Damage , Animals
6.
PLoS One ; 19(5): e0304649, 2024.
Article En | MEDLINE | ID: mdl-38820324

INTRODUCTION: Hyperphosphatemia and hyperparathyroidism are common in end-stage kidney disease and are associated with poor outcomes. In addition to adequate dialysis, medications are usually required for optimum control of serum phosphate and parathyroid hormone (PTH) levels. The use of calcium-based phosphate binders (CBPBs) and active vitamin D is associated with an increase in serum calcium and worsening vascular calcification. To overcome these limitations, non-calcium-based phosphate binders (NCBPBs) and calcimimetics have been developed. However, the coverage for these new medications remains limited in several parts of the world due to the lack of patient-level outcome data and cost. The present study examined the differences in mineral outcomes between two main categories of healthcare programs that provided different coverage for medications used to control mineral and bone disorders (MBD). The Social Security/Universal Coverage (SS/UC) program covered only CBPBs and active vitamin D, whereas the Civil Servant/State Enterprise (CS/SE) program provided coverage of CBPBs, active vitamin D, NCBPBs, and calcimimetics. METHODS: This 10-year retrospective cohort study examined the differences in mineral outcomes between two healthcare programs in maintenance hemodialysis patients. The differences in serum calcium, phosphate, and PTH levels, as well as the aortic arch calcification score, were analyzed according to dialysis vintage by linear mixed-effects regression analyses. The difference in the composite outcome of severe hyperparathyroidism and parathyroidectomy was analyzed by the Cox-proportional hazard regression model. RESULTS: 714 patients were included in the analyses (full cohort). Of these patients, 563 required at least one type of medication to control MBD (MBD medication subgroup). Serum calcium, phosphate, and the proportions of patients with hypercalcemia and hyperphosphatemia were substantially higher in the SS/UC group compared with the CS/SE group after appropriate adjustments for confounders in both the full cohort and the MBD medication subgroup. These findings were confirmed in propensity-score matched analyses. Higher parathyroid hormone levels and a higher rate of the composite endpoint of severe hyperparathyroidism and parathyroidectomy were also observed in the SS/UC group. A more rapid progression of aortic arch calcification was suggested in the SS/UC group, but between-group changes were not significant. CONCLUSION: Patients under the healthcare program that did not cover the use of NCBPBs and calcimimetics showed higher serum calcium and phosphate levels and a more rapid progression of hyperparathyroidism. The difference in the progression of vascular calcification could not be confirmed in the present study.


Calcimimetic Agents , Calcium , Hyperphosphatemia , Phosphates , Renal Dialysis , Humans , Male , Female , Retrospective Studies , Middle Aged , Calcimimetic Agents/therapeutic use , Hyperphosphatemia/etiology , Hyperphosphatemia/drug therapy , Hyperphosphatemia/blood , Calcium/blood , Aged , Phosphates/blood , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/complications , Parathyroid Hormone/blood , Vitamin D/blood , Chelating Agents/therapeutic use
7.
PLoS One ; 19(5): e0303540, 2024.
Article En | MEDLINE | ID: mdl-38820336

INTRODUCTION: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.


Heart Transplantation , Myocytes, Cardiac , Humans , Male , Heart Transplantation/adverse effects , Middle Aged , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Adult , Excitation Contraction Coupling , Microvessels/pathology , Microvessels/physiopathology , Calcium/metabolism , Mitochondria, Heart/metabolism , Calcium Signaling
8.
Methods Mol Biol ; 2799: 151-175, 2024.
Article En | MEDLINE | ID: mdl-38727907

In vertebrate central neurons, NMDA receptors are glutamate- and glycine-gated ion channels that allow the passage of Na+ and Ca2+ ions into the cell when these neurotransmitters are simultaneously present. The passage of Ca2+ is critical for initiating the cellular processes underlying various forms of synaptic plasticity. These Ca2+ ions can autoregulate the NMDA receptor signal through multiple distinct mechanisms to reduce the total flux of cations. One such mechanism is the ability of Ca2+ ions to exclude the passage of Na+ ions resulting in a reduced unitary current conductance. In contrast to the well-characterized Mg2+ block, this "channel block" mechanism is voltage-independent. In this chapter, we discuss theoretical and experimental considerations for the study of channel block by Ca2+ using single-channel patch-clamp electrophysiology. We focus on two classic methodologies to quantify the dependence of unitary channel conductance on external concentrations of Ca2+ as the basis for quantifying Ca2+ block.


Calcium , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Patch-Clamp Techniques/methods , Animals , Ion Channel Gating , Humans , Sodium/metabolism
9.
Methods Mol Biol ; 2799: 177-200, 2024.
Article En | MEDLINE | ID: mdl-38727908

In the mammalian central nervous system (CNS), fast excitatory transmission relies primarily on the ionic fluxes generated by ionotropic glutamate receptors (iGluRs). Among iGluRs, NMDA receptors (NMDARs) are unique in their ability to pass large, Ca2+-rich currents. Importantly, their high Ca2+ permeability is essential for normal CNS function and is under physiological control. For this reason, the accurate measurement of NMDA receptor Ca2+ permeability represents a valuable experimental step in evaluating the mechanism by which these receptors contribute to a variety of physiological and pathological conditions. In this chapter, we provide a theoretical and practical overview of the common methods used to estimate the Ca2+ permeability of ion channels as they apply to NMDA receptors. Specifically, we describe the principles and methodology used to calculate relative permeability (PCa/PNa) and fractional permeability (Pf), along with the relationship between these two metrics. With increasing knowledge about the structural dynamics of ion channels and of the ongoing environmental fluctuations in which channels operate in vivo, the ability to quantify the Ca2+ entering cells through specific ion channels remains a tool essential to delineating the molecular mechanisms that support health and cause disease.


Calcium , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Calcium/metabolism , Patch-Clamp Techniques/methods , Animals , Humans , Permeability , Cell Membrane Permeability
10.
Nat Commun ; 15(1): 3994, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734761

NADPH oxidase 5 (NOX5) catalyzes the production of superoxide free radicals and regulates physiological processes from sperm motility to cardiac rhythm. Overexpression of NOX5 leads to cancers, diabetes, and cardiovascular diseases. NOX5 is activated by intracellular calcium signaling, but the underlying molecular mechanism of which - in particular, how calcium triggers electron transfer from NADPH to FAD - is still unclear. Here we capture motions of full-length human NOX5 upon calcium binding using single-particle cryogenic electron microscopy (cryo-EM). By combining biochemistry, mutagenesis analyses, and molecular dynamics (MD) simulations, we decode the molecular basis of NOX5 activation and electron transfer. We find that calcium binding to the EF-hand domain increases NADPH dynamics, permitting electron transfer between NADPH and FAD and superoxide production. Our structural findings also uncover a zinc-binding motif that is important for NOX5 stability and enzymatic activity, revealing modulation mechanisms of reactive oxygen species (ROS) production.


Calcium , Cryoelectron Microscopy , Molecular Dynamics Simulation , NADPH Oxidase 5 , NADP , Humans , NADPH Oxidase 5/metabolism , NADPH Oxidase 5/genetics , NADPH Oxidase 5/chemistry , Calcium/metabolism , NADP/metabolism , Flavin-Adenine Dinucleotide/metabolism , Superoxides/metabolism , Protein Binding , Reactive Oxygen Species/metabolism , Zinc/metabolism , Electron Transport , Enzyme Activation , Binding Sites
12.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Article En | MEDLINE | ID: mdl-38709246

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Immunotherapy , Membrane Proteins , Pyroptosis , Tumor Microenvironment , Uterine Cervical Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/therapy , Female , Humans , Mice , Animals , Pyroptosis/drug effects , Membrane Proteins/metabolism , Manganese/chemistry , Manganese/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Signal Transduction/drug effects , Cell Proliferation/drug effects , Calcium/metabolism , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
13.
ACS Nano ; 18(20): 12808-12819, 2024 May 21.
Article En | MEDLINE | ID: mdl-38717026

Considerable progress has already been made in sweat sensors based on electrochemical methods to realize real-time monitoring of biomarkers. However, realizing long-term monitoring of multiple targets at the atomic level remains extremely challenging, in terms of designing stable solid contact (SC) interfaces and fully integrating multiple modules for large-scale applications of sweat sensors. Herein, a fully integrated wristwatch was designed using mass-manufactured sensor arrays based on hierarchical multilayer-pore cross-linked N-doped porous carbon coated by reduced graphene oxide (NPCs@rGO-950) microspheres with high hydrophobicity as core SC, and highly selective monitoring simultaneously for K+, Na+, and Ca2+ ions in human sweat was achieved, exhibiting near-Nernst responses almost without forming an interfacial water layer. Combined with computed tomography, solid-solid interface potential diffusion simulation results reveal extremely low interface diffusion potential and high interface capacitance (598 µF), ensuring the excellent potential stability, reversibility, repeatability, and selectivity of sensor arrays. The developed highly integrated-multiplexed wristwatch with multiple modules, including SC, sensor array, microfluidic chip, signal transduction, signal processing, and data visualization, achieved reliable real-time monitoring for K+, Na+, and Ca2+ ion concentrations in sweat. Ingenious material design, scalable sensor fabrication, and electrical integration of multimodule wearables lay the foundation for developing reliable sweat-sensing systems for health monitoring.


Electrolytes , Graphite , Sweat , Wearable Electronic Devices , Sweat/chemistry , Humans , Graphite/chemistry , Electrolytes/chemistry , Ions/analysis , Calcium/analysis , Sodium/analysis , Sodium/chemistry , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Potassium/analysis
14.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726925

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Angiotensin II , Brain , Calcium , Hypertension , Kidney , Microvessels , Nitric Oxide , Vasoconstriction , Animals , Nitric Oxide/metabolism , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/drug therapy , Kidney/blood supply , Kidney/metabolism , Calcium/metabolism , Vasoconstriction/drug effects , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Brain/metabolism , Brain/blood supply , Mice , Disease Models, Animal , Male , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Calcium Signaling/drug effects
15.
J Histochem Cytochem ; 72(5): 275-287, 2024 May.
Article En | MEDLINE | ID: mdl-38725415

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Calcium , Isothiocyanates , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Isothiocyanates/pharmacology , Mice , Calcium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/agonists , Capsaicin/pharmacology , In Situ Hybridization , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Male
16.
J Phys Chem Lett ; 15(20): 5510-5516, 2024 May 23.
Article En | MEDLINE | ID: mdl-38749015

Viral rhodopsins are light-gated cation channels representing a novel class of microbial rhodopsins. For viral rhodopsin 1 subfamily members VirChR1 and OLPVR1, channel activity is abolished above a certain calcium concentration. Here we present a calcium-dependent spectroscopic analysis of VirChR1 on the femtosecond to second time scale. Unlike channelrhodopsin-2, VirChR1 possesses two intermediate states P1 and P2 on the ultrafast time scale, similar to J and K in ion-pumping rhodopsins. Subsequently, we observe multifaceted photocycle kinetics with up to seven intermediate states. Calcium predominantly affects the last photocycle steps, including the appearance of additional intermediates P6Ca and P7 representing the blocked channel. Furthermore, the photocycle of the counterion variant D80N is drastically altered, yielding intermediates with different spectra and kinetics compared to those of the wt. These findings demonstrate the central role of the counterion within the defined reaction sequence of microbial rhodopsins that ultimately defines the protein function.


Calcium , Rhodopsins, Microbial , Calcium/chemistry , Calcium/metabolism , Kinetics , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism
17.
J Biol Phys ; 50(2): 229-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38753214

Studying the calcium dynamics within a fibroblast cell individually has provided only a restricted understanding of its functions. However, research efforts focusing on systems biology approaches for such investigations have been largely neglected by researchers until now. Fibroblast cells rely on signaling from calcium ( C a 2 + ) and nitric oxide (NO) to maintain their physiological functions and structural stability. Various studies have demonstrated the correlation between NO and the control of C a 2 + dynamics in cells. However, there is currently no existing model to assess the disruptions caused by various factors in regulatory dynamics, potentially resulting in diverse fibrotic disorders. A mathematical model has been developed to investigate the effects of changes in parameters such as buffer, receptor, sarcoplasmic endoplasmic reticulum C a 2 + -ATPase (SERCA) pump, and source influx on the regulation and dysregulation of spatiotemporal calcium and NO dynamics in fibroblast cells. This model is based on a system of reaction-diffusion equations, and numerical simulations are conducted using the finite element method. Disturbances in key processes related to calcium and nitric oxide, including source influx, buffer mechanism, SERCA pump, and inositol trisphosphate ( I P 3 ) receptor, may contribute to deregulation in the calcium and NO dynamics within fibroblasts. The findings also provide new insights into the extent and severity of disorders resulting from alterations in various parameters, potentially leading to deregulation and the development of fibrotic disease.


Calcium , Fibroblasts , Fibrosis , Models, Biological , Nitric Oxide , Fibroblasts/metabolism , Nitric Oxide/metabolism , Calcium/metabolism , Signal Transduction , Humans , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium Signaling
18.
J Clin Pediatr Dent ; 48(3): 86-93, 2024 May.
Article En | MEDLINE | ID: mdl-38755986

The aim of the study was to evaluate the severity of molar incisor hypomineralisation (MIH), related oral health and investigate salivary mineral composition. The study was conducted with 50 participants aged between 6-15 years who were effected with MIH and 50 without MIH. The International Caries Detection and Assessment System (ICDAS) scores, Decayed, Missing, Filled Teeth/Surface (DMFT/S), dft/s and gingival/plaque indices were evaluated. The pH, flow rate, buffering capacity and mineral composition of saliva was measured. "Student t" test, one-way analysis of variance in repeated measurements of groups, and Tukey multiplex in subgroup comparisons was used. Kruskal-Wallis, Mann-Whitney U, Wilcoxon and chi-square tests were used to analyze qualitative data and compare groups. A total of 100 children (57 females 43 males, mean age 10.12 ± 1.85) participated in the study. There was no difference between ICDAS, DMFT/S scores, but dft/s index values were statistically significant (p = 0.001). The simplified oral hygiene index of MIH patients were statistically higher, but no significant differences were found in modified gingival indices (p = 0.52). Although the salivary pH and flow rate of the patients in the study group were lower, the buffering capacity was higher than those in the control group, but no significant difference was observed (p = 0.64). The mean values of phosphorus, carbon and calcium content in the saliva samples of MIH patients were higher than those of patients without MIH, and this difference was low for phosphorus (p = 0.76) and carbon (p = 0.74), but significantly higher for calcium. To the best of our knowledge, this is the first study to evaluate the association between calcium, phosphate and carbon levels in saliva of children with MIH. The significantly high amount of calcium in the saliva of patients with MIH suggests that further investigations are needed.


Dental Enamel Hypoplasia , Saliva , Humans , Saliva/chemistry , Child , Female , Male , Adolescent , Hydrogen-Ion Concentration , Minerals/analysis , Calcium/analysis , DMF Index , Severity of Illness Index , Phosphorus/analysis , Molar Hypomineralization
19.
Curr Protoc ; 4(5): e1048, 2024 May.
Article En | MEDLINE | ID: mdl-38752255

Both Ca2+ and protein kinase A (PKA) are multifaceted and ubiquitous signaling molecules, essential for regulating the intricate network of signaling pathways. However, their dynamics within specialized membrane regions are still not well characterized. By using genetically encoded fluorescent indicators specifically targeted to distinct plasma membrane microdomains, we have established a protocol that permits observing Ca2+/PKA dynamics in discrete neuronal microdomains with high spatial and temporal resolution. The approach employs a fluorescence microscope with a sensitive camera and a dedicated CFP/YFP/mCherry filter set, enabling the simultaneous detection of donor-acceptor emission and red fluorescence signal. In this detailed step-by-step guide, we outline the experimental procedure, including isolation of rat primary neurons and their transfection with biosensors targeted to lipid rafts or non-raft regions of plasma membrane. We provide information on the necessary equipment and imaging setup required for recording, along with highlighting critical parameters and troubleshooting guidelines for real-time measurements. Finally, we provide examples of the observed Ca2+ and PKA changes in specific cellular compartments. The application of this technique may have significant implications for studying cross-talk between second messengers and their alterations in various pathological conditions. © 2024 Wiley Periodicals LLC.


Calcium , Cyclic AMP-Dependent Protein Kinases , Fluorescence Resonance Energy Transfer , Hippocampus , Membrane Microdomains , Neurons , Animals , Neurons/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Rats , Calcium/metabolism , Membrane Microdomains/metabolism , Fluorescence Resonance Energy Transfer/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Cells, Cultured , Microscopy, Fluorescence/methods , Biosensing Techniques/methods
20.
ACS Chem Neurosci ; 15(10): 1951-1966, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696478

Aims: the study aimed to (i) use adeno-associated virus technology to modulate parvalbumin (PV) gene expression, both through overexpression and silencing, within the hippocampus of male mice and (ii) assess the impact of PV on the metabolic pathway of glutamate and γ-aminobutyric acid (GABA). Methods: a status epilepticus (SE) mouse model was established by injecting kainic acid into the hippocampus of transgenic mice. When the seizures of mice reached SE, the mice were killed at that time point and 30 min after the onset of SE. Hippocampal tissues were extracted and the mRNA and protein levels of PV and the 65 kDa (GAD65) and 67 kDa (GAD67) isoforms of glutamate decarboxylase were assessed using real-time quantitative polymerase chain reaction and Western blot, respectively. The concentrations of glutamate and GABA were detected with high-performance liquid chromatography (HPLC), and the intracellular calcium concentration was detected using flow cytometry. Results: we demonstrate that the expression of PV is associated with GAD65 and GAD67 and that PV regulates the levels of GAD65 and GAD67. PV was correlated with calcium concentration and GAD expression. Interestingly, PV overexpression resulted in a reduction in calcium ion concentration, upregulation of GAD65 and GAD67, elevation of GABA concentration, reduction in glutamate concentration, and an extension of seizure latency. Conversely, PV silencing induced the opposite effects. Conclusion: parvalbumin may affect the expression of GAD65 and GAD67 by regulating calcium ion concentration, thereby affecting the metabolic pathways associated with glutamate and GABA. In turn, this contributes to the regulation of seizure activity.


Calcium , Glutamate Decarboxylase , Glutamic Acid , Kainic Acid , Mice, Transgenic , Parvalbumins , Status Epilepticus , gamma-Aminobutyric Acid , Animals , Parvalbumins/metabolism , Glutamate Decarboxylase/metabolism , Status Epilepticus/metabolism , Status Epilepticus/chemically induced , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Male , Calcium/metabolism , Mice , Hippocampus/metabolism , Disease Models, Animal
...