Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 850
1.
BMC Med Imaging ; 24(1): 101, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693510

Bone strength depends on both mineral content and bone structure. Measurements of bone microstructure on specimens can be performed by micro-CT. In vivo measurements are reliably performed by high-resolution peripheral computed tomography (HR-pQCT) using dedicated software. In previous studies from our research group, trabecular bone properties on CT data of defatted specimens from many different CT devices have been analyzed using an Automated Region Growing (ARG) algorithm-based code, showing strong correlations to micro-CT.The aim of the study was to validate the possibility of segmenting and measuring trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens. Data from micro-CT was used as reference. The hypothesis was that the ARG-based in-house built software could be used for such measurements.HR-pQCT image data at two resolutions (61 and 82 µm isotropic voxels) from 23 fresh-frozen human forearms were analyzed. Correlations to micro-CT were strong, varying from 0.72 to 0.99 for all parameters except trabecular termini and nodes. The bone volume fraction had correlations varying from 0.95 to 0.98 but was overestimated compared to micro-CT, especially at the lower resolution. Trabecular separation and spacing were the most stable parameters with correlations at 0.80-0.97 and mean values in the same range as micro-CT.Results from this in vitro study show that an ARG-based software could be used for segmenting and measuring 3D trabecular bone structure from clinical CT data of fresh-frozen human wrist specimens using micro-CT data as reference. Over-and underestimation of several of the bone structure parameters must however be taken into account.


Algorithms , Cancellous Bone , X-Ray Microtomography , Humans , Cancellous Bone/diagnostic imaging , Aged , Male , Female , Middle Aged , Wrist/diagnostic imaging , Software , Aged, 80 and over
2.
Sci Rep ; 14(1): 9977, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693297

This paper investigates trabecular bone ontogenetic changes in two different Polish populations, one prehistoric and the other historical. The studied populations are from the Brzesc Kujawski region in Kujawy (north-central Poland), one from the Neolithic Period (4500-4000 BC) and one from the Middle Ages (twelfth-sixteenth centuries AD), in total 62 vertebral specimens (32 males, 30 females). Eight morphometric parameters acquired from microCT scan images were analysed. Two-way ANOVA after Box-Cox transformation and multifactorial regression model were calculated. A significant decrease in percentage bone volume fraction (BV/TV; [%]) with age at death was observed in the studied sample; Tb.N (trabecular number) was also significantly decreased with age; trabecular separation (Tb.Sp) increased with advancing age; connectivity density (Conn.D) was negatively correlated with biological age and higher in the Neolithic population. These data are found to be compatible with data from the current biomedical literature, while no loss of horizontal trabeculae was recorded as would be expected based on modern osteoporosis.


Cancellous Bone , Humans , Poland , Male , Female , Adult , Cancellous Bone/anatomy & histology , Cancellous Bone/diagnostic imaging , History, Medieval , Middle Aged , Spine/anatomy & histology , Spine/diagnostic imaging , History, Ancient , X-Ray Microtomography , Age Factors , Aged , Bone Density , Sex Factors , Young Adult
3.
Front Endocrinol (Lausanne) ; 15: 1287591, 2024.
Article En | MEDLINE | ID: mdl-38774224

Purpose: To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method: A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results: In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized ß = -0.21), trabecular number (ß = -0.12), and trabecular separation (ß = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions: Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.


Bone Density , Bone Marrow , Cancellous Bone , Diabetes Mellitus, Type 1 , Magnetic Resonance Imaging , Humans , Male , Female , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/pathology , Magnetic Resonance Imaging/methods , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Adult , Case-Control Studies , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Absorptiometry, Photon , Adipose Tissue/diagnostic imaging , Adipose Tissue/pathology , Middle Aged , Young Adult
4.
J Acoust Soc Am ; 155(4): 2670-2686, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38639562

Recently, ultrasound transit time spectroscopy (UTTS) was proposed as a promising method for bone quantitative ultrasound measurement. Studies have showed that UTTS could estimate the bone volume fraction and other trabecular bone structure in ultrasonic through-transmission measurements. The goal of this study was to explore the feasibility of UTTS to be adapted in ultrasonic backscatter measurement and further evaluate the performance of backscattered ultrasound transit time spectrum (BS-UTTS) in the measurement of cancellous bone density and structure. First, taking ultrasonic attenuation into account, the concept of BS-UTTS was verified on ultrasonic backscatter signals simulated from a set of scatterers with different positions and intensities. Then, in vitro backscatter measurements were performed on 26 bovine cancellous bone specimens. After a logarithmic compression of the BS-UTTS, a linear fitting of the log-compressed BS-UTTS versus ultrasonic propagated distance was performed and the slope and intercept of the fitted line for BS-UTTS were determined. The associations between BS-UTTS parameters and cancellous bone features were analyzed using simple linear regression. The results showed that the BS-UTTS could make an accurate deconvolution of the backscatter signal and predict the position and intensity of the simulated scatterers eliminating phase interference, even the simulated backscatter signal was with a relatively low signal-to-noise ratio. With varied positions and intensities of the scatterers, the slope of the fitted line for the log-compressed BS-UTTS versus ultrasonic propagated distance (i.e., slope of BS-UTTS for short) yield a high agreement (r2 = 99.84%-99.96%) with ultrasonic attenuation in simulated backscatter signal. Compared with the high-density cancellous bone, the low-density specimen showed more abundant backscatter impulse response in the BS-UTTS. The slope of BS-UTTS yield a significant correlation with bone mineral density (r = 0.87; p < 0.001), BV/TV (r = 0.87; p < 0.001), and cancellous bone microstructures (r up to 0.87; p < 0.05). The intercept of BS-UTTS was also significantly correlated with bone densities (r = -0.87; p < 0.001) and trabecular structures (|r|=0.43-0.80; p < 0.05). However, the slope of the BS-UTTS underestimated attenuation when measurements were performed experimentally. In addition, a significant non-linear relationship was observed between the measured attenuation and the attenuation estimated by the slope of the BS-UTTS. This study demonstrated that the UTTS method could be adapted to ultrasonic backscatter measurement of cancellous bone. The derived slope and intercept of BS-UTTS could be used in the measurement of bone density and microstructure. The backscattered ultrasound transit time spectroscopy might have potential in the diagnosis of osteoporosis in the clinic.


Bone and Bones , Cancellous Bone , Animals , Cattle , Cancellous Bone/diagnostic imaging , Scattering, Radiation , Ultrasonography/methods , Bone and Bones/diagnostic imaging , Bone Density/physiology , Spectrum Analysis/methods
5.
Clin Biomech (Bristol, Avon) ; 115: 106240, 2024 May.
Article En | MEDLINE | ID: mdl-38615548

BACKGROUND: Knowing the mechanical properties of trabecular bone is critical for many branches of orthopaedic research. Trabecular bone is anisotropic and the principal trabecular direction is usually aligned with the load it transmits. It is therefore critical that the mechanical properties are measured as close as possible to this direction, which is often perpendicular to a curved articulating surface. METHODS: This study presents a method to extract trabecular bone cores perpendicular to a curved articulating surface of the distal femur. Cutting guides were generated from computed tomography scans of 12 human distal femora and a series of cutting tools were used to release cylindrical bone cores from the femora. The bone cores were then measured to identify the angle between the bone core axis and the principal trabecular axis. FINDINGS: The method yielded an 83% success rate in core extraction over 10 core locations per distal femur specimen. In the condyles, 97% of extracted cores were aligned with the principal trabecular direction. INTERPRETATION: This method is a reliable way of extracting trabecular bone specimens perpendicular to a curved articular surface and could be useful across the field of orthopaedic research.


Cancellous Bone , Femur , Humans , Femur/diagnostic imaging , Cancellous Bone/diagnostic imaging , Tomography, X-Ray Computed , Aged , Female , Male , Reproducibility of Results
6.
Int J Oral Maxillofac Implants ; 39(2): 271-277, 2024 04 24.
Article En | MEDLINE | ID: mdl-38657219

PURPOSE: To investigate the relationship between the structural parameters of trabecular bone obtained from CBCT imaging and the primary stability of dental implants. MATERIALS AND METHODS: Sixty patients underwent implant placement followed by primary stability evaluation via measurement of the insertion torque (IT) and the implant stability quotient (ISQ). Gray values (GV) and the fractal dimension (FD) were also measured using pretreatment CBCT images. RESULTS: FD values showed a positive and significant relationship with ISQ and IT values (P = .017 and P = .004, respectively). Additionally, there was a positive and significant correlation between GV and IT (P = .004) as well as between GV and ISQ (P = .010). FD and GV showed a considerable difference between the maxillary and mandibular jaws and were higher in the mandible. Only FD was significantly different between men and women and was higher in men. In the two age groups (older and younger than 45 years), only GV was considerably higher in people older than 45 (P < .05). CONCLUSIONS: Both fractal dimension and gray values obtained from CBCT are efficient methods for predicting the primary stability of the implant due to their relationship with ISQ and IT values.


Cancellous Bone , Cone-Beam Computed Tomography , Dental Implants , Fractals , Humans , Female , Male , Middle Aged , Adult , Cancellous Bone/diagnostic imaging , Dental Implantation, Endosseous/methods , Torque , Aged , Dental Prosthesis Retention , Mandible/diagnostic imaging
7.
Bone ; 184: 117096, 2024 Jul.
Article En | MEDLINE | ID: mdl-38631596

High-resolution magnetic resonance imaging (HR-MRI) has been increasingly used to assess the trabecular bone structure. High susceptibility at the marrow/bone interface may significantly reduce the marrow's apparent transverse relaxation time (T2*), overestimating trabecular bone thickness. Ultrashort echo time MRI (UTE-MRI) can minimize the signal loss caused by susceptibility-induced T2* shortening. However, UTE-MRI is sensitive to chemical shift artifacts, which manifest as spatial blurring and ringing artifacts partially due to non-Cartesian sampling. In this study, we proposed UTE-MRI at the resonance frequency of fat to minimize marrow-related chemical shift artifacts and the overestimation of trabecular thickness. Cubes of trabecular bone from six donors (75 ± 4 years old) were scanned using a 3 T clinical scanner at the resonance frequencies of fat and water, respectively, using 3D UTE sequences with five TEs (0.032, 1.1, 2.2, 3.3, and 4.4 ms) and a clinical 3D gradient echo (GRE) sequence at 0.2 × 0.2 × 0.4 mm3 voxel size. Trabecular bone thickness was measured in 30 regions of interest (ROIs) per sample. MRI results were compared with thicknesses obtained from micro-computed tomography (µCT) at 50 µm3 voxel size. Linear regression models were used to calculate the coefficient of determination between MRI- and µCT-based trabecular thickness. All MRI-based trabecular thicknesses showed significant correlations with µCT measurements. The correlations were higher (examined with paired Student's t-test, P < 0.01) for 3D UTE images performed at the fat frequency (R2 = 0.59-0.74, P < 0.01) than those at the water frequency (R2 = 0.18-0.52, P < 0.01) and clinical GRE images (R2 = 0.39-0.47, P < 0.01). Significantly reduced correlations were observed with longer TEs. This study highlighted the feasibility of UTE-MRI at the fat frequency for a more accurate assessment of trabecular bone thickness.


Cancellous Bone , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Cancellous Bone/diagnostic imaging , Aged , Male , Female , Adipose Tissue/diagnostic imaging
8.
Bone ; 184: 117109, 2024 Jul.
Article En | MEDLINE | ID: mdl-38643895

CONTEXT: Hypercortisolism frequently induces trabecular bone loss, more pronounced at the lumbar spine, resulting in osteoporosis, and thus an increase in fracture risk. Several studies have shown bone mass recovery in patients with Cushing's disease (CD) after treatment. OBJECTIVE: To examine treatment effects on TBS (trabecular bone score) in addition to aBMD (areal bone mineral density) in a cohort of patients with CD. DESIGN AND SETTING: Single-center retrospective longitudinal study in patients diagnosed with CD and successfully treated following surgery and/or medical treatment. PATIENTS: We included 31 patients with median age and BMI (body mass index) of 37.7 [28.4;43.3] years old and 27.7 [25.8;30.4] kg/m2, respectively. Median 24 h urinary cortisol before treatment was 213.4 [168.5;478.5] µg/24 h. All subjects were completely biochemically controlled or cured after treatment. MAIN OUTCOME MEASURES: aBMD and TBS were evaluated at AP Spine (L1-L4) with DXA prodigy (GE-Lunar), QDR 4500 (Hologic), and TBS iNsight® (Med-Imaps) before and after treatment. RESULTS: Absolute TBS and aBMD gains following cure of CD were significant (p < 0.0001, and p < 0.001, respectively). aBMD and TBS increased by +3.9 and 8.2 % respectively after cure of CD. aBMD and TBS were not correlated before (p = 0.43) and after treatment (p = 0.53). Linear regression analyses showed that TBS gain was independent of baseline BMI and that low TBS at baseline was predictive of TBS gain after treatment. CONCLUSION: The more significant improvement of microarchitecture assessed by TBS than aBMD and the absence of correlation between TBS and aBMD suggest that TBS may be an adequate marker of bone restoration after cure of CD. To support this conclusion, future studies with larger sample sizes and longer follow-up periods should be carried out.


Bone Density , Cancellous Bone , Humans , Female , Male , Adult , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Bone Density/physiology , Cushing Syndrome/physiopathology , Retrospective Studies , Pituitary ACTH Hypersecretion/surgery , Pituitary ACTH Hypersecretion/physiopathology , Pituitary ACTH Hypersecretion/diagnostic imaging , Longitudinal Studies , Middle Aged
9.
J Bone Miner Metab ; 42(3): 352-360, 2024 May.
Article En | MEDLINE | ID: mdl-38664255

INTRODUCTION: Trabecular bone score (TBS) estimates bone microstructure, which is directly measured by high-resolution peripheral quantitative computed tomography (HRpQCT). We evaluated the correlation between these methods and TBS influence on fracture risk assessed by FRAX. MATERIALS AND METHODS: We evaluated 129 individuals (82 women, 43 postmenopausal) 20 to 82.3 years without prevalent clinical or non-clinical morphometric vertebral fractures, using DXA (spine and hip), HR-pQCT at distal radius (R) and tibia (T) and TBS which classifies bone microarchitecture as normal (TBS ≥ 1.350), partially degraded (1.200 < TBS < 1.350), or degraded (TBS ≤ 1.200). RESULTS: Spine and hip BMD and HR-pQCT parameters at cortical bone: area (T), density (R,T) thickness (T) and trabecular bone: density (R,T), number (T) and thickness (R) were significantly better in the 78 individuals with normal TBS (group 1) versus the 51 classified as partially degraded (n = 42) or degraded microarchitecture (n = 9) altogether (group 2). TBS values correlated with age (r = - 0.55), positively with spine and hip BMD and all cortical and trabecular bone density and microstructure parameters evaluated, p < 0.05 all tests. Binary logistic regression defined age (p = 0.008) and cortical thickness (p = 0.018) as main influences on TBS, while ANCOVA demonstrated that HR-pQCT data corrected for age were not different between TBS groups 1 and 2. TBS adjustment increased FRAX risk for major osteoporotic fractures and hip fractures. CONCLUSION: We describe significant association between TBS and both trabecular and cortical bone parameters measured by HR-pQCT, consistent with TBS influence on fracture risk estimation by FRAX, including hip fractures, where cortical bone predominates.


Bone Density , Cancellous Bone , Cortical Bone , Tomography, X-Ray Computed , Humans , Female , Aged , Middle Aged , Cortical Bone/diagnostic imaging , Cancellous Bone/diagnostic imaging , Male , Aged, 80 and over , Adult , Absorptiometry, Photon , Young Adult
10.
Orthop Surg ; 16(5): 1215-1229, 2024 May.
Article En | MEDLINE | ID: mdl-38520122

OBJECTIVE: The biomechanical characteristics of proximal femoral trabeculae are closely related to the occurrence and treatment of proximal femoral fractures. Therefore, it is of great significance to study its biomechanical effects of cancellous bone in the proximal femur. This study examines the biomechanical effects of the cancellous bone in the proximal femur using a controlled variable method, which provide a foundation for further research into the mechanical properties of the proximal femur. METHODS: Seventeen proximal femoral specimens were selected to scan by quantitative computed tomography (QCT), and the gray values of nine regions were measure to evaluated bone mineral density (BMD) using Mimics software. Then, an intact femur was fixed simulating unilateral standing position. Vertical compression experiments were then performed again after removing cancellous bone in the femoral head, femoral neck, and intertrochanteric region, and data were recorded. According to the controlled variable method, the femoral head, femoral neck, and intertrochanteric trabeculae were sequentially removed based on the axial loading of the intact femur, and the displacement and strain changes of the femur samples under axial loading were recorded. Gom software was used to measure and record displacement and strain maps of the femoral surface. RESULTS: There was a statistically significant difference in anteroposterior displacement of cancellous bone destruction in the proximal femur (p < 0.001). Proximal femoral bone mass explained 77.5% of the strength variation, in addition proximal femoral strength was mainly affected by bone mass at the level of the upper outer, lower inner, lower greater trochanter, and lesser trochanter of the femoral head. The normal stress conduction of the proximal femur was destroyed after removing cancellous bone, the stress was concentrated in the femoral head and lateral femoral neck, and the femoral head showed a tendency to subside after destroying cancellous bone. CONCLUSION: The trabecular removal significantly altered the strain distribution and biomechanical strength of the proximal femur, demonstrating an important role in supporting and transforming bending moment under the vertical load. In addition, the strength of the proximal femur mainly depends on the bone density of the femoral head and intertrochanteric region.


Bone Density , Cancellous Bone , Tomography, X-Ray Computed , Humans , Biomechanical Phenomena , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiology , Female , Male , Femur/physiology , Femur/diagnostic imaging , Aged , Middle Aged , Femur Head/diagnostic imaging , Femur Head/physiology , Cadaver
11.
Osteoporos Int ; 35(6): 1049-1059, 2024 Jun.
Article En | MEDLINE | ID: mdl-38459138

PURPOSE: This study aimed to apply a newly developed semi-automatic phantom-less QCT (PL-QCT) to measure proximal humerus trabecular bone density based on chest CT and verify its accuracy and precision. METHODS: Subcutaneous fat of the shoulder joint and trapezius muscle were used as calibration references for PL-QCT BMD measurement. A self-developed algorithm based on a convolution map was utilized in PL-QCT for semi-automatic BMD measurements. CT values of ROIs used in PL-QCT measurements were directly used for phantom-based quantitative computed tomography (PB-QCT) BMD assessment. The study included 376 proximal humerus for comparison between PB-QCT and PL-QCT. Two sports medicine doctors measured the proximal humerus with PB-QCT and PL-QCT without knowing each other's results. Among them, 100 proximal humerus were included in the inter-operative and intra-operative BMD measurements for evaluating the repeatability and reproducibility of PL-QCT and PB-QCT. RESULTS: A total of 188 patients with 376 shoulders were involved in this study. The consistency analysis indicated that the average bias between proximal humerus BMDs measured by PB-QCT and PL-QCT was 1.0 mg/cc (agreement range - 9.4 to 11.4; P > 0.05, no significant difference). Regression analysis between PB-QCT and PL-QCT indicated a good correlation (R-square is 0.9723). Short-term repeatability and reproducibility of proximal humerus BMDs measured by PB-QCT (CV: 5.10% and 3.41%) were slightly better than those of PL-QCT (CV: 6.17% and 5.64%). CONCLUSIONS: We evaluated the bone quality of the proximal humeral using chest CT through the semi-automatic PL-QCT system for the first time. Comparison between it and PB-QCT indicated that it could be a reliable shoulder BMD assessment tool with acceptable accuracy and precision. This study developed and verify a semi-automatic PL-QCT for assessment of proximal humeral bone density based on CT to assist in the assessment of proximal humeral osteoporosis and development of individualized treatment plans for shoulders.


Bone Density , Cancellous Bone , Humerus , Tomography, X-Ray Computed , Humans , Bone Density/physiology , Male , Female , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Reproducibility of Results , Humerus/diagnostic imaging , Humerus/physiology , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiopathology , Cancellous Bone/physiology , Algorithms , Phantoms, Imaging , Adult , Osteoporosis/physiopathology , Osteoporosis/diagnostic imaging , Aged, 80 and over
12.
Osteoporos Int ; 35(6): 1069-1075, 2024 Jun.
Article En | MEDLINE | ID: mdl-38520505

The aim of this study was to determine whether the Bone Strain Index (BSI), a recent DXA-based bone index, is related to bone mechanical behavior, microarchitecture and finally, to determine whether BSI improves the prediction of bone strength and the predictive role of BMD in clinical practice. PURPOSE: Bone Strain Index (BSI) is a new DXA-based bone index that represents the finite element analysis of the bone deformation under load. The current study aimed to assess whether the BSI is associated with 3D microarchitecture and the mechanical behavior of human lumbar vertebrae. METHODS: Lumbar vertebrae (L3) were harvested fresh from 31 human donors. The anteroposterior BMC (g) and aBMD (g/cm2) of the vertebral body were measured using DXA, and then the BSI was automatically derived. The trabecular bone volume (Tb.BV/TV), trabecular thickness (Tb.Th), degree of anisotropy (DA), and structure model index (SMI) were measured using µCT with a 35-µm isotropic voxel size. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies under displacement control to assess failure load and stiffness. RESULTS: The BSI was significantly correlated with failure load and stiffness (r = -0.60 and -0.59; p < 0.0001), aBMD and BMC (r = -0.93 and -0.86; p < 0.0001); Tb.BV/TV and SMI (r = -0.58 and 0.51; p = 0.001 and 0.004 respectively). After adjustment for aBMD, the association between BSI and stiffness, BSI and SMI remained significant (r = -0.51; p = 0.004 and r = -0.39; p = 0.03 respectively, partial correlations) and the relation between BSI and failure load was close to significance (r = -0.35; p = 0.06). CONCLUSION: The BSI was significantly correlated with the microarchitecture and mechanical behavior of L3 vertebrae, and these associations remained statistically significant regardless of aBMD.


Absorptiometry, Photon , Bone Density , Finite Element Analysis , Lumbar Vertebrae , Stress, Mechanical , X-Ray Microtomography , Humans , Lumbar Vertebrae/physiology , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Female , Bone Density/physiology , Aged , Male , Middle Aged , Absorptiometry, Photon/methods , Biomechanical Phenomena/physiology , X-Ray Microtomography/methods , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiology , Weight-Bearing/physiology , Aged, 80 and over , Compressive Strength/physiology , Adult , Anisotropy
13.
Osteoporos Int ; 35(6): 1061-1068, 2024 Jun.
Article En | MEDLINE | ID: mdl-38519739

We evaluated the relationship of bone mineral density (BMD) by computed tomography (CT), to predict fractures in a multi-ethnic population. We demonstrated that vertebral and hip fractures were more likely in those patients with low BMD. This is one of the first studies to demonstrate that CT BMD derived from thoracic vertebrae can predict future hip and vertebral fractures. PURPOSE/INTRODUCTION: Osteoporosis affects an enormous number of patients, of all races and both sexes, and its prevalence increases as the population ages. Few studies have evaluated the association between the vertebral trabecular bone mineral density(vBMD) and osteoporosis-related hip fracture in a multiethnic population, and no studies have demonstrated the predictive value of vBMD for fractures. METHOD: We sought to determine the predictive value of QCT-based trabecular vBMD of thoracic vertebrae derived from coronary artery calcium scan for hip fractures in the Multi-Ethnic Study of Atherosclerosis(MESA), a nationwide multicenter cohort included 6814 people from six medical centers across the USA and assess if low bone density by QCT can predict future fractures. Measures were done using trabecular bone measures, adjusted for individual patients, from three consecutive thoracic vertebrae (BDI Inc, Manhattan Beach CA, USA) from non-contrast cardiac CT scans. RESULTS: Six thousand eight hundred fourteen MESA baseline participants were included with a mean age of 62.2 ± 10.2 years, and 52.8% were women. The mean thoracic BMD is 162.6 ± 46.8 mg/cm3 (95% CI 161.5, 163.7), and 27.6% of participants (n = 1883) had osteoporosis (T-score 2.5 or lower). Over a median follow-up of 17.4 years, Caucasians have a higher rate of vertebral fractures (6.9%), followed by Blacks (4.4%), Hispanics (3.7%), and Chinese (3.0%). Hip fracture patients had a lower baseline vBMD as measured by QCT than the non-hip fracture group by 13.6 mg/cm3 [P < 0.001]. The same pattern was seen in the vertebral fracture population, where the mean BMD was substantially lower 18.3 mg/cm3 [P < 0.001] than in the non-vertebral fracture population. Notably, the above substantial relationship was unaffected by age, gender, race, BMI, hypertension, current smoking, medication use, or activity. Patients with low trabecular BMD of thoracic vertebrae showed a 1.57-fold greater risk of first hip fracture (HR 1.57, 95% CI 1.38-1.95) and a nearly threefold increased risk of first vertebral fracture (HR 2.93, 95% CI 1.87-4.59) compared to normal BMD patients. CONCLUSION: There is significant correlation between thoracic trabecular BMD and the incidence of future hip and vertebral fracture. This study demonstrates that thoracic vertebrae BMD, as measured on cardiac CT (QCT), can predict both hip and vertebral fractures without additional radiation, scanning, or patient burden. Osteopenia and osteoporosis are markedly underdiagnosed. Finding occult disease affords the opportunity to treat the millions of people undergoing CT scans every year for other indications.


Bone Density , Cancellous Bone , Hip Fractures , Osteoporotic Fractures , Spinal Fractures , Thoracic Vertebrae , Tomography, X-Ray Computed , Humans , Bone Density/physiology , Female , Male , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/physiopathology , Thoracic Vertebrae/injuries , Osteoporotic Fractures/physiopathology , Osteoporotic Fractures/ethnology , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/etiology , Aged , Spinal Fractures/physiopathology , Spinal Fractures/ethnology , Spinal Fractures/diagnostic imaging , Spinal Fractures/epidemiology , Spinal Fractures/etiology , Hip Fractures/physiopathology , Hip Fractures/ethnology , Hip Fractures/diagnostic imaging , Hip Fractures/etiology , Hip Fractures/epidemiology , Middle Aged , Tomography, X-Ray Computed/methods , Cancellous Bone/diagnostic imaging , Cancellous Bone/physiopathology , United States/epidemiology , Aged, 80 and over , Predictive Value of Tests , Osteoporosis/ethnology , Osteoporosis/physiopathology , Osteoporosis/diagnostic imaging , Risk Assessment/methods , Incidence
14.
J Biomed Opt ; 29(Suppl 1): S11526, 2024 Jan.
Article En | MEDLINE | ID: mdl-38505736

Significance: Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim: We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach: We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results: The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p<0.01). Conclusions: Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.


Cancellous Bone , Osteoporosis , Animals , Rabbits , Cancellous Bone/diagnostic imaging , Ultrasonography/methods , Bone and Bones/diagnostic imaging , Bone Density , Osteoporosis/diagnostic imaging
15.
J Biomech ; 165: 112000, 2024 Mar.
Article En | MEDLINE | ID: mdl-38387369

Synthetic materials used for valid and reliable implant testing and design should reflect the mechanical and morphometric properties of human bone. Such bone models are already available on the market, but they do not reflect the population variability of human bone, nor are they open-celled porous as human bone is. Biomechanical studies aimed at cementing the fracture or an implant cannot be conducted with them. The aim of this study was to investigate the influence of a cell stabilizer on polyurethane-based cancellous synthetic bone in terms of morphology, compressive mechanics, and opening of the cancellous bone structure for bone cement application. Mechanical properties of cylindrical specimens of the bone surrogates were determined by static compression tests to failure. Furthermore, a morphometric analysis was performed using microcomputed tomography. To prove the open-cell nature of the bone surrogates, an attempt was made to apply bone cement. Effects on the mechanical properties of the polyurethane-based bone surrogates were observed by the addition of polydimethylsiloxane. All mechanical parameters like Young's modulus, ultimate stress and yield stress increased statistically significantly with increasing amounts of cell stabilizer (all p > 0.001), except for yield stress. The analysis of morphometric parameters showed a decrease in trabecular thickness, spacing and connectivity density, which was accompanied by an increase in trabecular number and an increase in pore size. The open-cell nature was proven by the application and distribution of bone cement in specimens with stabilizer, which was visualized by X-ray. In conclusion, the results show that by adding a cell stabilizer, polyurethane-based cancellous bone substrates can be produced that have an open-cell structure similar to human bone. This makes these bone surrogates suitable for biomechanical testing of osteosyntheses and for osteosynthesis cementation issues.


Bone Cements , Cancellous Bone , Humans , Porosity , Cancellous Bone/diagnostic imaging , X-Ray Microtomography , Polyurethanes/chemistry , Stress, Mechanical , Dimethylpolysiloxanes , Biomechanical Phenomena
16.
PLoS One ; 19(2): e0296390, 2024.
Article En | MEDLINE | ID: mdl-38315701

Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17ß-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.


46, XX Disorders of Sex Development , Aromatase , Bone Marrow Transplantation , Gynecomastia , Infertility, Male , Metabolism, Inborn Errors , Mice , Animals , Male , Aromatase/genetics , Aromatase/metabolism , Cancellous Bone/diagnostic imaging , Cancellous Bone/metabolism , Porosity , Mice, Inbred C57BL , Estrogens , Estradiol , Bone Marrow Cells/metabolism , Spine/metabolism , Mice, Knockout
17.
BMC Musculoskelet Disord ; 25(1): 123, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336651

BACKGROUND: The purpose of this study was to investigate the effects of four different doses of verapamil on the mechanical behaviors of solid and the characteristics of fluid flow in cancellous bone of distal femur of type 2 diabetes rats under dynamic external load. METHODS: Based on the micro-CT images, the finite element models of cancellous bones and fluids at distal femurs of rats in control group, diabetes group, treatment groups VER 4, VER 12, VER 24, and VER 48 (verapamil doses of 4, 12, 24, and 48 mg/kg/day, respectively) were constructed. A sinusoidal time-varying displacement load with an amplitude of 0.8 µm and a period of 1s was applied to the upper surface of the solid region. Then, fluid-solid coupling numerical simulation method was used to analyze the magnitudes and distributions of von Mises stress, flow velocity, and fluid shear stress of cancellous bone models in each group. RESULTS: The results for mean values of von Mises stress, flow velocity and FSS (t = 0.25s) were as follows: their values in control group were lower than those in diabetes group; the three parameters varied with the dose of verapamil; in the four treatment groups, the values of VER 48 group were the lowest, they were the closest to control group, and they were smaller than diabetes group. Among the four treatment groups, VER 48 group had the highest proportion of the nodes with FSS = 1-3 Pa on the surface of cancellous bone, and more areas in VER 48 group were subjected to fluid shear stress of 1-3 Pa for more than half of the time. CONCLUSION: It could be seen that among the four treatment groups, osteoblasts on the cancellous bone surface in the highest dose group (VER 48 group) were more easily activated by mechanical loading, and the treatment effect was the best. This study might help in understanding the mechanism of verapamil's effect on the bone of type 2 diabetes mellitus, and provide theoretical guidance for the selection of verapamil dose in the clinical treatment of type 2 diabetes mellitus.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats , Animals , Cancellous Bone/diagnostic imaging , Diabetes Mellitus, Type 2/drug therapy , Verapamil/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Computer Simulation , Stress, Mechanical , Finite Element Analysis
18.
Osteoporos Int ; 35(5): 819-830, 2024 May.
Article En | MEDLINE | ID: mdl-38267666

We ascertained the fracture risk factors stratified by vertebral and non-vertebral sites in rheumatoid arthritis (RA) females. Bone/muscle features, but not disease activity, were the main markers for fractures in this long-standing RA population: low trabecular bone score (TBS) for vertebral fracture and decreased appendicular muscle mass for non-vertebral fracture. PURPOSE: To assess risk factors for fractures, including clinical, laboratory and dual energy X-ray absorptiometry (DXA) parameters (bone mass, trabecular bone score-TBS, muscle mass) in women with established rheumatoid arthritis (RA). METHODS: Three hundred females with RA (ACR, 2010) were studied. Clinical data were obtained by questionnaire and disease activity by composite indices (DAS28, CDAI, SDAI), C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Bone mineral density (BMD), TBS, body composition and Vertebral Fracture Assessment (VFA) were performed by DXA. Logistic regression models were constructed to identify factors independently associated with vertebral (VF) and non-vertebral fractures (NVF), separately. RESULTS: Through rigorous eligibility criteria, a total of 265 women were yielded for final data analysis (median age, 55 [22-86] years; mean disease duration, 16.2 years). Prevalence of VF and NVF were 30.6% and 17.4%, respectively. In multivariate analyzes, TBS (OR = 1.6, 95%CI = 1.09-2.36, p = 0.017), CRP (OR = 1.54, 95%CI = 1.15-2.08, p = 0.004), and parathormone (OR = 1.24, 95%CI = 1.05-1.45, p = 0.009) were risk factors for VF, whereas low appendicular muscle mass (OR = 2.71; 95%CI = 1.01-7,28; p = 0.048), body mass index (BMI) (OR = 0.90, 95%CI = 0.82-0.99; p = 0.025), ESR (OR = 1.18, 95%CI = 1.01-1,38, p = 0,038) and hip BMD (OR = 1.82, 95%CI = 1.10-3.03, p = 0.02) were associated with NVF. CONCLUSION: In women with long-term RA, markers of fractures differed between distinct skeletal sites (vertebral and non-vertebral). The magnitude of association of bone/muscle parameters with fracture (TBS for VF and appendicular muscle mass for NVF) was greater than that of the association between RA activity and fracture. TBS seems to have greater discriminative power than BMD to identify subjects with VF in long-standing RA.


Arthritis, Rheumatoid , Osteoporotic Fractures , Spinal Fractures , Humans , Female , Middle Aged , Spinal Fractures/epidemiology , Cancellous Bone/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Bone Density/physiology , Absorptiometry, Photon , Risk Factors , Arthritis, Rheumatoid/complications , Osteoporotic Fractures/etiology , Osteoporotic Fractures/complications
19.
J Clin Densitom ; 27(1): 101452, 2024.
Article En | MEDLINE | ID: mdl-38228014

Osteoporosis can currently be diagnosed by applying the WHO classification to bone mineral density (BMD) assessed by dual-energy x-ray absorptiometry (DXA). However, skeletal factors other than BMD contribute to bone strength and fracture risk. Lumbar spine TBS, a grey-level texture measure which is derived from DXA images has been extensively studied, enhances fracture prediction independent of BMD and can be used to adjust fracture probability from FRAX® to improve risk stratification. The purpose of this International Society for Clinical Densitometry task force was to review the existing evidence and develop recommendations to assist clinicians regarding when and how to perform, report and utilize TBS. Our review concluded that TBS is most likely to alter clinical management in patients aged ≥ 40 years who are close to the pharmacologic intervention threshold by FRAX. The TBS value from L1-L4 vertebral levels, without vertebral exclusions, should be used to calculate adjusted FRAX probabilities. L1-L4 vertebral levels can be used in the presence of degenerative changes and lumbar compression fractures. It is recommended not to report TBS if extreme structural or pathological artifacts are present. Monitoring and reporting TBS change is unlikely to be helpful with the current version of the TBS algorithm. The next version of TBS software will include an adjustment based upon directly measured tissue thickness. This is expected to improve performance and address some of the technical factors that affect the current algorithm which may require modifications to these Official Positions as experience is acquired with this new algorithm.


Osteoporosis , Osteoporotic Fractures , Humans , Cancellous Bone/diagnostic imaging , Osteoporotic Fractures/diagnosis , Risk Assessment/methods , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Bone Density , Absorptiometry, Photon/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology
20.
J Clin Densitom ; 27(1): 101453, 2024.
Article En | MEDLINE | ID: mdl-38064881

BACKGROUND: No meta-analysis has holistically analysed and summarized the effect of prolactin excess due to prolactinomas on bone mineral metabolism. We undertook this meta-analysis to address this knowledge-gap. METHODS: Electronic databases were searched for studies having patients with hyperprolactinemia due to prolactinoma and the other being a matched control group. The primary outcome was to evaluate the differences in BMD Z-scores at different sites. The secondary outcomes of this study were to evaluate the alterations in bone mineral density, bone mineral content and the occurrence of fragility fractures. RESULTS: Data from 4 studies involving 437 individuals was analysed to find out the impact of prolactinoma on bone mineral metabolism. Individuals with prolactinoma had significantly lower Z scores at the lumbar spine [MD -1.08 (95 % CI: -1.57 - -0.59); P < 0.0001; I2 = 54 % (moderate heterogeneity)] but not at the femur neck [MD -1.31 (95 % CI: -3.07 - 0.45); P = 0.15; I2 = 98 % (high heterogeneity)] as compared to controls. Trabecular thickness of the radius [MD -0.01 (95 % CI: -0.02 - -0.00); P = 0.0006], tibia [MD -0.01 (95 % CI: -0.02 - -0.00); P=0.03] and cortical thickness of the radius [MD -0.01 (95 % CI: -0.19 - -0.00); P = 0.04] was significantly lower in patients with prolactinoma as compared to controls. The occurrence of fractures was significantly higher in patients with prolactinoma as compared to controls [OR 3.21 (95 % CI: 1.64 - 6.26); P = 0.0006] Conclusion: Bone mass is adversely affected in patients with hyperprolactinemia due to prolactinoma with predominant effects on the trabecular bone.


Fractures, Bone , Hyperprolactinemia , Pituitary Neoplasms , Prolactinoma , Humans , Prolactinoma/complications , Bone Density , Hyperprolactinemia/complications , Absorptiometry, Photon , Cancellous Bone/diagnostic imaging , Radius , Femur Neck , Pituitary Neoplasms/complications , Pituitary Neoplasms/diagnostic imaging , Minerals
...