Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 879
Filter
1.
J Steroid Biochem Mol Biol ; 242: 106544, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754521

ABSTRACT

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17ß-hydroxysteroid dehydrogenase type 7 (17ß-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17ß-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17ß-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17ß position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17ß-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Enzyme Inhibitors , 17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/metabolism , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Estradiol/chemistry , Estradiol/metabolism , Estradiol/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Estrone/chemistry , Estrone/pharmacology , Estrone/chemical synthesis
2.
Chemistry ; 30(31): e202400883, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38556469

ABSTRACT

We report on the syntheses of NeuAc and NeuGc-containing glycosides via the use of double carbonyl-protected N-acetyl sialyl donors. The 7-O,9-O-carbonyl protection of an N-acyl-5-N,4-O-carbonyl-protected sialyl donor markedly increased the α-selectivity during glycosylation, particularly when glycosylating the C-8 hydroxyl group of sialic acids. The N-acyl carbamates were selectively opened with ethanethiol under basic conditions to provide N-acyl amines. It is noteworthy that N-glycolyl carbamate was more reactive to nucleophiles by comparison with the N-acetyl carbamate due to the electron-withdrawing oxygen in the N-acyl group and however, allowed selective opening of the carbamates without the loss of N-glycolyl groups. To demonstrate the utility of the approach, we began by synthesizing α(2,3) and α(2,6) sialyl galactosides. Glycosylation of the hydroxy groups of galactosides at the C-6 position with the NeuAc and NeuGc donors provided the corresponding sialyl galactoses in good yields with excellent α-selectivity. However, glycosylation of the 2,3-diol galactosyl acceptor selectively provided Siaα(2,2)Gal. Next, we prepared a series of α(2,8) disialosides composed of NeuAc and NeuGc. Glycosylation of NeuGc and NeuAc acceptors at the C-8 hydroxyl group with NeuGc and NeuAc sialyl donors provided the corresponding α(2,8) disialosides, and no significant differences were detected in the reactivities of these acceptors.


Subject(s)
Sialic Acids , Glycosylation , Sialic Acids/chemistry , Sialic Acids/chemical synthesis , Carbamates/chemistry , Carbamates/chemical synthesis , Glycosides/chemistry , Glycosides/chemical synthesis , Galactosides/chemistry , Galactosides/chemical synthesis , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/chemical synthesis
3.
J Am Chem Soc ; 144(7): 3279-3284, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138833

ABSTRACT

To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.


Subject(s)
Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/therapeutic use , Cognition/drug effects , Neuroprotective Agents/therapeutic use , Nootropic Agents/therapeutic use , Alzheimer Disease/chemically induced , Amyloid beta-Peptides , Animals , Azo Compounds/chemical synthesis , Azo Compounds/metabolism , Azo Compounds/radiation effects , Azo Compounds/therapeutic use , Carbamates/chemical synthesis , Carbamates/metabolism , Carbamates/radiation effects , Carbamates/therapeutic use , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/radiation effects , Kinetics , Mice , Molecular Docking Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Neuroprotective Agents/radiation effects , Nootropic Agents/chemical synthesis , Nootropic Agents/metabolism , Nootropic Agents/radiation effects , Peptide Fragments , Protein Binding , Stereoisomerism
4.
Bioorg Med Chem Lett ; 60: 128574, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35065231

ABSTRACT

In this work, a series of naringenin-O-carbamate derivatives was designed and synthesized as multifunctional agents for the treatment of Alzheimer's disease (AD) through multi-target-directed ligands (MTDLs) strategy. The biological activity in vitro showed that compound 3c showed good antioxidant potency (ORAC = 1.0 eq), and it was a reversible huAChE (IC50 = 9.7 µM) inhibitor. In addition, compound 3c significantly inhibited self-induced Aß1-42 aggregation, and it could activate UPS degradation pathway in HT22 cells and clear the aggregated proteins associated with AD. Moreover, compound 3c was a selective metal chelator, and it significantly inhibited and disaggregated Cu2+-mediated Aß1-42 aggregation. Furthermore, compound 3c displayed remarkable neuroprotective effect and anti-inflammatory property. Interestingly, compound 3c displayed good hepatoprotective effect by its antioxidant activity. More importantly, compound 3c demonstrated favourable blood-brain barrier penetration in vitro and drug-like property. Therefore, compound 3c was a promising multifunctional agent for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Flavanones/pharmacology , Neuroprotective Agents/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Cell Line , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Copper/pharmacology , Dose-Response Relationship, Drug , Drug Development , Flavanones/chemical synthesis , Flavanones/chemistry , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Protein Aggregates/drug effects , Rats , Structure-Activity Relationship
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502357

ABSTRACT

A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.


Subject(s)
Carbamates/chemistry , Cholinesterase Inhibitors/chemistry , Sulfonamides/chemistry , Acetylcholinesterase/metabolism , Binding Sites , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Catalytic Domain , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Sulfonamides/chemical synthesis
6.
Bioorg Med Chem Lett ; 49: 128316, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34391893

ABSTRACT

A series of naringenin derivatives were designed and synthesized as multifunctional anti-Alzheimer's disease (AD) agents. The results showed that these derivatives displayed moderate-to-good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities at the micromolar range (IC50, 12.91 ~ 62.52 µM for AChE and 0.094 ~ 13.72 µM for BuChE). Specifically, compound 1 showed the highest inhibitory activity against BuChE with the IC50 value of (0.094 ± 0.0054) µM. A Lineweaver-Burk plot and molecular docking studies demonstrated that 1 targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of BuChE. Besides, all derivatives showed excellent hydroxyl free radicals (·OH) scavenging ability than vitamin C and cyclic voltammetry results displayed that 1 could effectively scavenge superoxide anion radical (·O2-). In addition, compound 1 displayed good metal chelating properties and had anti-Aß aggregation activities. Therefore, compound 1 might be the potential anti-AD agent for further developments.


Subject(s)
Carbamates/pharmacology , Chelating Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Flavanones/pharmacology , Free Radical Scavengers/pharmacology , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/metabolism , Chelating Agents/chemical synthesis , Chelating Agents/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Drug Design , Electrophorus , Flavanones/chemical synthesis , Flavanones/metabolism , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/metabolism , Horses , Kinetics , Molecular Docking Simulation , Molecular Structure , Peptide Fragments/metabolism , Protein Binding , Protein Multimerization/drug effects , Structure-Activity Relationship
7.
Inorg Chem ; 60(17): 12644-12650, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34392682

ABSTRACT

Designing a metal catalyst that addresses the major issues of solubility, stability, toxicity, cell uptake, and reactivity within complex biological milieu for bioorthogonal controlled transformation reactions is a highly formidable challenge. Herein, we report an organoiridium complex that is nontoxic and capable of the uncaging of allyloxycarbonyl-protected amines under biologically relevant conditions and within living cells. The potential applications of this uncaging chemistry have been demonstrated by the generation of diagnostic and therapeutic agents upon the activation of profluorophore and prodrug in a controlled fashion within HeLa cells, providing a valuable tool for numerous potential biological and therapeutic applications.


Subject(s)
Carbamates/pharmacology , Coordination Complexes/pharmacology , Prodrugs/pharmacology , Carbamates/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Doxorubicin/chemical synthesis , Doxorubicin/pharmacology , HeLa Cells , Humans , Iridium/chemistry , Prodrugs/chemical synthesis , Rhodamines/chemical synthesis , Rhodamines/pharmacology
8.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073622

ABSTRACT

Following the concept of conformationally restriction of ligands to achieve high receptor affinity, we exploited the propellane system as rigid scaffold allowing the stereodefined attachment of various substituents. Three types of ligands were designed, synthesized and pharmacologically evaluated as σ1 receptor ligands. Propellanes with (1) a 2-methoxy-5-methylphenylcarbamate group at the "left" five-membered ring and various amino groups on the "right" side; (2) benzylamino or analogous amino moieties on the "right" side and various substituents at the left five-membered ring and (3) various urea derivatives at one five-membered ring were investigated. The benzylamino substituted carbamate syn,syn-4a showed the highest σ1 affinity within the group of four stereoisomers emphasizing the importance of the stereochemistry. The cyclohexylmethylamine 18 without further substituents at the propellane scaffold revealed unexpectedly high σ1 affinity (Ki = 34 nM) confirming the relevance of the bioisosteric replacement of the benzylamino moiety by the cyclohexylmethylamino moiety. Reduction of the distance between the basic amino moiety and the "left" hydrophobic region by incorporation of the amino moiety into the propellane scaffold resulted in azapropellanes with particular high σ1 affinity. As shown for the propellanamine 18, removal of the carbamate moiety increased the σ1 affinity of 9a (Ki = 17 nM) considerably. Replacement of the basic amino moiety by H-bond forming urea did not lead to potent σ ligands. According to molecular dynamics simulations, both azapropellanes anti-5 and 9a as well as propellane 18 adopt binding poses at the σ1 receptor, which result in energetic values correlating well with their different σ1 affinities. The affinity of the ligands is enthalpy driven. The additional interactions of the carbamate moiety of anti-5 with the σ1 receptor protein cannot compensate the suboptimal orientations of the rigid propellane and its N-benzyl moiety within the σ1 receptor-binding pocket, which explains the higher σ1 affinity of the unsubstituted azapropellane 9a.


Subject(s)
Carbamates/chemistry , Carbamates/chemical synthesis , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
9.
Arch Pharm (Weinheim) ; 354(7): e2000453, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33872422

ABSTRACT

Inspired by the structures of donepezil and rivastigmine, a novel series of indanone-carbamate hybrids was synthesized using the pharmacophore hybridization-based design strategy, and their biological activities toward acetylcholinesterase (AChE) and butyrylcholinesterase were evaluated. Among the synthesized compounds, 4d and 4b showed the highest AChE inhibitory activities with IC50 values in the micromolar range (compound 4d: IC50 = 3.04 µM; compound 4b: IC50 = 4.64 µM). Moreover, the results of the Aß1-40 aggregation assay revealed that compound 4b is a potent Aß1-40 aggregation inhibitor. The kinetics of AChE enzymatic activity in the presence of 4b was investigated, and the results were indicative of a reversible partial noncompetitive type of inhibition. A molecular docking study was conducted to determine the possible allosteric binding mode of 4b with the enzyme. The allosteric nature of AChE inhibition by these compounds provides the opportunity for the design of subtype-selective enzyme inhibitors. The presented indanone-carbamate scaffold can be structurally modified and optimized through medicinal chemistry-based approaches for designing novel multitargeted anti-Alzheimer agents.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Indans/pharmacology , Acetylcholinesterase/drug effects , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Butyrylcholinesterase/drug effects , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Chemistry, Pharmaceutical/methods , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Drug Design , Electrophorus , Horses , Indans/chemical synthesis , Indans/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship
10.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652675

ABSTRACT

A priority of modern agriculture is to use novel and environmentally friendly plant-growth promoter compounds to increase crop yields and avoid the indiscriminate use of synthetic fertilizers. Brassinosteroids are directly involved in the growth and development of plants and are considered attractive candidates to solve this problem. Obtaining these metabolites from their natural sources is expensive and cumbersome since they occur in extremely low concentrations in plants. For this reason, much effort has been dedicated in the last decades to synthesize brassinosteroids analogs. In this manuscript, we present the synthesis and characterization of seven steroidal carbamates starting from stigmasterol, ß-sitosterol, diosgenin and several oxygenated derivatives of it. The synthesis route for functionalization of diosgenin included epoxidation and epoxy opening reactions, reduction of carbonyl groups, selective oxidation of hydroxyl groups, among others. All the obtained compounds were characterized by 1H and 13C NMR, HRMS, and their melting points are also reported. Rice lamina inclination test performed at different concentrations established that all reported steroidal carbamates show plant-growth-promoting activity. A molecular docking study evaluated the affinity of the synthesized compounds towards the BRI1-BAK1 receptor from Arabidopsis thaliana and three of the docked compounds displayed a binding energy lower than brassinolide.


Subject(s)
Arabidopsis/growth & development , Carbamates , Molecular Docking Simulation , Oryza/growth & development , Plant Growth Regulators , Brassinosteroids/chemistry , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Plant Growth Regulators/chemical synthesis , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Steroids, Heterocyclic/chemistry
11.
J Biol Chem ; 296: 100470, 2021.
Article in English | MEDLINE | ID: mdl-33639165

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Dioxanes/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , COVID-19/enzymology , COVID-19/virology , Carbamates/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/virology , Chlorocebus aethiops , Clinical Trials, Phase III as Topic , Dioxanes/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Pyrrolidines/chemical synthesis , Quinuclidines/chemical synthesis , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
12.
Bioorg Med Chem ; 32: 115991, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33440318

ABSTRACT

A novel series of arylcarbamate-N-acylhydrazones derivatives have been designed and synthesized as potential anti-cholinesterase agents. In vitro studies revealed that these compounds demonstrated selective for butyrylcholinesterase (BuChE) with potent inhibitory activity. The compounds 10a-d, 12b and 12d were the most potent BuChE inhibitors with IC50 values of 0.07-2.07 µM, highlighting the compound 10c (IC50 = 0.07 µM) which showed inhibitory activity 50 times greater than the reference drug donepezil (IC50 = 3.54 µM). The activity data indicates that the position of the carbamate group in the aromatic ring has a greater influence on the inhibitory activity of the derivatives. The enzyme kinetics studies indicate that the compound 10c has a non-competitive inhibition against BuChE with Ki value of 0.097 mM. Molecular modeling studies corroborated the in vitro inhibitory mode of interaction and show that compound 10c is stabilized into hBuChE by strong hydrogen bond interaction with Tyr128, π-π stacking interaction with Trp82 and CH⋯O interactions with His438, Gly121 and Glu197. Based on these data, compound10cwas identified as low-cost promising candidate for a drug prototype for AD treatment.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Design , Hydrazones/pharmacology , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Electrophorus , Horses , Hydrazones/chemical synthesis , Hydrazones/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
13.
Eur J Med Chem ; 211: 113115, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33360796

ABSTRACT

In the search for novel aromatase inhibitors, a series of triazole and imidazole-based carbamate derivatives were designed and synthesized. Final compounds were thus evaluated against human aromatase by in vitro kinetic experiments in a fluorimetric assay in comparison with letrozole. The effect of most active derivatives 13a and 15c was then evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release) and cell cycle analysis, revealing a dose-dependent inhibition profile of cell viability and low micromolar IC50 values. In addition, docking simulations were also carried out to elucidate at a molecular level of detail the binding modes adopted to target human aromatase.


Subject(s)
Aromatase Inhibitors/chemical synthesis , Aromatase Inhibitors/therapeutic use , Carbamates/chemical synthesis , Carbamates/therapeutic use , Imidazoles/chemical synthesis , Imidazoles/therapeutic use , Triazoles/chemical synthesis , Triazoles/therapeutic use , Aromatase Inhibitors/pharmacology , Carbamates/pharmacology , Drug Design , Humans , Imidazoles/pharmacology , Molecular Structure , Triazoles/pharmacology
14.
ChemistryOpen ; 9(11): 1153-1160, 2020 11.
Article in English | MEDLINE | ID: mdl-33204587

ABSTRACT

Absorption and capture of CO2 directly from sources represents one of the major tools to reduce its emission in the troposphere. One of the possibilities is to incorporate CO2 inside a liquid exploiting its propensity to react with amino groups to yield carbamic acid or carbamates. A particular class of ionic liquids, based on amino acids, appear to represent a possible efficient medium for CO2 capture because, at difference with current industrial setups, they have the appeal of a biocompatible and environmentally benign solution. We have investigated, by means of highly accurate computations, the feasibility of the reaction that incorporates CO2 in an amino acid anion with a protic side chain and ultimately transforms it into a carbamate derivative. Through an extensive exploration of the possible reaction mechanisms, we have found that different prototypes of amino acid anions present barrierless reaction mechanisms toward CO2 absorption.


Subject(s)
Aspartic Acid/chemistry , Carbamates/chemical synthesis , Carbon Dioxide/chemistry , Glycine/chemistry , Homocysteine/chemistry , Ionic Liquids/chemistry , Kinetics , Models, Chemical , Thermodynamics , Water/chemistry
15.
Molecules ; 25(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143337

ABSTRACT

The acyclic organic alkynes and carbyne bonds exhibit linear shapes. Metallabenzynes and metallapentalynes are six- or five-membered metallacycles containing carbynes, whose carbine-carbon bond angles are less than 180°. Such distortion results in considerable ring strain, resulting in the unprecedented reactivity compared with acyclic carbynes. Meanwhile, the aromaticity of these metallacycles would stabilize the ring system. The fascinating combination of ring strain and aromaticity would lead to interesting reactivities. This mini review summarized recent findings on the reactivity of the metal-carbon triple bonds and the aromatic ring system. In the case of metallabenzynes, aromaticity would prevail over ring strain. The reactions are similar to those of organic aromatics, especially in electrophilic reactions. Meanwhile, fragmentation of metallacarbynes might be observed via migratory insertion if the aromaticity of metallacarbynes is strongly affected. In the case of metallapentalynes, the extremely small bond angle would result in high reactivity of the carbyne moiety, which would undergo typical reactions for organic alkynes, including interaction with coinage metal complexes, electrophilic reactions, nucleophilic reactions and cycloaddition reactions, whereas the strong aromaticity ensured the integrity of the bicyclic framework of metallapentalynes throughout all reported reaction conditions.


Subject(s)
Carbamates/chemistry , Carbamates/chemical synthesis , Cycloaddition Reaction
16.
Bioconjug Chem ; 31(10): 2350-2361, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32881482

ABSTRACT

Antibody-drug conjugates (ADCs) use antibodies to deliver cytotoxic payloads directly into tumor cells via specifically binding to the target cell surface antigens. ADCs can enhance the anti-tumor effects of antibodies, and increase the delivery of cytotoxic payloads to cancer cells with a better therapeutic index. An ADC was prepared with a potent carbamate-containing tubulysin analogue attached to an anti-mesothelin antibody via a Cit-Val dipeptide linker. An aniline functionality in the tubulysin analogue was created to provide a site of linker attachment via an amide bond that would be stable in systemic circulation. Upon ADC internalization into antigen-positive cancer cells, the Cit-Val dipeptide linker was cleaved by lysosomal proteases, and the drug was released inside the tumor cells. The naturally occurring acetate of tubulysin was modified to a carbamate to reduce acetate hydrolysis of the ADC in circulation and to increase the hydrophilicity of the drug. The ADC bearing the monoclonal anti-mesothelin antibody and the carbamate-containing tubulysin was highly potent and immunologically specific to H226 human lung carcinoma cells in vitro, and efficacious at well-tolerated doses in a mesothelin-positive OVCAR3 ovarian cancer xenograft mouse model.


Subject(s)
Antineoplastic Agents/chemistry , Carbamates/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Immunoconjugates/chemistry , Oligopeptides/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacology , Female , Humans , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Mesothelin , Mice , Mice, SCID , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Ovarian Neoplasms/drug therapy
17.
Org Lett ; 22(16): 6349-6353, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806153

ABSTRACT

The kalimantacins make up a family of hybrid polyketide-nonribosomal peptide-derived natural products that display potent and selective antibiotic activity against multidrug resistant strains of Staphylococcus aureus. Herein, we report the first total synthesis of kalimantacin A, in which three fragments are prepared and then united via Sonogashira and amide couplings. The enantioselective synthetic approach is convergent, unlocking routes to further kalimantacins and analogues for structure-activity relationship studies and clinical evaluation.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Biological Products , Carbamates/chemical synthesis , Fatty Acids, Unsaturated/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
18.
J Med Chem ; 63(21): 12290-12358, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32686940

ABSTRACT

The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.


Subject(s)
Amides/chemistry , Drug Design , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacokinetics , Click Chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacokinetics , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacokinetics
19.
Molecules ; 25(9)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380657

ABSTRACT

Self-immolative linker is a useful building block of molecular probes, with broad applications in the fields of enzyme activity analysis, stimuli-responsive material science, and drug delivery. This manuscript presents N-methyl dimethyl methyl (i.e., trimethyl) carbamate as a new class of self-immolative linker for the fluorescence detection of enzyme reactions. The trimethyl carbamate was shown to spontaneously undergo intramolecular cyclization upon formation of a carboxylate group, to liberate a fluorophore with the second time rapid reaction kinetics. Interestingly, the auto-cleavage reaction of trimethyl carbamate was also induced by the formation of hydroxyl and amino groups. Fluorescent probes with a trimethyl carbamate could be applicable for fluorescence monitoring of the enzyme reactions catalyzed by esterase, ketoreductase, and aminotransferase, and for fluorescence imaging of intracellular esterase activity in living cells, hence demonstrating the utility of this new class of self-immolative linker.


Subject(s)
Carbamates/chemical synthesis , Coumarins/chemistry , Fluorescent Dyes/chemical synthesis , A549 Cells , Carbamates/chemistry , Cyclization , Enzyme Assays , Fluorescent Dyes/chemistry , Humans , Molecular Structure
20.
Eur J Med Chem ; 197: 112282, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32380361

ABSTRACT

Compounds capable of interacting with single or multiple targets involved in Alzheimer's disease (AD) pathogenesis are potential anti-Alzheimer's agents. In our aim to develop new anti-Alzheimer's agents, a series of 36 new N-alkylpiperidine carbamates was designed, synthesized and evaluated for the inhibition of cholinesterases [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoamine oxidases [monoamine oxidase A (MAO-A and monoamine oxidase B (MAO-B)]. Four compounds are very promising: multiple AChE (IC50 = 7.31 µM), BChE (IC50 = 0.56 µM) and MAO-B (IC50 = 26.1 µM) inhibitor 10, dual AChE (IC50 = 2.25 µM) and BChE (IC50 = 0.81 µM) inhibitor 22, selective BChE (IC50 = 0.06 µM) inhibitor 13, and selective MAO-B (IC50 = 0.18 µM) inhibitor 16. Results of enzyme kinetics experiments showed that despite the carbamate group in the structure, compounds 10, 13, and 22 are reversible and non-time-dependent inhibitors of AChE and/or BChE. The resolved crystal structure of the complex of BChE with compound 13 confirmed the non-covalent mechanism of inhibition. Additionally, N-propargylpiperidine 16 is an irreversible and time-dependent inhibitor of MAO-B, while N-benzylpiperidine 10 is reversible. Additionally, compounds 10, 13, 16, and 22 should be able to cross the blood-brain barrier and are not cytotoxic to human neuronal-like SH-SY5Y and liver HepG2 cells. Finally, compounds 10 and 16 also prevent amyloid ß1-42 (Aß1-42)-induced neuronal cell death. The neuroprotective effects of compound 16 could be the result of its Aß1-42 anti-aggregation effects.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Piperidines/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/toxicity , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/toxicity , Drug Design , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/toxicity , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/toxicity , Peptide Fragments/metabolism , Piperidines/chemical synthesis , Piperidines/toxicity , Protein Multimerization/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...