Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Int J Biol Macromol ; 259(Pt 1): 129226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184030

ABSTRACT

In higher eukaryotes and plants, the last two sequential steps in the de novo biosynthesis of uridine 5'-monophosphate (UMP) are catalyzed by a bifunctional natural chimeric protein called UMP synthase (UMPS). In higher plants, UMPS consists of two naturally fused enzymes: orotate phosphoribosyltransferase (OPRTase) at N-terminal and orotidine-5'-monophosphate decarboxylase (ODCase) at C-terminal. In this work, we obtained the full functional recombinant protein UMPS from Coffea arabica (CaUMPS) and studied its structure-function relationships. A biochemical and structural characterization of a plant UMPS with its two functional domains is described together with the presentation of the first crystal structure of a plant ODCase at 1.4 Å resolution. The kinetic parameters measured of CaOPRTase and CaODCase domains were comparable to those reported. The crystallographic structure revealed that CaODCase is a dimer that conserves the typical fold observed in other ODCases from prokaryote and eukaryote with a 1-deoxy-ribofuranose-5'-phosphate molecule bound in the active site of one subunit induced a closed conformation. Our results add to the knowledge of one of the key enzymes of the de novo biosynthesis of pyrimidines in plant metabolism and open the door to future applications.


Subject(s)
Carboxy-Lyases , Coffea , Orotate Phosphoribosyltransferase/chemistry , Orotate Phosphoribosyltransferase/metabolism , Orotidine-5'-Phosphate Decarboxylase/genetics , Orotidine-5'-Phosphate Decarboxylase/chemistry , Orotidine-5'-Phosphate Decarboxylase/metabolism , Multienzyme Complexes/chemistry , Recombinant Proteins/genetics , Uridine Monophosphate
2.
J Chem Inf Model ; 63(24): 7807-7815, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38049384

ABSTRACT

Crotonyl-CoA carboxylase/reductase (Ccr) is one of the fastest CO2 fixing enzymes and has become part of efficient artificial CO2-fixation pathways in vitro, paving the way for future applications. The underlying mechanism of its efficiency, however, is not yet completely understood. X-ray structures of different intermediates in the catalytic cycle reveal tetramers in a dimer of dimers configuration with two open and two closed active sites. Upon binding a substrate, this active site changes its conformation from the open state to the closed state. It is challenging to predict how these coupled conformational changes will alter the CO2 binding affinity to the reaction's active site. To determine whether the open or closed conformations of Ccr affect binding of CO2 to the active site, we performed all-atom molecular simulations of the various conformations of Ccr. The open conformation without a substrate showed the highest binding affinity. The CO2 binding sites are located near the catalytic relevant Asn81 and His365 residues and in an optimal position for CO2 fixation. Furthermore, they are unaffected by substrate binding, and CO2 molecules stay in these binding sites for a longer time. Longer times at these reactive binding sites facilitate CO2 fixation through the nucleophilic attack of the reactive enolate in the closed conformation. We previously demonstrated that the Asn81Leu variant cannot fix CO2. Simulations of the Asn81Leu variant explain the loss of activity through the removal of the Asn81 and His365 binding sites. Overall, our findings show that the conformational dynamics of the enzyme controls CO2 binding. Conformational changes in Ccr increase the level of CO2 in the open subunit before the substrate is bound, the active site closes, and the reaction starts. The full catalytic Ccr cycle alternates among CO2 addition, conformational change, and chemical reaction in the four subunits of the tetramer coordinated by communication between the two dimers.


Subject(s)
Carbon Dioxide , Carboxy-Lyases , Binding Sites , Catalytic Domain , Protein Conformation , Crystallography, X-Ray
3.
Braz J Psychiatry ; 40(44): 378-387, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35749663

ABSTRACT

OBJECTIVE: Bipolar I disorder (BD-I) is a type of bipolar spectrum disorder characterized by manic or mixed episodes. Detecting microRNA regulations as epigenetic actors in BD-I is important to elucidate the pathogenesis of the disease and reveal the potential of microRNAs (miRNAs) as biomarkers. METHODS: We evaluated the expression profile of six candidate miRNAs (hsa-miR-145-5p, hsa-miR-376a-3p, hsa-miR-3680-5p, hsa-miR-4253-5p, hsa-miR-4482-3p, and hsa-miR-4725) in patients with BD-I and in healthy controls (aged 11-50 years). We also determined the potential target genes of these miRNAs through in silico analysis. The diagnostic values of the miRNAs were calculated through receiver operating characteristic curve analysis. RESULTS: Four miRNAs were upregulated (hsa-miR-376a-3p, hsa-miR-3680-5p, hsa-miR-4253-5p, hsa-miR-4482-3p) and hsa-miR-145-5p was downregulated in patients (p < 0.001). The target gene analyses showed that hsa-miR-145-5p specifically targets the dopamine decarboxylase (DDC) gene. The area under the curve of hsa-miR-145-5p was 0.987. CONCLUSION: Differential expression of five miRNAs in peripheral blood may be associated with the pathogenesis of BD-I, and hsa-miR-145-5p has potential as a BD-I biomarker. This miRNA can be used in dopamine-serotonin regulation and dose adjustment in drug therapy via the DDC gene.


Subject(s)
Bipolar Disorder , Carboxy-Lyases , MicroRNAs , Biomarkers , Bipolar Disorder/diagnosis , Bipolar Disorder/genetics , Dopamine , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Serotonin
4.
Parasitol Int ; 76: 102100, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32145389

ABSTRACT

In the present study, molecular characterization of Fasciola flukes from Spain was performed to reveal the relation with the previously reported Peruvian F. hepatica population. The nuclear DNA markers, phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold), were used for species identification of Fasciola flukes. A total of 196 Fasciola flukes were identified as F. hepatica by pepck and pold, and 26 haplotypes were detected in mitochondrial NADH dehydrogenase subunit 1 (nad1). Only one of them was previously found in Spanish samples; which indicates the existence of high genetic diversity and population structure in F. hepatica from Spain. Three haplotypes were identical to those from Peruvian F. hepatica. The pairwise fixation index value confirmed a relatively close relationship between the Spanish and Peruvian F. hepatica samples. The Spanish samples showed clearly higher genetic variability than the Peruvian population. These results are discussed in relation with the hypothesis of the introduction of the parasite in America from Europe and recent evidence of pre-Hispanic F. hepatica from Argentina revealed by ancient DNA.


Subject(s)
Cattle Diseases/parasitology , Fasciola hepatica/genetics , Fascioliasis/veterinary , Genetic Variation , Sheep Diseases/parasitology , Animals , Carboxy-Lyases/analysis , Cattle , DNA Polymerase III/analysis , Fascioliasis/parasitology , Fungal Proteins/analysis , Peru , Phylogeny , Sequence Analysis, DNA , Sheep , Spain
5.
Braz J Microbiol ; 51(2): 547-556, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31833007

ABSTRACT

lysA gene encoding meso-diaminopimelic acid (DAP) decarboxylase enzyme that catalyzes L-lysine biosynthesis in the aspartate pathway in Streptomyces clavuligerus was overexpressed, and its effects on cephamycin C (CephC), clavulanic acid (CA), and tunicamycin productions were investigated. Multicopy expression of lysA gene under the control of glpF promoter (glpFp) in S. clavuligerus pCOlysA led to higher expression levels ranging from 2- to 6-fold increase at both lysA gene and CephC biosynthetic gene cluster at T36 and T48 of TSBG fermentation. These results accorded well with CephC production. Thus, 1.86- and 3.14-fold higher volumetric as well as 1.26- and 1.71-fold increased specific CephC yields were recorded in S. clavuligerus pCOlysA in comparison with the wild-type and its control strain, respectively, at 48th h. Increasing the expression of lysA provided 4.3 times more tunicamycin yields in the recombinant strain. These findings suggested that lysA overexpression in S. clavuligerus made the strain more productive for CephC and tunicamycin. The results also supported the presence of complex interactions among antibiotic biosynthesis pathways in S. clavuligerus.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Carboxy-Lyases/genetics , Streptomyces/enzymology , Streptomyces/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Multigene Family , Promoter Regions, Genetic
6.
Genet Med ; 21(12): 2734-2743, 2019 12.
Article in English | MEDLINE | ID: mdl-31263216

ABSTRACT

PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.


Subject(s)
Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Adolescent , Adult , Brazil , Exome/genetics , Female , Genotype , HEK293 Cells , Hearing Loss, Sensorineural/genetics , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Pedigree , Phenotype , Portugal , Retinal Degeneration/genetics , Syndrome , Young Adult
7.
Arch Microbiol ; 201(2): 171-183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30535938

ABSTRACT

Rhizobium tropici CIAT 899 is a strain known by its ability to nodulate a broad range of legume species, to synthesize a variety of Nod factors, its tolerance of abiotic stresses, and its high capacity to fix atmospheric N2, especially in symbiosis with common bean (Phaseolus vulgaris L.). Genes putatively related to the synthesis of indole acetic acid (IAA) have been found in the symbiotic plasmid of CIAT 899, in the vicinity of the regulatory nodulation gene nodD5, and, in this study, we obtained mutants for two of these genes, y4wF and tidC (R. tropiciindole-3-pyruvic acid decarboxylase), and investigated their expression in the absence and presence of tryptophan (TRP) and apigenin (API). In general, mutations of both genes increased exopolysaccharide (EPS) synthesis and did not affect swimming or surface motility; mutations also delayed nodule formation, but increased competitiveness. We found that the indole-3-acetamide (IAM) pathway was active in CIAT 899 and not affected by the mutations, and-noteworthy-that API was required to activate the tryptamine (TAM) and the indol-3-pyruvic acid (IPyA) pathways in all strains, particularly in the mutants. High up-regulation of y4wF and tidC genes was observed in both the wild-type and the mutant strains in the presence of API. The results obtained revealed an intriguing relationship between IAA metabolism and nod-gene-inducing activity in R. tropici CIAT 899. We discuss the IAA pathways, and, based on our results, we attribute functions to the y4wF and tidC genes of R. tropici.


Subject(s)
Carboxy-Lyases/metabolism , Indoleacetic Acids/metabolism , Rhizobium tropici/genetics , Rhizobium tropici/metabolism , Carboxy-Lyases/genetics , Genes, Bacterial , Indoles/metabolism , Mutation , Phaseolus/microbiology , Phaseolus/physiology , Polysaccharides, Bacterial/biosynthesis , Rhizobium tropici/chemistry , Rhizobium tropici/enzymology , Symbiosis
8.
Biochem Biophys Res Commun ; 506(4): 1071-1077, 2018 12 02.
Article in English | MEDLINE | ID: mdl-30409429

ABSTRACT

Arabidopsis amiR:ADC-L2 is a non-lethal line with several developmental defects, it is characterized by a drastic reduction in free polyamine content. Herein, we found that catalase application had growth-promoting effects in amiR:ADC-L2 and parental Ws seedlings. Differences in ROS content between amiR:ADC-L2 and Ws seedlings were detected. Increased H2O2 levels were found in the amiR:ADC-L2, as well as low AtCAT2 gene expression and reduced catalase activity. Estimation of polyamine oxidase activity in amiR:ADC-L2 line indicated that the over-accumulation of H2O2 is independent of polyamine catabolism. However, increments in NADPH oxidase activity and O2•- content could be associated to the higher H2O2 levels in the amiR:ADC-L2 line. Our data suggest that low polyamine levels in Arabidopsis seedlings are responsible for the accumulation of ROS, by altering the activities of enzymes involved in ROS production and detoxification.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Carboxy-Lyases/genetics , Down-Regulation/genetics , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Carboxy-Lyases/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , NADPH Oxidases/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plants, Genetically Modified , Seedlings/growth & development , Superoxides/metabolism , Polyamine Oxidase
9.
PLoS One ; 13(10): e0205787, 2018.
Article in English | MEDLINE | ID: mdl-30335810

ABSTRACT

Citrate is an ubiquitous compound in nature. However, citrate fermentation is present only in a few pathogenic or nonpathogenic microorganisms. The citrate fermentation pathway includes a citrate transporter, a citrate lyase complex, an oxaloacetate decarboxylase and a regulatory system. Enterococcus faecalis is commonly present in the gastro-intestinal microbiota of warm-blooded animals and insect guts. These bacteria can also cause infection and disease in immunocompromised individuals. In the present study, we performed whole genome analysis in Enterococcus strains finding that the complete citrate pathway is present in all of the E. faecalis strains isolated from such diverse habitats as animals, hospitals, water, milk, plants, insects, cheese, etc. These results indicate the importance of this metabolic preservation for persistence and growth of E. faecalis in different niches. We also analyzed the role of citrate metabolism in the E. faecalis pathogenicity. We found that an E. faecalis citrate fermentation-deficient strain was less pathogenic for Galleria mellonella larvae than the wild type. Furthermore, strains with deletions in the oxaloacetate decarboxylase subunits or in the α-acetolactate synthase resulted also less virulent than the wild type strain. We also observed that citrate promoters are induced in blood, urine and also in the hemolymph of G. mellonella. In addition, we showed that citrate fermentation allows E. faecalis to grow better in blood, urine and G. mellonella. The results presented here clearly indicate that citrate fermentation plays an important role in E. faecalis opportunistic pathogenic behavior.


Subject(s)
Citric Acid/metabolism , Enterococcus faecalis/pathogenicity , Fermentation/genetics , Gram-Positive Bacterial Infections/microbiology , Opportunistic Infections/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Disease Models, Animal , Enterococcus faecalis/genetics , Enterococcus faecalis/immunology , Enterococcus faecalis/metabolism , Fermentation/immunology , Gene Expression Regulation, Bacterial , Genome, Bacterial/genetics , Gram-Positive Bacterial Infections/immunology , Humans , Metabolic Networks and Pathways/genetics , Moths/immunology , Moths/microbiology , Multigene Family/genetics , Opportunistic Infections/immunology , Promoter Regions, Genetic/genetics , Whole Genome Sequencing
10.
FEMS Microbiol Lett ; 365(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30239698

ABSTRACT

Dekkera bruxellensis is a spoilage yeast in wine and fuel ethanol fermentations able to produce volatile phenols from hydroxycinnamic acids by the action of the enzymes cinnamate decarboxylase (CD) and vinyphenol reductase (VR) in wine. However, there is no information about this ability in the bioethanol industry. This work evaluated CD and VR activities and 4-ethylphenol production from p-coumaric acid by three strains of D. bruxellensis and PE-2, an industrial Saccharomyces cerevisiae strain. Single and multiple-cycle batch fermentations in molasses and sugarcane juice were carried out. Dekkera bruxellensis strains showed similar CD activity but differences in VR activity. No production of 4-ethylphenol by S. cerevisiae in any fermentation system or media was observed. The concentrations of 4-ethylphenol peaked during active growth of D. bruxellensis in single-cycle fermentation but they were lower than in multiple-cycle fermentation. Higher concentrations were observed in molasses with molar conversion (p-coumaric acid to 4-ethylphenol) ranging from 45% to 85%. As the first report on 4-ethylphenol production in sugarcane musts by D. bruxellensis in industry-like conditions, it opens up a new avenue to investigate its effect on the viability and fermentative capacity of S. cerevisiae as well as to understand the interaction between the yeasts in the bioethanol industry.


Subject(s)
Biofuels , Dekkera/metabolism , Ethanol/metabolism , Industrial Microbiology , Phenols/metabolism , Brazil , Carboxy-Lyases/analysis , Cinnamates/metabolism , Coumaric Acids , Fermentation , Propionates/metabolism , Saccharomyces cerevisiae/metabolism , Saccharum/metabolism
11.
Biol Res ; 51(1): 24, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30097015

ABSTRACT

BACKGROUND: Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an enzyme required for de novo purine biosynthesis, is associated with and involved in tumorigenesis. This study aimed to evaluate the role of PAICS in human breast cancer, which remains the most frequently diagnosed cancer and the leading cause of cancer-related death among women in less developed countries. RESULTS: Lentivirus-based short hairpin RNA targeting PAICS specifically depleted its endogenous expression in ZR-75-30 and MDA-MB-231 breast cancer cells. Depletion of PAICS led to a significant decrease in cell viability and proliferation. To ascertain the mechanisms through which PAICS modulates cell proliferation, flow cytometry was performed, and it was confirmed that G1-S transition was blocked in ZR-75-30 cells through PAICS knockdown. This might have occurred partly through the suppression of Cyclin E and the upregulation of Cyclin D1, P21, and CDK4. Moreover, PAICS knockdown obviously promoted cell apoptosis in ZR-75-30 cells through the activation of PARP and caspase 3 and downregulation of Bcl-2 and Bcl-xl expression in ZR-75-30 cells. CONCLUSIONS: These findings demonstrate that PAICS plays an essential role in breast cancer proliferation in vitro, which provides a new opportunity for discovering and identifying novel effective treatment strategies.


Subject(s)
Biomarkers, Tumor/physiology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carboxy-Lyases/biosynthesis , Cell Proliferation , Peptide Synthases/physiology , Cell Line, Tumor , Female , Flow Cytometry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Peptide Synthases/genetics
12.
Atherosclerosis ; 271: 92-101, 2018 04.
Article in English | MEDLINE | ID: mdl-29482039

ABSTRACT

BACKGROUND AND AIMS: Little is known about specific genetic determinants of carotid-intima-media thickness (CIMT) and carotid plaque in subjects with rheumatoid arthritis (RA). We have used the Metabochip array to fine map and replicate loci that influence variation in these phenotypes in Mexican Americans (MAs) and European Americans (EAs). METHODS: CIMT and plaque were measured using ultrasound from 700 MA and 415 EA patients with RA and we conducted association analyses with the Metabochip single nucleotide polymorphism (SNP) data using PLINK. RESULTS: In MAs, 12 SNPs from 11 chromosomes and 6 SNPs from 6 chromosomes showed suggestive associations (p < 1 × 10-4) with CIMT and plaque, respectively. The strongest association was observed between CIMT and rs17526722 (SLC17A2 gene) (ß ± SE = -0.84 ± 0.18, p = 3.80 × 10-6). In EAs, 9 SNPs from 7 chromosomes and 7 SNPs from 7 chromosomes showed suggestive associations with CIMT and plaque, respectively. The top association for CIMT was observed with rs1867148 (PPCDC gene, ß ± SE = -0.28 ± 0.06, p = 5.11 × 10-6). We also observed strong association between plaque and two novel loci: rs496916 from COL4A1 gene (OR = 0.51, p = 3.15 × 10-6) in MAs and rs515291 from SLCA13 gene (OR = 0.50, p = 3.09 × 10-5) in EAs. CONCLUSIONS: We identified novel associations between CIMT and variants in SLC17A2 and PPCDC genes, and between plaque and variants from COL4A1 and SLCA13 that may pinpoint new candidate risk loci for subclinical atherosclerosis associated with RA.


Subject(s)
Arthritis, Rheumatoid/ethnology , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/ethnology , Carotid Artery Diseases/genetics , Carotid Intima-Media Thickness , Mexican Americans/genetics , Plaque, Atherosclerotic , Polymorphism, Single Nucleotide , White People/genetics , Aged , Arthritis, Rheumatoid/diagnosis , Carboxy-Lyases/genetics , Carotid Artery Diseases/diagnostic imaging , Female , Gene Expression Profiling/methods , Genetic Association Studies , Genetic Predisposition to Disease , Glucose Transport Proteins, Facilitative/genetics , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Phenotype , Predictive Value of Tests , Risk Assessment , Risk Factors , Sodium-Phosphate Cotransporter Proteins, Type I/genetics , Texas/epidemiology
13.
Methods Mol Biol ; 1694: 405-416, 2018.
Article in English | MEDLINE | ID: mdl-29080183

ABSTRACT

Plants respond to pathogen attack by modifying defense gene expression and inducing the production of myriad proteins and metabolites. Among these responses, polyamine (PA) levels suffer remarkable modifications. Evidences demonstrate that plants make use of the polyamine biosynthetic pathway and the oxidative catabolism of these compounds in order to mount adequate defenses against pathogens. In Arabidopsis thaliana, putrescine is synthesized exclusively through the arginine decarboxylase (ADC) pathway, this enzyme exists as two isoforms named ADC1 and ADC2. Even though both isoforms participate in the response to pathogen attack, the mechanisms modulating ADC activity are not completely understood. Therefore, studies to clarify their roles are necessary. In this chapter, we describe the methods that can be applied for the study of plant-pathogen interactions using Arabidopsis adc mutant plants.


Subject(s)
Genotype , Host-Pathogen Interactions/genetics , Metabolic Networks and Pathways/genetics , Mutation , Phenotype , Plants/genetics , Plants/metabolism , Polyamines/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Disease Resistance/genetics , Phenol/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Reactive Oxygen Species
14.
Metabolism ; 81: 35-44, 2018 04.
Article in English | MEDLINE | ID: mdl-29162499

ABSTRACT

Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and antidepressant actions in the brain. In this context it has emerged as an important mediator of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat alcoholism and related addiction disorders. Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the more recently identified AGM-like protein (ALP). In rat brain, agmatine, AGM and ALP are predominantly localised in areas associated with roles in appetitive and craving (drug-reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the treatment of addictions. In this review, the properties of DAO, AGM and ALP are discussed with a view to their role in the agmatine metabolism in mammals.


Subject(s)
Agmatine/metabolism , Neurotransmitter Agents/metabolism , Amine Oxidase (Copper-Containing)/physiology , Animals , Carboxy-Lyases/physiology , Humans , Ureohydrolases/physiology
15.
Biol. Res ; 51: 24, 2018. tab, graf
Article in English | LILACS | ID: biblio-950907

ABSTRACT

BACKGROUND: Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an enzyme required for de novo purine biosynthesis, is associated with and involved in tumorigenesis. This study aimed to evaluate the role of PAICS in human breast cancer, which remains the most frequently diagnosed cancer and the leading cause of cancer-related death among women in less developed countries. RESULTS: Lentivirus-based short hairpin RNA targeting PAICS specifically depleted its endogenous expression in ZR-75-30 and MDA-MB-231 breast cancer cells. Depletion of PAICS led to a significant decrease in cell viability and proliferation. To ascertain the mechanisms through which PAICS modulates cell proliferation, flow cytometry was performed, and it was confirmed that G1-S transition was blocked in ZR-75-30 cells through PAICS knockdown. This might have occurred partly through the suppression of Cyclin E and the upregulation of Cyclin D1, P21, and CDK4. Moreover, PAICS knockdown obviously promoted cell apoptosis in ZR-75-30 cells through the activation of PARP and caspase 3 and downregulation of Bcl-2 and Bcl-xl expression in ZR-75-30 cells. CONCLUSIONS: These findings demonstrate that PAICS plays an essential role in breast cancer proliferation in vitro, which provides a new opportunity for discovering and identifying novel effective treatment strategies.


Subject(s)
Humans , Female , Peptide Synthases/physiology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Carboxy-Lyases/biosynthesis , Biomarkers, Tumor/physiology , Cell Proliferation , Peptide Synthases/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Gene Knockdown Techniques , Flow Cytometry
16.
Tree Physiol ; 37(1): 116-130, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28175909

ABSTRACT

Polyamines (PAs), such as spermidine and spermine, as well as amino acids that are substrates for their biosynthesis, are known to be essential for plant development. However, little is known about the gene expression and metabolic switches associated with the ornithine/arginine and PA biosynthetic pathway during seed development in conifers. To understand these metabolic switches, the enzyme activity of arginine decarboxylase and ornithine decarboxylase, as well as the contents of PAs and amino acids were evaluated in three Araucaria angustifolia (Bertol. Kuntze) seed developmental stages in combination with expression profile analyses of genes associated with the ornithine/arginine and PA biosynthetic pathway. Twelve genes were selected for further analysis and it was shown that the expression profiles of AaADC and AaSAMDC were up-regulated during zygotic embryo development. Polyamines and amino acids were found to accumulate differently in embryos and megagametophytes, and the transition from the globular to the cotyledonary stage was marked by an increase in free and conjugated spermidine and spermine contents. Putrescine is made from arginine, which was present at low content at the late embryogenesis stage, when high content of citrulline was observed. Differences in amino acids, PAs and gene expression profiles of biosynthetic genes at specific seed stages and at each seed transition stage were investigated, providing insights into molecular and physiological aspects of conifer embryogenesis for use in future both basic and applied studies.


Subject(s)
Amino Acids/metabolism , Carboxy-Lyases/genetics , Gene Expression , Ornithine Decarboxylase/genetics , Plant Proteins/genetics , Polyamines/metabolism , Tracheophyta/genetics , Biosynthetic Pathways , Carboxy-Lyases/metabolism , Ornithine Decarboxylase/metabolism , Phylogeny , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Analysis, DNA , Tracheophyta/enzymology , Tracheophyta/growth & development , Tracheophyta/metabolism
17.
Biochemistry ; 56(5): 779-792, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28125217

ABSTRACT

Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.


Subject(s)
Carboxy-Lyases/chemistry , Evolution, Molecular , Lipopolysaccharides/chemistry , Phylogeny , Plant Proteins/chemistry , Xylella/genetics , Amino Acid Sequence , Base Sequence , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Cloning, Molecular , Coffea/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Frameshift Mutation , Gene Expression , Hydrolysis , Lipopolysaccharides/biosynthesis , Monosaccharides/analysis , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Xylella/classification , Xylella/enzymology , Xylella/isolation & purification
18.
Antonie Van Leeuwenhoek ; 110(2): 291-296, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27771809

ABSTRACT

Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.


Subject(s)
Brettanomyces/enzymology , Brettanomyces/genetics , Carboxy-Lyases/genetics , Food Microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Carboxy-Lyases/metabolism , Phenols/metabolism , Reading Frames/genetics , Saccharomyces cerevisiae/genetics , Volatile Organic Compounds/metabolism , Wine/microbiology
19.
Biochemistry ; 55(18): 2632-45, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27082660

ABSTRACT

The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent ß-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous ß-keto acid decarboxylase and the first crystal structure of a 4-OD.


Subject(s)
Bacterial Proteins/chemistry , Carboxy-Lyases/chemistry , Keto Acids/chemistry , Magnesium/chemistry , Pseudomonas putida/chemistry , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Crystallography, X-Ray , Decarboxylation , Keto Acids/metabolism , Magnesium/metabolism , Protein Domains , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
20.
FEMS Microbiol Ecol ; 92(6): fiw077, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27090758

ABSTRACT

During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms.


Subject(s)
Azospirillum brasilense/metabolism , Chlorella/metabolism , Indoleacetic Acids/metabolism , Symbiosis/physiology , Thiamine/metabolism , Tryptophan/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Culture Media/metabolism , Plant Development , Tryptophan Synthase/genetics , Tryptophan Synthase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL