Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Biomolecules ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38785941

ABSTRACT

Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s-1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.


Subject(s)
Carboxylesterase , Cloning, Molecular , Halobacterium salinarum , Recombinant Proteins , Carboxylesterase/genetics , Carboxylesterase/metabolism , Carboxylesterase/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Halobacterium salinarum/enzymology , Halobacterium salinarum/genetics , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Hydrogen-Ion Concentration , Kinetics , Enzyme Stability , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Temperature
2.
Genes (Basel) ; 13(10)2022 10 19.
Article in English | MEDLINE | ID: mdl-36292784

ABSTRACT

Fasciola hepatica anthelmintic resistance may be associated with the catalytic activity of xenobiotic metabolizing enzymes. The gene expression of one of these enzymes, identified as carboxylesterase B (CestB), was previously described as inducible in adult parasites under anthelmintic treatment and exhibited a single nucleotide polymorphism at position 643 that translates into a radical amino acid substitution at position 215 from Glutamic acid to Lysine. Alphafold 3D models of both allelic sequences exhibited a significant affinity pocket rearrangement and different ligand-docking modeling results. Further bioinformatics analysis confirmed that the radical amino acid substitution is located at the ligand affinity site of the enzyme, affecting its affinity to serine hydrolase inhibitors and preferences for ester ligands. A field genotyping survey from parasite samples obtained from two developmental stages isolated from different host species from Argentina and Mexico exhibited a 37% allele distribution for 215E and a 29% allele distribution for 215K as well as a 34% E/K heterozygous distribution. No linkage to host species or geographic origin was found in any of the allele variants.


Subject(s)
Anthelmintics , Fasciola hepatica , Animals , Fasciola hepatica/genetics , Fasciola hepatica/metabolism , Carboxylesterase/genetics , Carboxylesterase/metabolism , Amino Acid Substitution , Ligands , Polymorphism, Single Nucleotide/genetics , Lysine , Glutamic Acid/genetics , Xenobiotics , Anthelmintics/pharmacology , Binding Sites , Esters , Serine
3.
Mol Biol Rep ; 47(5): 3919-3928, 2020 May.
Article in English | MEDLINE | ID: mdl-32399808

ABSTRACT

A functional screening of 1152 clones from a plasmid library constructed with DNA extracted from Brazilian mangrove sediments revealed 3 positive clones for ester-hydrolyzing enzymes, or about one lipolytic gene per 1.2 Mb DNA, which corroborates the idea that oil-contaminated mangroves are a good source of novel microbial lipases/esterases. The partial sequence of the clone LipG7 (1179 bp) showed 30.2% of predicted structure identity with a known esterase, confirming LipG7 as a new member of family VIII esterases. LigG7 shared 80% sequence identity with 1,4-butanediol diacrylate esterase from the Gammaprotebacteria Porticoccus hydrocarbonoclasticus, suggesting it belongs to the Porticoccaceae family. LipG7 was heterologously expressed in Escherichia coli Rosetta-Gami DE3; the purified recombinant enzyme exhibited a predicted molecular weight of 45.2 kDa and exceptional activity towards 4-nitrophenyl butyrate, compared with other recombinant esterases, highlighting its enormous potential for biological applications.


Subject(s)
Carboxylesterase/genetics , Carboxylesterase/isolation & purification , Gammaproteobacteria/genetics , Amino Acid Sequence/genetics , Bacteria/genetics , Bacteria/metabolism , Base Sequence/genetics , Brazil , Butyrates/metabolism , Carboxylesterase/metabolism , Esterases/metabolism , Gammaproteobacteria/metabolism , Gene Expression/genetics , Gene Library , Metagenome/genetics , Phylogeny , Plasmids/genetics , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Substrate Specificity/genetics , Wetlands
4.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 97-102, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442353

ABSTRACT

The immunosuppressant mycophenolic acid (MPA), derived from the prodrug mycophenolate mofetil (MMF), is a drug used widely by kidney transplant recipients. This drug selectively inhibits inosine monophosphate dehydrogenase that controls the proliferation of lymphocytes, aiding in the prevention of rejection of the transplanted organ. Polymorphisms in key genes involved in MMF metabolism may alter the function of the enzymes encoded by them and contribute to interindividual variability in the response to the drug and its efficacy. The aim of this study was to investigate the association of nine polymorphic variants of eight genes involved in MMF pharmacokinetics, with rejection and adverse effects exhibited by kidney transplant recipients who use this drug. Our sample comprised 145 kidney transplant recipients undergoing post-transplant treatment whose immunosuppressive therapy consisted of MMF and corticosteroid combined or not with a calcineurin inhibitor or mTOR inhibitor. The average age of the patients was 46.9 ±â€¯12.5 years, and they underwent transplantation 7 ±â€¯5.71 years ago. The combination of the T/C and C/C genotypes of the polymorphism rs11706052 (IMPDH2) was associated with a 4.2-fold protection, and the combination of the genotypes A/G and G/G of the polymorphism rs7438135 (UGT2B7) showed a 2.4-fold protection, against rejection. The association of T/C and C/C genotypes in the SNP rs11706052 (IMPDH2) with the occurrence of rejection episodes considering only patients who received immunosuppressive drug MMF associated with cyclosporine or tacrolimus and corticoids, demonstrated association with a protection against rejection 15.6-fold. The T/T genotype of the polymorphism rs2241409 (CES2) was associated with a 7.2-fold increased risk of rejection. Therefore, these polymorphisms that showed a strong association with rejection episodes should be considered in future studies on new prognostic markers for rejection in patients treated with MMF.


Subject(s)
Carboxylesterase/genetics , Glucuronosyltransferase/genetics , Graft Rejection/etiology , IMP Dehydrogenase/genetics , Kidney Transplantation/adverse effects , Mycophenolic Acid/adverse effects , Polymorphism, Genetic , Antibiotics, Antineoplastic/adverse effects , Female , Genotype , Graft Rejection/pathology , Humans , Male , Middle Aged
5.
Braz. j. microbiol ; Braz. j. microbiol;47(2): 327-336, Apr.-June 2016. tab, graf
Article in English | LILACS | ID: lil-780820

ABSTRACT

Abstract Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13) and adults (n = 12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.


Subject(s)
Animals , Male , Female , Oxazines/metabolism , Bacteria/enzymology , Carboxylesterase/metabolism , Esterases/metabolism , Gastrointestinal Microbiome , Insecticides/metabolism , Moths/microbiology , Phylogeny , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Gastrointestinal Tract/microbiology , Carboxylesterase/genetics , Esterases/genetics , India
6.
Braz J Microbiol ; 47(2): 327-36, 2016.
Article in English | MEDLINE | ID: mdl-26991291

ABSTRACT

Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.


Subject(s)
Bacteria/enzymology , Carboxylesterase/metabolism , Esterases/metabolism , Gastrointestinal Microbiome , Insecticides/metabolism , Moths/microbiology , Oxazines/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carboxylesterase/genetics , Esterases/genetics , Female , Gastrointestinal Tract/microbiology , India , Male , Phylogeny
7.
Toxicol In Vitro ; 32: 190-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26790371

ABSTRACT

The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.


Subject(s)
Azinphosmethyl/toxicity , Carboxylesterase/metabolism , Chlorpyrifos/toxicity , Insecticides/toxicity , Trophoblasts/drug effects , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Carboxylesterase/genetics , Cell Line, Tumor , Cholinesterase Inhibitors/pharmacology , Humans , RNA, Messenger/metabolism , Trophoblasts/enzymology
8.
Braz J Microbiol ; 46(2): 425-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26273257

ABSTRACT

The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L(-1) FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides.


Subject(s)
Carboxylesterase/genetics , Carboxylesterase/metabolism , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Biotransformation , Carboxylesterase/chemistry , Cloning, Molecular , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Molecular Weight , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Sequence Analysis, DNA , Soil Microbiology , Substrate Specificity , Triticum/growth & development
9.
Braz. j. microbiol ; Braz. j. microbiol;46(2): 425-432, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749712

ABSTRACT

The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L−1 FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides.


Subject(s)
Carboxylesterase/genetics , Carboxylesterase/metabolism , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Biotransformation , Cloning, Molecular , Cluster Analysis , Carboxylesterase/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Molecular Weight , Phylogeny , /genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Sequence Analysis, DNA , Soil Microbiology , Substrate Specificity , Triticum/growth & development
10.
Braz. J. Microbiol. ; 46(2): 425-432, Apr.-Jun. 2015. tab, graf
Article in English | VETINDEX | ID: vti-481393

ABSTRACT

The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L−1 FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides.(AU)


Subject(s)
Carboxylesterase/genetics , /metabolism , Herbicides/metabolism , Oxazoles/metabolism , Propionates/metabolism , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Biotransformation , Cloning, Molecular , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Weight , Phylogeny , RNA, Ribosomal, 16S/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Sequence Analysis, DNA , Soil Microbiology , Triticum/growth & development
11.
Mol Biochem Parasitol ; 191(2): 63-5, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24041589

ABSTRACT

Fasciolasis is a zoonotic parasitic disease caused by Fasciola hepatica and its control is mainly based on the use of triclabendazole (TCBZ). Parasite resistance to different anthelmintics is growing worldwide, including the resistance of F. hepatica to TCBZ. In the present work we evaluate "in vivo" the activity of xenobiotic metabolizing enzymes of phase I (carboxyl esterases) and phase II (glutathione S-transferases and carbonyl reductases) recovered of flukes from sheep treated with TCBZ. All three enzymes showed increased activity in TCBZ flukes returning 60h post-treatment at similar to baseline unexposed flukes. TCBZ action may induce secondary oxidative stress, which may explain the observed increment in activities of the analyzed enzymes as a defensive mechanism. The enzymes analyzed are candidates to participate actively in the development of resistance at TCBZ in F. hepatica.


Subject(s)
Alcohol Oxidoreductases/metabolism , Anthelmintics/administration & dosage , Benzimidazoles/administration & dosage , Carboxylesterase/metabolism , Fasciola hepatica/enzymology , Fascioliasis/veterinary , Helminth Proteins/metabolism , Sheep Diseases/parasitology , Transferases/metabolism , Alcohol Oxidoreductases/genetics , Animals , Carboxylesterase/genetics , Fasciola hepatica/drug effects , Fasciola hepatica/genetics , Fascioliasis/drug therapy , Fascioliasis/enzymology , Fascioliasis/genetics , Helminth Proteins/genetics , Sheep , Sheep Diseases/drug therapy , Transferases/genetics , Triclabendazole
12.
J Appl Microbiol ; 115(1): 114-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23581645

ABSTRACT

AIMS: In this study, a gene that encodes a carboxylesterase (carb) in Penicillium expansum GF was cloned, sequenced and overexpressed by Penicillium griseoroseum PG63, and the enzyme was characterized. METHODS AND RESULTS: The recombinant strain, P. griseoroseum T55, obtained upon transformation using the plasmid pAN-52-1-carb, showed integration of the carb gene into at least two heterologous sites of the genome by Southern blotting. Furthermore, the recombinant strain T55 exhibited almost a fourfold increase in carboxylesterase activity compared with PG63 strain when both were cultured without inducers. Based on the secondary structure and multiple sequence alignments with carboxylesterases, cholinesterase and lipase, a three-dimensional model was obtained. The α/ß barrel topology, that is typical of esterases and lipases, was indicated for the CARB protein with Ser(213)-Glu(341)-His(456) as the putative catalytic triad. CARB preferentially hydrolysed acyl chains with eight carbon atoms, and its activity was optimal at a pH of 7·0 and a temperature of 25°C. CARB exhibited stability in alkaline pH, high activity under mesophilic conditions and stability in organic solvents. CONCLUSION: The CARB protein is potentially useful in bioremediation, food and chemical/pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to report the development of a recombinant strain superproducing a Penicillium sp. carboxylesterase.


Subject(s)
Carboxylesterase/chemistry , Carboxylesterase/metabolism , Penicillium/enzymology , Amino Acid Sequence , Base Sequence , Carboxylesterase/genetics , Cloning, Molecular , Molecular Sequence Data , Penicillium/genetics , Penicillium/metabolism , Sequence Alignment
13.
Genet Mol Res ; 12(4): 6968-82, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24391045

ABSTRACT

Coffee (Coffea arabica L.) seeds are sensitive to desiccation and oxidative stress during drying processes. We investigated the effect of drying and moisture levels on germination-related gene expressions associated with enzymatic systems that prevent oxidative stress in coffee seeds. Coffee seeds collected at physiological maturity were subjected to slow and quick drying to 40, 30, 20, and 12% moisture levels (wet basis), and as the control, seeds without drying were used. The seeds' physiological quality was calculated as percentage of normal seedlings at 15 and 30 days, normal vigorous seedlings at 30 days, and cotyledonary leaves at 45 days. The isoenzymes esterase, catalase (CAT), peroxidase (POX), and endo-ß-mannanase expressions were electrophoretically analyzed. CAT and POX expressions were analyzed using RT-qPCR with specific primers constructed from the target gene sequences from the Brazilian Coffee Genome Database. Slow drying showed better physiological quality for seeds at 40 and 12% moisture levels, while quick drying was the most effective for seeds with 20% moisture. Sensitivity to water loss was confirmed by quick drying and activation of enzymes. CAT and POX transcriptions reduced during drying. RT-qPCR revealed a complex gene-expression pattern during the oxidative process, with high gene expression in wet seeds.


Subject(s)
Coffea/enzymology , Coffea/genetics , Desiccation , Germination/genetics , Seeds/metabolism , Carboxylesterase/analysis , Carboxylesterase/biosynthesis , Carboxylesterase/genetics , Catalase/analysis , Catalase/biosynthesis , Catalase/genetics , Coffea/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Mannosidases/analysis , Mannosidases/biosynthesis , Mannosidases/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Peroxidase/analysis , Peroxidase/biosynthesis , Peroxidase/genetics , RNA, Messenger/biosynthesis , Reactive Oxygen Species/metabolism , Seeds/genetics
14.
PLoS One ; 7(6): e36810, 2012.
Article in English | MEDLINE | ID: mdl-22685539

ABSTRACT

BACKGROUND: Among herbivorous insects that have exploited agro-ecosystems, the peach-potato aphid, Myzus persicae, is recognized as one of the most important agricultural pests worldwide. Uses over 400 plant species and has evolved different insecticides resistance mechanisms. As M. persicae feeds upon a huge diversity of hosts, it has been exposed to a wide variety of plant allelochemicals, which probably have promoted a wide range of detoxification systems. METHODOLOGY/PRINCIPAL FINDINGS: In this work we (i) evaluated whether insecticide resistance mutations (IRM) in M. persicae can give an advantage in terms of reproductive fitness when aphids face two hosts, pepper (Capsicum annuum) a suitable host and radish (Raphanus sativus) the unfavorable host and (ii) examined the transcriptional expression of six genes that are known to be up-regulated in response to insecticides. Our results show a significant interaction between host and IRM on the intrinsic rate of increase (r(m)). Susceptible genotypes (not carrying insensitivity mutations) had a higher r(m) on pepper, and the transcriptional levels of five genes increased on radish. The r(m) relationship was reversed on the unfavorable host; genotypes with multiple IRM exhibited higher r(m), without altering the transcriptional levels of the studied genes. Genotypes with one IRM kept a similar r(m) on both hosts, but they increased the transcriptional levels of two genes. CONCLUSIONS/SIGNIFICANCE: Although we have studied only nine genotypes, overall our results are in agreement with the general idea that allelochemical detoxification systems could constitute a pre-adaptation for the development of insecticide resistance. Genotypes carrying IRM exhibited a higher r(m) than susceptible genotypes on radish, the more unfavorable host. Susceptible genotypes should be able to tolerate the defended host by up-regulating some metabolic genes that are also responding to insecticides. Hence, our results suggest that the trade-off among resistance mechanisms might be quite complex, with a multiplicity of costs and benefits depending on the environment.


Subject(s)
Aphids/genetics , Gene Expression Regulation/genetics , Insecticide Resistance/genetics , Mutation , Adaptation, Physiological/genetics , Animals , Aphids/physiology , Capsicum/parasitology , Carbamates/pharmacology , Carboxylesterase/genetics , Cathepsin B/genetics , Cytochrome P-450 Enzyme System/genetics , Evolution, Molecular , Gene Expression Regulation/drug effects , Genotype , Glutathione Transferase/genetics , HSP70 Heat-Shock Proteins/genetics , Host Specificity/genetics , Humans , Insect Proteins/genetics , Insecticides/pharmacology , Isoenzymes/genetics , Prunus/parasitology , Pyrimidines/pharmacology , Raphanus/parasitology , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation/drug effects
15.
Appl Microbiol Biotechnol ; 78(4): 603-12, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18224318

ABSTRACT

Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40 degrees C. The enzyme retained activity after incubation at pHs ranging from 8 to 11 for 12 h at 37 degrees C and 6 to 8 for 24 h at 37 degrees C. It retained 80% of its activity after incubation at 30 to 70 degrees C for 30 min and lost 50% of its activity after incubation for 15 min at 80 degrees C. Noticeable activation of the enzyme is observed when Fe(2+) ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu(2+), Fe(3+), Hg(2+), and Zn(2+) ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.


Subject(s)
Aspergillus nidulans/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Amino Acid Sequence , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylesterase/chemistry , Carboxylesterase/genetics , Carboxylesterase/isolation & purification , Carboxylesterase/metabolism , Cations/pharmacology , Endopeptidases/genetics , Endopeptidases/metabolism , Enzyme Inhibitors/analysis , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , Molecular Weight , Organic Chemicals/analysis , Sequence Analysis, Protein , Substrate Specificity , Temperature
16.
Biochem Genet ; 45(9-10): 663-70, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17710528

ABSTRACT

Native polyacrylamide gel electrophoresis (PAGE) was employed to show the highest number of esterase loci and to detect alpha- and beta-esterase polymorphisms in leaf buds of Vitis vinifera cultivars. A total of 16 esterase isozymes were detected in leaf buds from 235 plants including Italia, Rubi, Benitaka, and Brasil cultivars. Biochemical characterization of the grape esterases using ester substrates revealed alpha-, beta-, and alpha/beta-esterases with inhibitor tests distinguishing both carboxylesterases (EST-2, EST-3, EST-5, EST-6, EST-7, EST-8, EST-9, EST-10, and EST-16 isozymes) and acetylesterases (EST-4, EST-11, EST-12, EST-13, EST-14, EST-15 isozymes). No allele variation for alpha-, beta-, and alpha/beta-esterases was detected; however, EST-3 alpha-carboxylesterase was absent in 61.7% of vines, and EST-4 alpha/beta-acetylesterase was absent in one vine of Rubi cv. Null EST-3 carboxylesterase phenotype (61.7%) cannot be explained in this article, but the high genetic polymorphism in four V. vinifera clones is a positive aspect for genetic selection and development of new clones with different characteristics.


Subject(s)
Acetylesterase/genetics , Carboxylesterase/genetics , Vitis/enzymology , Vitis/genetics , Breeding , Electrophoresis, Polyacrylamide Gel , Isoenzymes/genetics , Plant Leaves/enzymology , Polymorphism, Genetic
17.
Vet Parasitol ; 148(3-4): 301-9, 2007 Sep 30.
Article in English | MEDLINE | ID: mdl-17643821

ABSTRACT

Chemical control based on the use of pyrethroid and organophosphate compounds has selected resistant genotypes in populations of Rhipicephalus (Boophilus) microplus. Point mutations in esterase-encoding genes represent one of the main resistance mechanisms in this species. In this study, the PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technique was used to investigate the presence of mutations in a fragment of a putative carboxylesterase in a population of ticks with a history of resistance. The digestion of a fragment of 372 pb with EcoRI revealed three genotypes: W, H and M, observed in different frequencies. The homozygous wild-type genotype (W) was detected only in sensitive strains, with high frequency. The heterozygous genotype (H) was observed in all the strains, albeit with higher frequency in the strains with a moderate resistance, while the homozygous mutant genotype (M) was found only in the moderate resistant strain and resistant strains, with higher frequency in the resistant strains. A comparison of the sequences indicated the presence of other mutations, besides EcoRI polymorphism in the moderate resistant and resistant strains. Also found was the presence of stop codons generating truncated proteins in the sensitive and moderate resistant strains. A domain analysis revealed the presence of additional domains in the resistant strain. These findings suggest that different point mutations, as well as the influence of post-translational modification mechanisms, are altering the activity of the translated proteins and may be associated with resistance.


Subject(s)
Carboxylesterase/genetics , Insecticide Resistance/genetics , Point Mutation/genetics , Amino Acid Sequence , Animals , Base Sequence , Carboxylesterase/chemistry , Female , Gene Frequency , Genotype , Molecular Sequence Data , Parasitic Sensitivity Tests , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length , Rhipicephalus/drug effects , Rhipicephalus/enzymology , Rhipicephalus/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL