Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.150
1.
Gut Microbes ; 16(1): 2359665, 2024.
Article En | MEDLINE | ID: mdl-38831611

The facultative anaerobic Gram-positive bacterium Enterococcus faecium is a ubiquitous member of the human gut microbiota. However, it has gradually evolved into a pathogenic and multidrug resistant lineage that causes nosocomial infections. The establishment of high-level intestinal colonization by enterococci represents a critical step of infection. The majority of current research on Enterococcus has been conducted under aerobic conditions, while limited attention has been given to its physiological characteristics in anaerobic environments, which reflects its natural colonization niche in the gut. In this study, a high-density transposon mutant library containing 26,620 distinct insertion sites was constructed. Tn-seq analysis identified six genes that significantly contribute to growth under anaerobic conditions. Under anaerobic conditions, deletion of sufB (encoding Fe-S cluster assembly protein B) results in more extensive and significant impairments on carbohydrate metabolism compared to aerobic conditions. Consistently, the pathways involved in this utilization-restricted carbohydrates were mostly expressed at significantly lower levels in mutant compared to wild-type under anaerobic conditions. Moreover, deletion of sufB or pflA (encoding pyruvate formate lyase-activating protein A) led to failure of gastrointestinal colonization in mice. These findings contribute to our understanding of the mechanisms by which E. faecium maintains proliferation under anaerobic conditions and establishes colonization in the gut.


Bacterial Proteins , Enterococcus faecium , Iron-Sulfur Proteins , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , Enterococcus faecium/growth & development , Animals , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anaerobiosis , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Gastrointestinal Tract/microbiology , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Humans , DNA Transposable Elements , Carbohydrate Metabolism , Female , Acetyltransferases
2.
Pestic Biochem Physiol ; 202: 105933, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879325

Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.


Berberine , Citrus , Energy Metabolism , Geotrichum , Plant Diseases , Spores, Fungal , Citrus/microbiology , Geotrichum/drug effects , Geotrichum/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Berberine/pharmacology , Energy Metabolism/drug effects , Spores, Fungal/drug effects , Carbohydrate Metabolism/drug effects , Fungicides, Industrial/pharmacology
3.
Clin Res Hepatol Gastroenterol ; 48(6): 102365, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703816

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is characterized by dysregulated carbohydrate and lipid metabolism, which are its primary features. However, traditional biochemical markers pose challenges for accurate quantification and visualization of metabolic states. This study introduces a novel states-based approach for accurate NAFLD assessment. METHODS: Joint probabilistic distributions of triglycerides and glycemia were constructed using dual-indicator Probabilistic Scatter Plots based on clinical data (healthy controls: n = 1978; NAFLD patients: n = 471). Patterns of metabolic dysregulation were revealed through comparison against healthy profiles. Self-organizing feature mapping (SOFM) clustered the distributions into four dominant states. RESULTS: Healthy scatter plots demonstrated a distinct progression of sub-states ranging from very healthy to sub-healthy. In contrast, NAFLD plots exhibited shifted probability centers and outward divergence. SOFM clustering classified the states into: mild; moderate and severe lipid metabolism disorders; and carbohydrate metabolism disorders. CONCLUSIONS: Probabilistic Scatter Plots, when combined with SOFM clustering, facilitate a states-based quantification of NAFLD metabolic dysregulation. This method integrates multi-dimensional biochemical indicators and their distributions into a cohesive framework, enabling precise and intuitive visualization for personalized diagnosis and monitoring of prognostic developments.


Carbohydrate Metabolism , Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Middle Aged , Male , Female , Adult , Triglycerides/blood , Probability , Blood Glucose/analysis , Blood Glucose/metabolism
4.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732548

Obesity represents a significant global public health concern. The excessive accumulation of abdominal adipose tissue is often implicated in the development of metabolic complications associated with obesity. Our study aimed to investigate the impact of particular deposits of abdominal adipose tissue on the occurrence of carbohydrate and lipid metabolism complications. We established cut-off points for visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and the VAT/SAT ratio at which selected metabolic complications of obesity-related diseases (disorders of carbohydrate and/or lipid metabolism) occur. We conducted an observational study involving 91 subjects with first- and second-degree obesity, accounting for gender differences. Anthropometric measurements were taken, body composition analysis (BIA) was conducted, and biochemical determinations were made. Our findings suggest that commonly used parameters for assessing early metabolic risk, such as BMI or waist circumference, may overlook the significant factor of body fat distribution, as well as gender differences. Both visceral and subcutaneous adipose tissue were found to be important in estimating metabolic risk. We identified the cut-off points in women in terms of their elevated fasting glucose levels and the presence of insulin resistance (HOMA-IR: homeostasis model assessment of insulin resistance) based on SAT, VAT, and the VAT/SAT ratio. In men, cut-off points were determined for the presence of insulin resistance (HOMA-IR) based on VAT and the VAT/SAT ratio. However, the results regarding lipid disorders were inconclusive, necessitating further investigation of a larger population.


Insulin Resistance , Intra-Abdominal Fat , Obesity , Humans , Male , Female , Pilot Projects , Intra-Abdominal Fat/metabolism , Adult , Obesity/metabolism , Middle Aged , Carbohydrate Metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism , Subcutaneous Fat/metabolism , Body Composition , Body Mass Index , Blood Glucose/metabolism
6.
BMC Microbiol ; 24(1): 183, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796418

BACKGROUND: Prebiotic fibers are non-digestible substrates that modulate the gut microbiome by promoting expansion of microbes having the genetic and physiological potential to utilize those molecules. Although several prebiotic substrates have been consistently shown to provide health benefits in human clinical trials, responder and non-responder phenotypes are often reported. These observations had led to interest in identifying, a priori, prebiotic responders and non-responders as a basis for personalized nutrition. In this study, we conducted in vitro fecal enrichments and applied shotgun metagenomics and machine learning tools to identify microbial gene signatures from adult subjects that could be used to predict prebiotic responders and non-responders. RESULTS: Using short chain fatty acids as a targeted response, we identified genetic features, consisting of carbohydrate active enzymes, transcription factors and sugar transporters, from metagenomic sequencing of in vitro fermentations for three prebiotic substrates: xylooligosacharides, fructooligosacharides, and inulin. A machine learning approach was then used to select substrate-specific gene signatures as predictive features. These features were found to be predictive for XOS responders with respect to SCFA production in an in vivo trial. CONCLUSIONS: Our results confirm the bifidogenic effect of commonly used prebiotic substrates along with inter-individual microbial responses towards these substrates. We successfully trained classifiers for the prediction of prebiotic responders towards XOS and inulin with robust accuracy (≥ AUC 0.9) and demonstrated its utility in a human feeding trial. Overall, the findings from this study highlight the practical implementation of pre-intervention targeted profiling of individual microbiomes to stratify responders and non-responders.


Fatty Acids, Volatile , Feces , Fermentation , Gastrointestinal Microbiome , Prebiotics , Prebiotics/analysis , Humans , Feces/microbiology , Gastrointestinal Microbiome/genetics , Adult , Fatty Acids, Volatile/metabolism , Multigene Family , Machine Learning , Metagenomics/methods , Biomarkers/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Female , Male , Inulin/metabolism , Young Adult , Carbohydrate Metabolism
7.
BMC Plant Biol ; 24(1): 451, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789940

Root-knot nematodes (RKNs) infect host plants and obtain nutrients such as sugars for their own development. Therefore, inhibiting the nutrient supply to RKNs may be an effective method for alleviating root-knot nematode disease. At present, the pathway by which sucrose is unloaded from the phloem cells to giant cells (GCs) in root galls and which genes related to sugar metabolism and transport play key roles in this process are unclear. In this study, we found that sugars could be unloaded into GCs only from neighboring phloem cells through the apoplastic pathway. With the development of galls, the contents of sucrose, fructose and glucose in the galls and adjacent tissue increased gradually. SUT1, SUT2, SWEET7a, STP10, SUS3 and SPS1 may provide sugar sources for GCs, while STP1, STP2 and STP12 may transport more sugar to phloem parenchyma cells. At the early stage of Meloidogyne incognita infestation, the sucrose content in tomato roots and leaves increased, while the glucose and fructose contents decreased. SWEET7a, SPS1, INV-INH1, INV-INH2, SUS1 and SUS3 likely play key roles in root sugar delivery. These results elucidated the pathway of sugar unloading in tomato galls and provided an important theoretical reference for eliminating the sugar source of RKNs and preventing root-knot nematode disease.


Plant Roots , Plant Tumors , Solanum lycopersicum , Tylenchoidea , Tylenchoidea/physiology , Animals , Solanum lycopersicum/parasitology , Solanum lycopersicum/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Plant Tumors/parasitology , Plant Diseases/parasitology , Sucrose/metabolism , Sugars/metabolism , Carbohydrate Metabolism
8.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791109

Defoliation is an inevitable abiotic stress for forage and turf grasses because harvesting, grazing, and mowing are general processes for their production and management. Vegetative regrowth occurs upon defoliation, a crucial trait determining the productivity and persistence of these grasses. However, the information about the molecular regulation of this trait is limited because it is still challenging to perform molecular analyses in forage and turf grasses. Here, we used rice as a model to investigate vegetative regrowth upon defoliation at physiological and molecular levels. This study analyzed stubble and regrown leaves following periodic defoliation using two rice varieties with contrasting regrowth vigor. Vigorous regrowth was associated with maintained chlorophyll content and photosystem II performance; a restricted and promoted mRNA accumulation of sucrose synthase (SUS) I and III subfamilies, respectively; and reduced enzymatic activity of SUS. These results suggest that critical factors affecting vegetative regrowth upon defoliation are de novo carbohydrate synthesis by newly emerged leaves and proper carbohydrate management in leaves and stubble. Physiological and genetic analyses have demonstrated that the reduced sensitivity to and inhibited biosynthesis of cytokinin enhance regrowth vigor. Proper regulation of these metabolic and hormonal pathways identified in this study can lead to the development of new grass varieties with enhanced regrowth vigor following defoliation.


Carbohydrate Metabolism , Cytokinins , Gene Expression Regulation, Plant , Glucosyltransferases , Oryza , Plant Leaves , Plant Proteins , Oryza/growth & development , Oryza/metabolism , Oryza/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Chlorophyll/metabolism , Photosystem II Protein Complex/metabolism
9.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791120

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Plant Dormancy , Plant Growth Regulators , Plant Tubers , Solanum tuberosum , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Solanum tuberosum/physiology , Solanum tuberosum/genetics , Plant Tubers/growth & development , Plant Tubers/metabolism , Plant Growth Regulators/metabolism , Carbohydrate Metabolism
10.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791447

The escalating prevalence of carbohydrate metabolism disorders (CMDs) prompts the need for early diagnosis and effective markers for their prediction. Hyperglycemia, the primary indicator of CMDs including prediabetes and type 2 diabetes mellitus (T2DM), leads to overproduction of reactive oxygen species (ROS) and oxidative stress (OxS). This condition, resulting from chronic hyperglycemia and insufficient antioxidant defense, causes damage to biomolecules, triggering diabetes complications. Additionally, aging itself can serve as a source of OxS due to the weakening of antioxidant defense mechanisms. Notably, previous research indicates that miR-196a, by downregulating glutathione peroxidase 3 (GPx3), contributes to insulin resistance (IR). Additionally, a GPx3 decrease is observed in overweight/obese and insulin-resistant individuals and in the elderly population. This study investigates plasma GPx3 levels and miR-196a expression as potential CMD risk indicators. We used ELISA to measure GPx3 and qRT-PCR for miR-196a expression, supplemented by multivariate linear regression and receiver operating characteristic (ROC) analysis. Our findings included a significant GPx3 reduction in the CMD patients (n = 126), especially in the T2DM patients (n = 51), and a decreasing trend in the prediabetes group (n = 37). miR-196a expression, although higher in the CMD and T2DM groups than in the controls, was not statistically significant, potentially due to the small sample size. In the individuals with CMD, GPx3 levels exhibited a negative correlation with the mass of adipose tissue, muscle, and total body water, while miR-196a positively correlated with fat mass. In the CMD group, the analysis revealed a weak negative correlation between glucose and GPx3 levels. ROC analysis indicated a 5.2-fold increased CMD risk with GPx3 below 419.501 ng/mL. Logistic regression suggested that each 100 ng/mL GPx3 increase corresponded to a roughly 20% lower CMD risk (OR = 0.998; 95% CI: 0.996-0.999; p = 0.031). These results support the potential of GPx3 as a biomarker for CMD, particularly in T2DM, and the lack of a significant decline in GPx3 levels in prediabetic individuals suggests that it may not serve reliably as an early indicator of CMDs, warranting further large-scale validation.


Carbohydrate Metabolism , Diabetes Mellitus, Type 2 , Glutathione Peroxidase , MicroRNAs , Humans , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , MicroRNAs/genetics , Female , Male , Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Carbohydrate Metabolism/genetics , Middle Aged , Biomarkers , Prediabetic State/genetics , Prediabetic State/metabolism , Prediabetic State/blood , Oxidative Stress , ROC Curve
11.
BMC Plant Biol ; 24(1): 464, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802756

Saline-sodic stress can limit the absorption of available zinc in rice, subsequently impacting the normal photosynthesis and carbohydrate metabolism of rice plants. To investigate the impact of exogenous zinc application on photosynthesis and carbohydrate metabolism in rice grown in saline-sodic soil, this study simulated saline-sodic stress conditions using two rice varieties, 'Changbai 9' and 'Tonghe 899', as experimental materials. Rice seedlings at 4 weeks of age underwent various treatments including control (CT), 2 µmol·L-1 zinc treatment alone (Z), 50 mmol·L-1 saline-sodic treatment (S), and 50 mmol·L-1 saline-sodic treatment with 2 µmol·L-1 zinc (Z + S). We utilized JIP-test to analyze the variations in excitation fluorescence and MR820 signal in rice leaves resulting from zinc supplementation under saline-sodic stress, and examined the impact of zinc supplementation on carbohydrate metabolism in both rice leaves and roots under saline-sodic stress. Research shows that zinc increased the chloroplast pigment content, specific energy flow, quantum yield, and performance of active PSII reaction centers (PIABS), as well as the oxidation (VOX) and reduction rate (Vred) of PSI in rice leaves under saline-sodic stress. Additionally, it decreased the relative variable fluorescence (WK and VJ) and quantum energy dissipation yield (φDO) of the rice. Meanwhile, zinc application can reduce the content of soluble sugars and starch in rice leaves and increasing the starch content in the roots. Therefore, the addition of zinc promotes electron and energy transfer in the rice photosystem under saline-sodic stress. It enhances rice carbohydrate metabolism, improving the rice plants' ability to withstand saline-sodic stress and ultimately promoting rice growth and development.


Carbohydrate Metabolism , Chlorophyll , Oryza , Seedlings , Zinc , Oryza/metabolism , Oryza/drug effects , Zinc/metabolism , Seedlings/metabolism , Seedlings/drug effects , Carbohydrate Metabolism/drug effects , Chlorophyll/metabolism , Fluorescence , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects
12.
BMC Biol ; 22(1): 128, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816863

BACKGROUND: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT). RESULTS: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway. CONCLUSIONS: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.


Gene Transfer, Horizontal , Phylogeny , Carbohydrate Metabolism/genetics , Sugars/metabolism , Evolution, Molecular , Genome, Fungal
13.
Gene ; 924: 148589, 2024 Oct 05.
Article En | MEDLINE | ID: mdl-38777108

Nitrogen is the principal nutrient deficiency that increases lipids and carbohydrate content in diatoms but negatively affects biomass production. Marine diatom Chaetoceros muelleri is characterized by lipid and carbohydrate accumulation under low nitrogen concentration without affecting biomass. To elucidate the molecular effects of nitrogen concentrations, we performed an RNA-seq analysis of C. muelleri grown under four nitrogen concentrations (3.53 mM, 1.76 mM, 0.44 mM, and 0.18 mM of NaNO3). This research revealed that changes in global transcription in C. muelleri are differentially expressed by nitrogen concentration. "Energetic metabolism", "Carbohydrate metabolism" and "Lipid metabolism" pathways were identified as the most upregulated by N deficiency. Due to N limitation, alternative pathways to self-supply nitrogen employed by microalgal cells were identified. Additionally, nitrogen limitation decreased chlorophyll content and caused a greater response at the transcriptional level with a higher number of unigenes differentially expressed. By contrast, the highest N concentration (3.53 mM) recorded the lowest number of differentially expressed genes. Amt1, Nrt2, Fad2, Skn7, Wrky19, and Dgat2 genes were evaluated by RT-qPCR. In conclusion, C. muelleri modify their metabolic pathways to optimize nitrogen utilization and minimize nitrogen losses. On the other hand, the assembled transcriptome serves as the basis for metabolic engineering focused on improving the quantity and quality of the diatom for biotechnological applications. However, proteomic and metabolomic analysis is also required to compare gene expression, protein, and metabolite accumulation.


Diatoms , Nitrogen , Transcriptome , Nitrogen/metabolism , Diatoms/metabolism , Diatoms/genetics , Gene Expression Profiling/methods , Lipid Metabolism/genetics , Carbohydrate Metabolism/genetics , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Biomass
14.
Funct Plant Biol ; 512024 05.
Article En | MEDLINE | ID: mdl-38739736

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Medicago sativa , Plant Stems , Starch , Sucrose , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/growth & development , Starch/metabolism , Plant Stems/metabolism , Plant Stems/growth & development , Plant Stems/genetics , Sucrose/metabolism , Gene Expression Regulation, Plant , Transcriptome , Carbohydrate Metabolism/genetics , Gene Expression Profiling
15.
Environ Int ; 187: 108737, 2024 May.
Article En | MEDLINE | ID: mdl-38735075

DNA methylation is well-accepted as a bridge to unravel the complex interplay between genome and environmental exposures, and its alteration regulated the cellular metabolic responses towards pollutants. However, the mechanism underlying site-specific aberrant DNA methylation and metabolic disorders under pollutant stresses remained elusive. Herein, the multilevel omics interferences of sulfonamides (i.e., sulfadiazine and sulfamerazine), a group of antibiotics pervasive in farmland soils, towards rice in 14 days of 1 mg/L hydroponic exposure were systematically evaluated. Metabolome and transcriptome analyses showed that 57.1-71.4 % of mono- and disaccharides were accumulated, and the differentially expressed genes were involved in the promotion of sugar hydrolysis, as well as the detoxification of sulfonamides. Most differentially methylated regions (DMRs) were hypomethylated ones (accounting for 87-95 %), and 92 % of which were located in the CHH context (H = A, C, or T base). KEGG enrichment analysis revealed that CHH-DMRs in the promoter regions were enriched in sugar metabolism. To reveal the significant hypomethylation of CHH, multi-spectroscopic and thermodynamic approaches, combined with molecular simulation were conducted to investigate the molecular interaction between sulfonamides and DNA in different sequence contexts, and the result demonstrated that sulfonamides would insert into the minor grooves of DNA, and exhibited a stronger affinity with the CHH contexts of DNA compared to CG or CHG contexts. Computational modeling of DNA 3D structures further confirmed that the binding led to a pitch increase of 0.1 Å and a 3.8° decrease in the twist angle of DNA in the CHH context. This specific interaction and the downregulation of methyltransferase CMT2 (log2FC = -4.04) inhibited the DNA methylation. These results indicated that DNA methylation-based assessment was useful for metabolic toxicity prediction and health risk assessment.


DNA Methylation , Oryza , Sulfonamides , DNA Methylation/drug effects , Oryza/genetics , Oryza/metabolism , Sulfonamides/toxicity , Carbohydrate Metabolism/drug effects , Soil Pollutants/toxicity
16.
Genes (Basel) ; 15(4)2024 04 08.
Article En | MEDLINE | ID: mdl-38674400

Bifidobacterium longum subsp. infantis YLGB-1496 (YLGB-1496) is a probiotic strain isolated from human breast milk. The application of YLGB-1496 is influenced by carbohydrate utilization and genetic stability. This study used genome sequencing and morphology during continuous subculture to determine the carbohydrate utilization characteristics and genetic stability of YLGB-1496. The complete genome sequence of YLGB-1496 consists of 2,758,242 base pairs, 2442 coding sequences, and a GC content of 59.87%. A comparison of carbohydrate transport and metabolism genes of Bifidobacterium longum subsp. infantis (B. infantis) showed that YLGB-1496 was rich in glycosyl hydrolase 13, 20, 25, and 109 gene families. During continuous subculture, the growth characteristics and fermentation activity of the strain were highly stable. The bacterial cell surface and edges of the 1000th-generation strains were progressively smoother and well-defined, with no perforations or breaks in the cell wall. There were 20 SNP loci at the 1000th generation, fulfilling the requirement of belonging to the same strain. The presence of genes associated with cell adhesion and the absence of resistance genes supported the probiotic characteristics of the strain. The data obtained in this study provide insights into broad-spectrum carbohydrate utilization, genomic stability, and probiotic properties of YLGB-1496, which provide theoretical support to promote the use of YLGB-1496.


Bifidobacterium , Carbohydrate Metabolism , Genome, Bacterial , Bifidobacterium/genetics , Bifidobacterium/metabolism , Carbohydrate Metabolism/genetics , Humans , Probiotics , Genomic Instability , Bifidobacterium longum subspecies infantis/genetics , Bifidobacterium longum subspecies infantis/metabolism
17.
Curr Opin Chem Biol ; 80: 102457, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657391

Carbohydrate-active enzymes (CAZymes) are responsible for the biosynthesis, modification and degradation of all glycans in Nature. Advances in genomic and metagenomic methodologies, in conjunction with lower cost gene synthesis, have provided access to a steady stream of new CAZymes with both well-established and novel mechanisms. At the same time, increasing access to cryo-EM has resulted in exciting new structures, particularly of transmembrane glycosyltransferases of various sorts. This improved understanding has resulted in widespread progress in applications of CAZymes across diverse fields, including therapeutics, organ transplantation, foods, and biofuels. Herein, we highlight a few of the many important advances that have recently been made in the understanding and applications of CAZymes.


Glycosyltransferases , Glycosyltransferases/metabolism , Humans , Animals , Enzymes/metabolism , Enzymes/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Carbohydrates/chemistry , Carbohydrate Metabolism
18.
Mar Biotechnol (NY) ; 26(3): 562-574, 2024 Jun.
Article En | MEDLINE | ID: mdl-38683457

The potential functional role(s) of heat shock protein 70 (Hsp70) in the brine shrimp, Artemia franciscana, a crucial crustacean species for aquaculture and stress response studies, was investigated in this study. Though we have previously reported that Hsp70 knockdown may have little or no impact on Artemia development, the gestational survival and number of offspring released by adult females were impaired by obscuring Hsp70 synthesis. Transcriptomic analysis revealed that several cuticle and chitin synthetic genes were downregulated, and carbohydrate metabolic genes were differentially expressed in Hsp70-knockdown individuals. A more comprehensive microscopic examination performed in this study revealed exoskeleton structural destruction and abnormal eye lenses featured in Hsp70-deficient adult females 48 h after Hsp70 dsRNA injection. Cysts produced by these Hsp70-deficient broods, instead, had a defective shell and were smaller in size, whereas nauplii had shorter first antennae and a rougher body epicuticle surface. Changes in carbohydrate metabolism caused by Hsp70 knockdown affected glycogen levels in adult Artemia females, as well as trehalose in cysts released from these broods, indicating that Hsp70 may play a role in energy storage preservation. Outcomes from this work provided novel insights into the roles of Hsp70 in Artemia reproduction performance, cyst formation, and exoskeleton structure preservation. The findings also support our previous observation that Hsp70 knockdown reduced Artemia nauplius tolerance to bacterial pathogens, which could be explained by the fact that loss of Hsp70 downregulated several Toll receptor genes (NT1 and Spaetzle) and reduced the integrity of the exoskeleton, allowing pathogens to enter and cause infection, ultimately resulting in mortality.


Artemia , HSP70 Heat-Shock Proteins , Reproduction , Animals , Artemia/genetics , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Reproduction/genetics , Gene Knockdown Techniques , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Gene Expression Profiling , Animal Shells/metabolism , Carbohydrate Metabolism/genetics , Embryo, Nonmammalian/metabolism
19.
Biotechnol Adv ; 73: 108365, 2024.
Article En | MEDLINE | ID: mdl-38677391

Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.


Protein Engineering , Substrate Specificity , Protein Engineering/methods , Carbohydrate Metabolism , Carbohydrates/chemistry , Enzymes/chemistry , Enzymes/metabolism , Enzymes/genetics , Catalytic Domain , Protein Binding , Carbohydrate Binding Modules
20.
Food Microbiol ; 121: 104487, 2024 Aug.
Article En | MEDLINE | ID: mdl-38637064

Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.


Glucose , Lactose , Lactose/metabolism , Glucose/metabolism , Carbohydrate Metabolism , Glycolysis , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism , Sucrose/metabolism
...